
The Annals of Statistics
1999, Vol. 27, No. 2, 536�561
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Yale University and Carnegie Mellon University

We give conditions that guarantee that the posterior probability of
every Hellinger neighborhood of the true distribution tends to 1 almost

Ž .surely. The conditions are 1 a requirement that the prior not put high
Ž .mass near distributions with very rough densities and 2 a requirement

that the prior put positive mass in Kullback�Leibler neighborhoods of the
true distribution. The results are based on the idea of approximating the
set of distributions with a finite-dimensional set of distributions with
sufficiently small Hellinger bracketing metric entropy. We apply the re-
sults to some examples.

1. Introduction. Recent advances in statistical computing have gener-
ated renewed interest in nonparametric Bayesian inference. As argued by

Ž .Diaconis and Freedman 1986 , these nonparametric methods are of little
value unless they possess reasonable consistency properties. Indeed, Diaconis

Ž .and Freedman 1986 showed that even if the prior puts positive mass in
weak neighborhoods of the true density, it does not follow that the posterior
mass of every weak neighborhood of the true density tends to 1.

Ž .Doob 1949 showed consistency of the posterior under very weak condi-
tions. However, his proof only gives consistency almost surely with respect to
the prior. Consistency can fail on a null set and the theorem gives no
guidance on what this null set looks like. For example, if the prior is a point
mass at a single density g, then Doob’s theorem applies, yet consistency fails

Ž .at all densities except g. Schwartz 1965 showed that if the prior puts
positive mass in each Kullback�Leibler neighborhood of the true density f ,0
then asymptotically the posterior does accumulate in weak neighborhoods of
f . However, weak neighborhoods contain many distributions that, in any0
practical sense, do not resemble f . Thus it seems useful to seek convergence0
in some stronger sense. The purpose of this paper is to provide a relatively

Žsimple, self-contained proof of consistency in Hellinger distance which is

Received November 1996; revised December 1998.
1Supported in part by Office of Naval Research Contract N00014-86-K-0670 and by a

National Science Foundation Postdoctor Fellowship.
2Supported in part by NSF Grant DMS-96-26181.
3Supported in part by NIH Grant RO1-CA54852 and NSF Grants DMS-93-03557 and

DMS-93-57646.
AMS 1991 subject classification. 62G20.
Key words and phrases. Exponential families, Hellinger distance, nonparametric Bayesian

inference, Polya trees.´
536



CONSISTENCY OF POSTERIOR DISTRIBUTIONS 537

.equivalent to consistency in total variation using only a few conditions like
Ž . Ž .those in Barron 1988 and Barron 1998 . Related results may be found in

Ž .Diaconis and Freedman 1997, 1998 and Ghoshal, Ghosh and Ramamoorthi
Ž .1999a .

A brief sketch of the main idea behind our results is as follows. Let
n Ž .X � X , . . . , X be n i.i.d. observations from a distribution P . The n-fold1 n 0

Ž n n. nproduct measure of P on the product space XX , BB will be denoted P and0 0
the infinite product measure will be denoted P�. Let � be a prior on a set of0

Ž . Ž � n.distributions described more formally in the next section and let � A X
n Ž . � Ž .be the posterior probability of A given X . Let A � A P � Q: d P , Q� � 0 0

4 Ž .� � where d �, � is some metric. We say that consistency holds at P if for0
Ž � n. � ��every � � 0, � A X � 1 almost surely P .� 0

� 4�Our strategy is to find a sequence FF of sets of distributions such thatn n�1
c � 4�the prior probability of FF is exponentially small. The sequence FF isn n n�1

Ž . Ž .essentially a sieve as in Grenander 1981 and Geman and Hwang 1982 .
� U 4Next, we find a finite set of upper brackets f : i � 1, . . . , N such that eachi

f � FF satisfies f � f U for some i. The likelihood function is then boundedn i
above by the f U ’s and we show that the posterior is exponentially smalli
outside A as long as the number of brackets does not grow too quickly as a�

function of n. Bracketing methods have been used for many types of consis-
Ž . Ž .tency results such as Wong and Shen 1995 , van de Geer 1993 and Pollard

Ž .1991 .
An outline of our paper is as follows. In Section 2 we present the notation

and main results about consistency. In Section 3 we present some specific
examples. The current paper builds on previous unpublished work by Barron.

2. General results. Let � be a probability measure on a measurable
Ž .space XX , BB , where the �-field BB is separable. Let QQ be the set of all finite

Ž .measures on XX , BB that are absolutely continuous with respect to �. Abso-
lute continuity of all probability measures under consideration with respect
to a common �-finite measure allows us to use the familiar version of Bayes’

Ž .theorem, 6 below, which we need for our results. It is well known that
absolute continuity with respect to a �-finite measure is equivalent to abso-

Ž .lute continuity with respect to a probability measure. Let d� �, � denote the
Hellinger metric on QQ,

1�2
21�2 1�2d� Q , Q � f x � f x d� x ,Ž . Ž . Ž . Ž .H1 2 1 2½ 5

where f � dQ �d�. Let DD be the Borel �-field of subsets of QQ induced byi i
open sets under the metric d�. Lemma 10, in the Appendix, shows that the

Ž .Radon�Nikodym derivative f � dQ�d� can be chosen so that f x isQ Q
jointly measurable as a function of Q and x. Let PP be the subset of QQ

consisting of all probability measures that are absolutely continuous with
respect to � and let CC be the restriction of the �-field DD to PP. For the
remainder of this paper, we will use the symbol f to stand for the jointlyP
measurable Radon�Nikodym derivative of P with respect to � when P � PP.
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Let GG be the set of all nonnegative functions that are integrable with
respect to �. Let d denote the Hellinger pseudo-metric on GG,

1�2
21�2 1�21 d f , f � f x � f x d� x .Ž . Ž . Ž . Ž . Ž .H1 2 1 2½ 5

Ž . Ž . Ž .If f � dQ �d�, then d f , f � d� Q , Q . An alternative form of 1 isi i 1 2 1 2

1�2

'2 d f , f � c � c � 2 f x g x d� x � c � c ,Ž . Ž . Ž . Ž . Ž . 'H1 2 1 2 1 2½ 5
Ž . Ž .where c � Hf x d� x .i i

Let XX n denote the product space of n copies of XX , and let �n denote
product measure. Let XX � be the product space of countably many copies of XX .

� 4�Suppose that X is a sequence of i.i.d. random variables with distribu-n n�1
tion P having density f with respect to �. Let E stand for expectation0 0 0

Ž .under distribution P . Let II �; � be the Kullback�Leibler information0

f xŽ .P
II P ; Q � log f x d� x ,Ž . Ž . Ž .H Pf xŽ .Q

for P, Q � PP. The integrand in the above expression is interpreted to be 0
Ž . Ž .whenever f x � 0. Note that II P; Q 	 0 with equality if and only if P andP

Ž .Q are the same probability. Also, II P; Q � � implies that P � Q. Lemma
Ž .11, in the Appendix, shows that II P ; P is measurable as a function from0

Ž .PP, CC to �. For each � � 0, define

3 N � P � PP : II P ; P � � ,� 4Ž . Ž .� 0

4 A � P � PP : d� P , P � � .� 4Ž . Ž .� 0

� Ž .Let X � X , X , . . . be the sequence of observations of which the first n1 2
n Ž .coordinates are denoted X � X , . . . , X . Realizations of these random1 n

� Ž . n Ž .sequences are denoted x � x , x , . . . and x � x , . . . , x , respectively.1 2 1 n
The density of the n-fold product measure of P is denoted by0

n
n5 p x � f x .Ž . Ž . Ž .Łn 0 i

i�1

For P � PP, let

1 p x nŽ .nn6 D x ; P � logŽ . Ž .n nn Ł f xŽ .i�1 P i

Ž n . Ž .be the sample Kullback�Leibler information so that E D X ; P � II P ; P .0 n 0
Ž .Lemma 2 shows that the denominator in 5 is finite and positive with
Ž .probability 1. Let � be a prior distribution on PP, CC .

The predictive density of X n is given by
n

n7 m x � f x d� P .Ž . Ž . Ž . Ž .ŁHn P i
i�1
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Bayes’ theorem says that the posterior probability given X n � x n of a mea-
surable subset B of PP is given by

n
�1n n�8 � B x � m x f x d� P ,Ž . Ž . Ž . Ž . Ž .ŁHn P i

B i�1

Ž n. Ž � n. Ž . Ž n. � 4 Žif 0 � m x � �. Define � B x � I � if m x � 0, � . We will see inn B n
. �Ž .Lemma 1 that this case is essentially ignorable. Schervish 1995 , Theorem

� Ž .1.31 shows that 8 is a regular conditional distribution.
First, we state the assumptions under which we prove consistency. The

Ž .following definition is based on one from Alexander 1984 .

Ž .DEFINITION 1. For 	 � 0 and C 
 PP, define HH C, 	 to be the logarithm of
the infimum of the set of all k such that there exist nonnegative functions
f U, . . . , f U satisfying:1 k

Ž . UŽ . Ž .i Hf x d� x � 1 � 	 for all i;i
Ž . U � �ii for each P � C there exists i such that f � f a.e. � .P i

Ž .We call HH C, 	 , the 	-upper metric entropy of C.

Also, the collection f U, . . . , f U is called a 	-upper bracketing of C. For the1 k
next assumption, recall that N is an �-Kullback�Leibler neighborhood of P� 0

Ž .defined in 3 .

Ž .ASSUMPTION 1. For every � � 0, � N � 0.�

� 4�ASSUMPTION 2. For every � � 0, there exists a sequence FF of subsetsn n�1
of PP, and positive, real numbers c, c , c , 	 such that1 2

2 2'c � � � 	 � 	 2, 	 � � �4ž /
and such that:

Ž . Ž c. Ž .i � FF � c exp �nc for all but finitely many n;n 1 2
Ž . Ž .ii HH FF , 	 � nc for all but finitely many n.n

The purpose of Assumption 1 is to avoid problems like those highlighted by
Ž .Diaconis and Freedman 1986 . The prior used by Diaconis and Freedman put

positive probability on weak neighborhoods of the true distribution, but not
on sets with finite Kullback�Leibler information. Since the likelihood func-

� Ž n .� Ž n .tion at P divided by the likelihood at P is exp nD x ; P and D x ; P �0 n n
Ž . � ��II P ; P a.s. P , it seems plausible to expect the posterior distribution to0 0

Ž .concentrate on the set of probabilities P for which II P ; P is small, but only0
if that set has positive prior probability. Assumption 2 is designed to prevent
the prior from giving substantial mass to distributions that happen to have
very rough densities. In Section 3.5, we give a detailed example in which
Assumption 1 holds but the prior puts too much mass on distributions with
densities that are allowed to jump up and down too often. What happens is
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that, for too many data sequences there are densities with substantial prior
probability that jump up just in the vicinity of each data value and then jump
down just away from each data value. Assumption 2 is designed to force the
prior probabilities of such distributions to be small enough so that only
extremely large samples of highly clustered data will lead to their having
large posterior probabilities. This same problem arises in nonparametric
maximum likelihood estimation and it is often addressed in a similar fashion,

Ž .namely by using sieves that satisfy a condition like part ii of Assumption 2.
Ž . 2To check part ii of Assumption 2, it is often convenient to set 	 � � �16

2 Ž 2 . 2and c � � �5. Then one checks that HH FF , � �16 � n� �5 for all large n.n
The main result of this paper is the following consistency result.

Ž .THEOREM 1. Let A be as defined in 4 . Under Assumptions 1 and 2, for�

every � � 0,
n ��lim � A x � 1 a.s. P .Ž .� 0

n��

The proof of Theorem 1 requires some lemmas, but the following simple
consequence of Theorem 1 is easy to prove.

COROLLARY 1. Define

ˆ n�f � � f � d� P x .Ž . Ž . Ž .Hn P

ˆ �Ž . � �Under Assumptions 1 and 2, lim d f , f � 0, a.s. P .n�� 0 n 0

PROOF. For each � � 0, we have

ˆ n�d f , f � d f , f d� P xŽ . Ž .Ž . H0 n 0 P

n n n� �� d f , f d� P x � d f , f d� P x a.s. P ,Ž . Ž . Ž . Ž .H H0 P 0 P 0
cA A� �

9Ž .

where the inequality follows from Jensen’s inequality and the convexity of
Ž . Ž .d f , � . The first term on the right-hand side of 9 is at most � by the0

� ��definition of A , and the second term goes to 0 a.s. P by Theorem 1 and the� 0
fact that Hellinger distance is bounded. Since � is arbitrary, the result
follows. �

ˆNote that f in Corollary 1 is the Bayes estimate of the density under an
variety of loss functions.

The proof of Theorem 1 will appear after the next several lemmas. Before
plunging into the lemmas and the main proof, here is an outline of the
strategy. The posterior probability of Ac may be written as the ratio�

Ž . Ž . Ž .cH R d��HR d� where R � Ł f x �f x � exp �nD . Lemmas 3 andA n n n i P i 0 i n�

4 establish that the denominator of the ratio is not exponentially small.
Lemma 5 shows that a sequence of sets with exponentially small prior
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probability has negligible posterior probability. This allows us to restrict
attention to the sets FF . Lemmas 6 and 7 establish a large deviation inequal-n
ity that will be used to show that the numerator of the ratio is exponentially
small. Lemmas 1 and 2 establish that certain quantities that appear in
several fractions during the course of the proof are finite and nonzero a.s.
� ��P . These facts are then combined in the proof of Theorem 1.0

LEMMA 1. Under Assumption 1,
� � n � 410 P x : there exists n such that m x � 0, � � 0,Ž . Ž .Ž .0 n

Ž .where m is defined in 7 .n

PROOF. We will prove that, for each n,
n n n � 411 P x : m x � 0, � � 0.Ž . Ž .Ž .0 n

Ž . Ž .The set in 10 occurs if and only if at least one of the sets in 11 occurs. For
n nŽ . n Ž . nŽ n.A � BB , P A � H Ł f x d� x andA i�1 P i

n
n n n12 P A d� P � f x d� x d� P .Ž . Ž . Ž . Ž . Ž . Ž .ŁH HH P i

A i�1

Ž .Since f 	 0, we can change the order of integration in 12 . The result isP

13 P n A d� P � m x n d�n x n .Ž . Ž . Ž . Ž . Ž .H H n
A

� n Ž n. 4 Ž .First, let A � x : m x � 0 . Then the right-hand side of 13 equals 0n
nŽ . � � Ž .and this implies that P A � 0 a.s. � . Hence, � B � 1 where B �

� nŽ . 4 Ž .P; P A � 0 . Choose any � � 0. Assumption 1 says that � N � 0. So�

N � B is nonempty. Choose some P � N � B. Since P � N , P is abso-� � � 0
nŽ .lutely continuous with respect to P, hence P A � 0.0

� n Ž n. 4 nŽ .Next, let A � x : m x � � . If � A � 0, the integral on the right-n
Ž . nŽ . Žhand side of 13 would be �, which would imply that P A on the left-hand

. n nŽ .side was unbounded. This contradicts P being a probability. So � A � 0
nŽ .and hence P A � 0. �0

Ž .LEMMA 2. Let p be defined in 5 . Thenn
� � n � 414 P x : there exists n such that p x � 0, � � 0.Ž . Ž .Ž .0 n

PROOF. As in lemma 1, we will prove that, for each n,
n n n � 415 P x : p x � 0, � � 0.Ž . Ž .Ž .0 n

For all A � BBn,

16 P n A � p x n d�n x n .Ž . Ž . Ž . Ž .H0 n
A

� n Ž n. 4 Ž . nŽ .First, let A � x : p x � 0 , then 16 clearly implies P A � 0. Next, letn
� n Ž n. 4 nŽ .A � x : p x � � . If � A � 0, then the integral on the right-hand siden

Ž . nŽ . nŽ .of 16 would be � implying that P A � �, a contradiction. So � A � 00
nŽ .and P A � 0. �0
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� �Ž .LEMMA 3. There exists a set B 
 XX such that P B � 1 and such that0
� Ž .� �for every x � BB, there is a set G � CC such that � G � 1 and for everyx x

Ž n . Ž .�P � G , lim D x ; P � II P ; P .x n�� n 0

�Ž � . Ž n . Ž .4 Ž .PROOF. Let G � x , P : lim D x ; P � II P ; P . Since II P ; Pn�� n 0 0
Ž n . � Žand D x ; P are jointly measurable from XX � PP to � see Lemma 11 ofn

. �the Appendix , we know that G is in the product �-field BB � CC. Let
� � Ž � . 4 � Ž � . 4�G � x ; x , P � G and let G � P; x , P � G be the sections. ThenP x

G � BB� for all P and G � � CC for all x�. These facts are steps in anyP x
�Ž . Ž .�standard proof of Fubini’s theorem, as are the facts that P G and � G0 P x

�Ž .are measurable functions. By the strong law of large numbers, P G � 1,0 P
for every P � PP. By Fubini’s theorem we have

1 � P� G d� PŽ . Ž .H 0 P
PP

� I x� , P dP� x� d� PŽ . Ž . Ž .H H G 0
�PP XX

17Ž .

� I x� , P d� P dP� x� .Ž . Ž . Ž .H H G 0
�XX PP

� Ž � . Ž . Ž .�Let B be the set of all x such that HI x , P d� P � � G � 1. It followsG x
Ž . �Ž .from 17 that P B � 1. �0

LEMMA 4. Under Assumption 1, for every � � 0,

m x nŽ .n� �P x : � exp �n� , i.o. � 0,Ž .0 nž /p xŽ .n

Ž . Ž .where m is defined in 7 and p is defined in 5 .n n

PROOF. Let � � 0 be given and let x� � B, where B is the set with the
same name guaranteed to exist by Lemma 3. Also, let G � be the set with thex
same name guaranteed to exist by Lemma 3. Then,

m x n 
 n f xŽ . Ž .n i�1 i
exp n� � exp n� d� PŽ . Ž . Ž .Hn np x p xŽ . Ž .n n

Łn f xŽ .i�1 P i	 exp n� d� PŽ . Ž .H np xŽ .�N �G n� �2 x

18Ž .

n� exp n � � D x ; P d� P .� 4Ž . Ž .H n
�N �G� �2 x

According to Lemma 3,
n

�19 lim inf exp n � � D x ; P � � for all P � N � G .Ž . Ž .Ž .n � �2 x
n��

Ž . Ž .�Assumption 1 says that � N � 0 and Lemma 3 says that � G � 1, so� �2 x
Ž . Ž .�� N � G � 0. Fatou’s lemma and 19 imply that the integrals on the� �2 x
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Ž . Ž .far right-hand side of 18 go to �. The rest of 18 implies that

m x nŽ .n
lim exp n� � �,Ž . np xn�� Ž .n

Ž n. Ž n. Ž .hence m x �p x � exp �n� all but finitely often. Since this holds forn n
� �Ž .every x � B and P B � 1, the result is proved. �0

LEMMA 5. Suppose that Assumption 1 holds. Let c , c � 0. Suppose that1 2
� 4� Ž . Ž .B is a sequence of subsets of PP such that � B � c exp �c n for alln n�1 n 1 2

Ž � n. � ��but finitely many n. Then lim � B x � 0 a.s. P .n�� n 0

PROOF. It suffices to prove that, for each 	 � 0,

� � � n20 P x : � B x � 	 i.o. � 0.Ž . Ž .Ž .0 n

First, write

n1
n�� B x � f x d� PŽ . Ž .Ž . ŁHn P inm xŽ . B i�1n n

p x n Łn f xŽ . Ž .n i�1 P i� d� P .Ž .Hn nm x p xŽ . Ž .Bn nn

Ž . n nFor all but finitely many n, using the fact that Ł f x � dP �d� ,i P i

nŁ f x cŽ .i�1 P i 2n nP x : d� P � exp �nŽ .H0 nž /p x 2Ž .B nn

nc2 n n� exp n f x d� P d� xŽ . Ž . Ž .ŁH H P iž / n2 XX B i�1n

nc2 n n� exp n f x d� x d� PŽ . Ž . Ž .ŁH H P iž / n2 B XX i�1n

c2� exp n � BŽ .nž /2
c2� c exp �n ,1 ž /2

where the first line follows from the Markov inequality, the second line
follows from Fubini’s theorem and the last line follows from the hypotheses of

� Ž .the lemma. Since Ý exp �nc �2 � �, the first Borel�Cantelli lemman�1 2
implies that

nŁ f x cŽ .i�1 P i 2� �21 P x : d� P � exp �n i.o. � 0.Ž . Ž .H0 nž /p x 2Ž .B nn
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It follows from Lemma 4 that
np x cŽ .n 2� �P x : � exp n i.o. � 0.0 nž /m x 4Ž .n

Ž .Combining this with 21 yields
c2� � n�P x : � B x � exp �n i.o. � 0,Ž .0 nž /4

Ž .which implies 20 . �

The following lemma is a modification of Lemma 1 of Wong and Shen
Ž .1995 .

Ž .LEMMA 6. Let g be a nonnegative, integrable function, � � 0, d f , g0
Ž . Ž .'� � , Hg x d� x � 1 � 	 and 	 � � . Then

n g x � � � � 	Ž .in n � �P x : 	 exp �n� � exp �n .Ł0 ž /ž /f x 2Ž .i�1 0 i

PROOF.
n1�2 1�2n g x n� n� g XŽ . Ž .i 1n nP x : 	 exp � � exp EŁ0 0ž /ž / ž /ž / ž /f x 2 2 f XŽ . Ž .i�1 0 i 0 1

nn� � � 	
� exp 1 �ž / ž /2 2

n� � � 	
� exp exp n log 1 �ž / ž /2 2

� � � 	
� exp n � ,ž /2 2

where the first line follows from the Markov inequality, the second follows
Ž .from 2 and the fourth follows from the facts that 	 � � � 2 � 	 , according

Ž . Ž .to 2 , and log 1 � x � �x for 0 � x � 1. �

� �LEMMA 7. Let P � PP and g � GG be such that f � g a.e. � andP'Ž . Ž . Ž .Hg x d� x � 1 � 	 . Then d f , g � 	 .P

Ž .PROOF. It follows from 2 that
22 'd f , g � f x � g x d� x � 2 � 	 � 2 f x g x d� x .' 'Ž . Ž . Ž . Ž . Ž . Ž . Ž .H Hž /P P

Write

'f x g x � f x � f x g x � f x 	 f x .' ' 'Ž . Ž . Ž . Ž . Ž . Ž . Ž .ž /P P P P P
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2Ž . Ž . Ž . Ž .It follows that H f x g x d� x 	 Hf x d� x � 1. So d f , g � 	 and' Ž . Ž .P P P

'Ž .d f , g � 	 . �P

� 4�PROOF OF THEOREM 1. Let � � 0 be given, and let FF , c, c , c and 	n n�1 1 2
be as guaranteed by Assumption 2. Recall that A is a Hellinger neighbor-�

Ž .hood of the true density as defined in 4 . Write
c � n c � n c c � n22 � A x � � A � FF x � � A � FF x .Ž . Ž . Ž . Ž .� � n � n

Ž c. Ž .Since � FF � c exp �nc for all but finitely many n, it follows fromn 1 2
Ž .Lemma 5 that the second expression on the right-hand side of 22 goes to 0,

� ��a.s. P . So, it suffices to prove that the first expression on the right-hand0
Ž . � �� cside of 22 goes to 0, a.s. P . Let C � A � FF . Now, write0 n � n

H Łn f x d� PŽ . Ž .C i�1 P inn�� C x �Ž .n nHŁ f x d� PŽ . Ž .i�1 P i
23Ž .

n np x f xŽ . Ž .n P i� d� P .Ž .ŁHnm x f xŽ . Ž .C i�1n 0 in

Ž . Ž Ž .. � U U 4Let r � r n, 	 � exp HH FF , 	 and let f , . . . , f be the brackets guaran-n 1 r
Ž .teed by Assumption 2. For convenience, suppress the dependence of r n, 	

on n and 	 . For j � 1, . . . , r, define

˜ U � �E � P � FF : f � f a.e. � .� 4j n P j

˜ ˜ ˜� 4Let E � E and for j � 1 let E � P � E ; P � E , s � j . Hence, the sets1 1 j j s
� 4 U � �E , . . . , E are disjoint and cover C , and if P � E then f � f a.e. � . We1 r n j P j
now write

n r nf x f xŽ . Ž .P i P i
d� P � d� PŽ . Ž .Ł Ý ŁH Hf x f xŽ . Ž .C E �Ci�1 i�10 i 0 in j nj�1

r n Uf xŽ .j i� d� PŽ .Ý ŁH f xŽ .E �C i�1 0 ij nj�1
24Ž .

r n Uf xŽ .j i n� �� � E � C a.e. � .Ž .Ý Ł j nf xŽ .i�1 0 ij�1

Since 	 � � 2�4, by Assumption 2 there exists � and c such that
2'25 0 � � � � � 	 � 	 � 2c.Ž . Ž .

Define
n Uf x n�Ž .j inF � x : 	 exp � .Łn , j ž /½ 5f x 2Ž .i�1 0 i

U 'Ž .If P � E , Lemma 7 implies that d f , f � 	 and if P � C , thenj P j n
Ž .d f , f � � . Suppose there exists some P in C � E . By the triangle0 P n j

U U 'Ž . Ž . Ž .inequality, d f , f 	 d f , f � d f , f 	 � � 	 . Thus, for those j such0 j 0 P j P
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U 'Ž .that d f , f � � � 	 , we can conclude that E � C � �. For every n and0 j j n
U U'Ž .every j such that d f , f 	 � � 	 , apply Lemma 6 with g � f , � �0 j j

U 2 2 n'Ž . � � Ž . Ž .d f , f 	 � � 	 , and � as defined in 25 to see that P F �0 j 0 n, j
Ž . Ž . Ž .exp �nv , where v � c. So, because of 24 and the fact that Ý � E � CC �j j n

1, we have

n f x n�Ž .P in nP x : d� P 	 exp �Ž .ŁH0 ½ 5ž /f x 2Ž .C i�1 0 in

Ur n f x n�Ž .j in n� P x : � E � C 	 exp �Ž .Ý Ł0 j n ½ 5ž /f x 2Ž .i�1 0 ij�1

r
n� P FŽ .Ý 0 n , j

j�1

� r exp �nvŽ .
� exp HH FF , 	 � nvŽ .Ž .n

� �� exp �n v � c ,Ž .
Ž .for all but finitely many n. The last inequality follows from part ii of

Assumption 2. The first Borel�Cantelli lemma implies that

n f x n�Ž .P i� �P x : d� P 	 exp � , i.o. � 0.Ž .ŁH0 ½ 5ž /f x 2Ž .C i�1 0 in

Lemma 4 says that

p x n n�Ž .n� �P x : 	 exp , i.o. � 0.0 n ½ 5ž /m x 4Ž .n

Ž .Combining these last two equations with 23 gives that

n�
� � n�P x : � C x 	 exp � , i.o. � 0.Ž .0 n ½ 5ž /4

Ž � n. � ��Hence lim � C x � 0, a.s. P . �n�� n 0

Ž .Verifying part ii of Assumption 2 can be awkward. The next lemma gives
a specific condition that can be checked to verify this assumption.

� 4�LEMMA 8. Let TT be a sequence of finite measurable partitions of XXn n�1
and let N be the cardinality of TT . For each n, let a � 0 and suppose thatn n n
Ž .� A � 1�N for every A � TT . Definen n

FF � P � PP : for every A � TT and for every x , y � A ,�n n

f x � f y � a .4Ž . Ž .P P n

Ž . � Ž � �.�Then HH FF , 2 a � N 1 � log 1 � 1� 2 N a .n n n n n
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PROOF. For each n and each vector l of nonnegative integers l �
Ž .l , . . . , l such that1 Nn

N Nn n

26 a l � N � a l � 2 ,Ž . Ž .Ý Ýn i n n i
i�1 i�1

define
Nn

Uf x � a I x � l � 2 .Ž . Ž . Ž .Ýl n A ii
i�1

It is easy to see that for every P � FF , there exists f U such that f � f U a.e.n l P l
� �� . Note that

Nn 1
Uf x d� x � a l � 2 � 1 � 2 a .Ž . Ž . Ž .ÝH l n i nNni�1

U Ž .So the collection of f functions for all l that satisfy 26 forms a 2 a -up-l n
per bracketing of FF . The cardinality of this upper bracketing is the numbern
of hypercubes with sides of length 2 a needed to cover the N � 1-dimensionaln n

Nn Ž .�N nsimplex in � . An upper bound on this number is 2 a times the volumen
� Nn Nn 4of C � x � � : 
 i x 	 0, Ý x � 1 � 2 N a . It is easy to see that C isn i i�1 i n n n

just 1 � 2 N a times the set where the Dirichlet density with all parametersn n
Ž .Nnequal to 1 is positive. Hence the volume of C is equal to 1 � 2 N a �N !.n n n n

It follows that

HH FF , 2 a � N log 1 � 2 N a � log N ! � N log 2 aŽ . Ž . Ž . Ž .n n n n n n n n

1
� N log N � N log 1 � � N log N � NŽ . Ž .n n n n n nž /2 N an n

1
� N 1 � log 1 � ,n ž /2 N an n

Ž . Ž .since log x! 	 x log x � x for all x. �

Ž .A simple corollary helps to verify part ii of Assumption 2.

COROLLARY 2. For each � � 0, let N � n� 2�10, a � � 2�32 and 	 �n n
2 � 4�� �16. If lim N � �, then the sequence FF from Lemma 8 satisfiesn�� n n n�1

HH FF , 	 � n� 2�5 .Ž .n

for all but finitely many n.

Ž . Ž c.To verify part i of Assumption 2, one must show that � FF is exponentiallyn
small.

3. Some prior distributions. In this section, we present some prior
distributions that satisfy Assumptions 1 and 2. In Section 3.5, we also give an
example to show how failure of Assumption 2 can lead to an inconsistent
posterior.
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All of the examples in this section deal with real-valued random variables.
If � is a prior over PP, then the prior marginal distribution of each X isi

P� A � P A d� P for A � BB.Ž . Ž . Ž .H
PP

We find it convenient to construct examples in which P� is the uniform
� �distribution on 0, 1 . It is easy to create priors for distributions on the real

Ž .line. Let P� be a distribution with cumulative distribution function cdf F�.
Of course, we can transform each observation X to the unit interval byi

Ž .Y � F� X . Use one of our priors for the unknown distribution P of the Yi i i
random variables and then map the prior back to a prior on the set of
distributions on �. More precisely, let PP be the set of all probabilities on �

that are absolutely continuous with respect to Lebesgue measure � and let
� �PP be the subset consisting of distributions on 0, 1 . Define h�: PP � PP�0, 1� �0, 1�

Ž . Ž .by saying that h� P is the probability with cdf F F� where F is the cdfP P
of the distribution P. It is easy to see that the function h� is continuous in

Ž . Ž . Ž Ž . Ž ..the Hellinger topology hence measurable since d� P, Q � d� h� P , h� Q .
Therefore, any prior � on PP induces a prior �� on PP by means of the�0, 1�
function h�. The induced prior �� has the property that the marginal prior
distribution of each observation is P�.

3.1. Histograms. One prior distribution for continuous distributions that
satisfies the conditions of Theorem 1 is a prior concentrated on a collection of
distributions with step-function densities. For each n, we construct a collec-
tion UU of distributions whose densities are constant on each of the finitelyn

Ž .many intervals in a partition TT . We use Corollary 2 to ensure that part ii ofn
Assumption 2 holds. We assign the set UU prior probability p , which isn n

Ž .chosen so that part i of Assumption 2 holds.
� �Suppose that PP consists of all probability measures on 0, 1 that are

absolutely continuous with respect to Lebesgue measure �. Assume that
Ž . �II P ; � � �. For each integer n, let p � 0 be such that Ý p � 1. For0 n n�1 n

each n, let N be an integer and let TT be the partitionn n

1 1 2 N � 1n
TT � 0, , , , . . . , , 1 .n ½ 5/ /N N N Nn n n n

Let UU be the collection of all distributions that have constant density onn
every interval in TT . Our prior distribution will place probability p on the setn n
UU and distribute the probability as follows. Let a � 0 and denote a randomn n

Ž .element of PP as P. If P � UU , we can write P � f , . . . , f wheren 1 NnNn Ž . �Ž . .Ý f � A � 1 and A is the interval i � 1 �N , i�N . This makes f �i�1 i i i n n i
Ž .f x for all x � A . Conditional on P � UU , we assign P�N the DirichletP i n n

Ž .distribution Dir a , . . . , a .n n
We now prove that, by careful choice of N and p as functions of n thisn n

prior distribution will satisfy the conditions of Theorem 1. We will let
m n � 4�N � 2 with m a nondecreasing sequence of positive integers thatn n n�1

goes to �. The following result is proved in the Appendix.
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Ž .LEMMA 9. Let XX , BB, � be a probability space, and let RR be a collection of
measurable real-valued functions defined on XX . For each b � 0, define

� �� 4RR � f � RR: ess sup f � b ,b

� �� 4L � f : ess sup f � b ,b

where the essential supremum is relative to �. Suppose that there exists r � 1
� 1Ž .�such that RR is dense in the sense of L � in L for all large b. Let P � �r b b 0

Ž . Ž .be another probability on XX , BB such that II P ; � � �. Then for every � � 0,0
Ž .there is a bounded function g � RR such that II P ; P � � , where P is the0 g g

distribution with density

exp g xŽ .Ž .
p x � .Ž .g H exp g y d� yŽ . Ž .Ž .

Let RR be the set of all step functions that are constant on all of the intervals
in at least one of the TT partitions, and let � be Lebesgue measure. Since stepn
functions are dense in the collection of bounded measurable functions and RR

is dense in the collection of step functions, it follows that for each � , there
Ž .exists n and P � UU such that II P ; P � ��2. Since the Dirichlet distribu-� n 0 �

tion over UU assigns positive probability to every open neighborhood of Pn �

Ž .and II P ; P is continuous as a function of P for distributions with densities0
in RR, it follows that Assumption 1 holds.

� 4�Next, construct the sets FF as in Corollary 2. Since each a � 0 andn n�1 n
the probabilities in UU have constant density on every A � TT , it follows thatn n

Ž c. � ŽUU 
 FF . Also, UU 
 UU for all n, so � FF � Ý p . Setting p � 1 �n n n n�1 n l�n�1 l n
. n Ž .a a for some 0 � a � 1 will satisfy part i of Assumption 2. Finally, let

Ž . Ž � Ž . Ž Ž ..�.N � n�log n that is, m � log n � log log n in Corollary 2 so thatn n 2 2
Ž .part ii of Assumption 2 holds.

3.2. Polya Tree Priors. The class of Polya tree distributions was described´ ´
Ž . Ž .by Mauldin, Sudderth and Williams 1992 and Lavine 1992 . Polya trees are´

� Ž . Ž .�special cases of tailfree processes see Freedman 1963 and Fabius 1964 .
� 4� � �Consider the sequence of partitions SS of 0, 1 such that SS �k k�1 1

�� � Ž �40, 1�2 , 1�2, 1 and each SS contains the left and right halves of allk
Ž �� �4 .intervals in SS for k � 1. For convenience, let SS � 0, 1 . For ank�1 0

interval I � SS for k � 0, 1, . . . create a random variable V taking values ink I
� �0, 1 and having mean 1�2. Make all of the V independent of each other. ForI

1Ž .each I � SS for k 	 1, define p I � SS to be the interval J in SS suchk k�1 k�1
that I 
 J and set

V 1 , if I is the left subinterval of p1 I ,Ž .p Ž I .
W �I 1½ 11 � V , if I is the right subinterval of p I .Ž .p Ž I .
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2Ž . 1Ž 1Ž .. iŽ .For I � SS with k 	 2, define p I � p p I , and similarly define p Ik
� 0Ž . � �for i � 1, . . . , k. For convenience, let p I � I for all I. Let SS � � SS ,k�0 k

Ž .and for each I � SS , define K I to be that k such that I � SS , and setk
Ž . K Ž I .

i� 1P I � Ł W . The set function P extends uniquely to the smallesti�1 p Ž I .
�-field containing SS , which is the Borel �-field, and becomes a random

Ž .probability measure on the unit interval. Kraft 1964 shows that, if the
distribution of V becomes concentrated around 1�2 sufficiently rapidly as II

Ž .shrinks moves through later partitions SS then P will have a density withk
Žrespect to Lebesgue measure with probability 1. For example, if each V � SSI k

Ž . Ž .has the Beta a , a distribution, then the conditions of Kraft 1964 will bek k
� �1 . Ž . .met if Ý a � �. Lavine 1994 , Theorem 2 , and Ghosal, Ghosh andk�1 k

Ž .Ramamoorthi 1999b , Theorem 3.1, prove results like the following.

PROPOSITION 1. Suppose that for every k and every I � SS , V has thek I
Ž . Ž . � �1�2Beta a , a distribution and that II P ; P� � �. If Ý a � �, thenk k 0 k�1 k

Ž .� N � 0 for every � � 0.�

In words, Assumption 1 can be satisfied by a Polya tree distribution so long´
as the prior predictive distribution is not infinitely far away from the true
distribution.

We show next that Assumption 2 can also be satisfied. We will construct a
� 4�sequence of sets FF as in Corollary 2. Let P have the Polya tree prior´n n�1

� �distribution on 0, 1 that has a density, f , with probability 1. For eachP
� � Ž .y � 0, 1 and k � 0, 1, . . . , let I y be that interval in SS that contains y.k k

k k ˆŽ . � Ž .� Ž .Then p y � lim 2 Ł W . See Kraft 1964 . Let f y �k �� i�1 I Ž y . ki

2 kŁ k W , the approximation to f based on the first k partitions.i�1 I Ž y . Pi
Ž . � 4�Suppose that W 	 Beta a , a for all I � SS . Let g be a sequence ofI k k k k k�1

� k Ž � � .numbers such that Ý 2 g � �, and let e � Pr 2W � 1 � g for I � SS .k�1 k k I k k
Let E � Ý� 2 ie and G � Ý� 2 i�1g . Thenk i�k�1 i k i�k�1 i

ˆ27 � � y : f y � f y � G � E ,Ž . Ž . Ž .Ž .P k k k

because W � 2 for all k and y. If G � � 2�16, then the event whoseI Ž y . kk
Ž . c Ž .probability is bounded in 27 contains FF . Hence, 27 provides a bound onn

Ž c.� FF . The partition SS plays the role of TT in Lemma 8, and the cardinalityn k n
of SS is N � 2 k. To satisfy the conditions of Corollary 2, we need k �k n

Ž 2 .log � n�10 . So, let2

2� n
k � � log ,Ž .n 2 ž /10

Ž .and set TT � SS to guarantee that part ii of Assumption 2 holds. Choosen k Ž� .n
� �1�2 Žthe a large enough so that Ý a � � so Proposition 1 says thatk k�1 k

. kAssumption 1 holds and large enough so that log E � b � b 2 for somek 1 2
Ž .constants b , b with b � 0. This makes part i of Assumption 2 hold.1 2 2
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As an example of how to set the numbers a , consider the following. Letk
Ž . � � Ž .W 	 Beta a, a and let Z � 2W � 1 . Then, for g � 0, 1 ,

1 � g
Pr Z � g � 2 Pr W �Ž . ž /2

� 2 aŽ . 1 a�1a�1� 2 w 1 � w dwŽ .H2 Ž .1�g �2� aŽ .
aa�1� 2 a 1 � g 1 � gŽ .

� 2 2 ž / ž /2 2� aŽ .
'a a2� 1 � gŽ .'�

'a
2� exp �g a ,Ž .'�

where the third line follows from the monotonicity of the Beta density on
� �1�2, 1 , the fourth line follows from the facts that

1 1
2 a�1� 2 a � 2 � a � a �Ž . Ž . ž /' 2�

1 y'Ž . Ž . Ž .and � a � � � a a and the fifth line follows from the fact that 1 � x2
Ž . �k� exp �xy for 0 � x � 1 and y � 0. So, we can let g � 2 for � � 0 andk

let a � 1�g 3. It now follows thatk k

k'8Ž .
ke � exp �2 ,Ž .k '�

so
i

� '8Ž .
i iE � 2 exp �2Ž .Ýk '�i�k�1

k�1 k�1 �'2 8 exp �2Ž .Ž . Ž .i� k�1 i k�1'� 2 8 exp �2 � 2 .Ž .Ž .Ý'� i�k�1

Ž . kSince the last sum is finite it follows that log E � b � b 2 . In summary, ak 1 2
Ž .Polya tree prior with every W for I � SS having a Beta a , a distribution´ I k k k

with a � 8k will satisfy the assumptions of Theorem 1 with the sequencek
� 4� Ž .FF from Corollary 2 so long as II P ; P� � �.n n�1 0

3.3. Infinite-dimensional exponential families

� 4�Let � � � be a sequence of independent random variables withj j�1
Ž 2 . � Ž .4� � �� 	 N 0, � . Let � � be a sequence of orthogonal polynomials on 0, 1 .j j j j�1
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Define

�

f x � exp � � x � c � ,Ž . Ž . Ž .Ý� j jž /
j�1

Ž .where c � makes f a density. Let P stand for the distribution with density� �

f . This model for infinite dimensional parameter spaces has been studied by�

Ž . Ž .Leonard 1978 and Lenk 1988, 1991 .
� � � 
Ž . �Let a � sup � and b � sup � x , which are finite since thej 0 � x �1 j j 0 � x �1 j

� are polynomials. Now, choose the � ’s so that Ý a � � � to assure that fj j j j j �

�Ž . .is a density with probability 1 and Ý b � � �. Let A � i � 1 �N, i�N ,j j j n, i
� Ž .� � 4where N � n�log n , for i � 1, . . . , N. Let TT � A , . . . , A . Definen n, 1 n, N

Y � sup f x � f y ,Ž . Ž .n , i � �
x , y�An , i

f xŽ .�
X � sup log .n , i f yŽ .x , y�A �n , i

Ž .Let � � 0. Since X � � implies Y � exp � � 1, we need to show thatn, i n, i
with 	 � a � � 2�32 as in Corollary 2, there exists c , c � 0 such thatn 1 2

Ž Ž .. Ž .Pr X � log 1 � 	 � c exp �c n for all but finitely many n. Let � �n, j 1 2
Ž .log 1 � 	 .
Now, for x, y � A , writen, i

�f xŽ .�
log � � � x � � yŽ . Ž .Ý j j jf yŽ .� j�1

� x

� � � t dtŽ .Ý Hj j

yj�1

� �1
� � � � � �� b � x � y � b � .Ý Ýj j j jNj�1 j�1

Ž .Let Z 	 N 0, 1 . Then

�

� �� X � � � � b � � N�Ž . Ýn , j j jž /
j�1

�

� � � �� � exp b � � exp N�Ý j jž /j�1

�

� �� inf exp �N�t E exp t b �Ž . Ý j jž /t	0 j�1



CONSISTENCY OF POSTERIOR DISTRIBUTIONS 553

�

� �� inf exp �N�t E exp tb ZŽ . Ž .Ł j
t	0 j�1

�
2 2 2� inf exp �N�t 2� b � t exp t b � �2Ž . Ž . Ž .Ł j j j j

t	0 j�1

� �
2 2 2� exp �N�t � t b � �2 2� b � t ,Ž .Ý Ł0 0 j j j j 0ž / j�1j�1

where � is the standard normal distribution function and t 	 0. Suppose0
that we choose the � so that Ý� b � � �. Let t � N��Ý� b2� 2. Thenj j�1 j j 0 j�1 j j

� � Ž .�Ł 2� b � t � c � �, andj�1 j j 0 1

N 2�2

Pr X � � � c exp � .Ž .n , j 1 � 2 2ž /Ý b �j�1 j j

Since N 2 � n, this completes the proof that the prior probability of FF c isn
exponentially small, where FF is as in Corollary 2.n

� �The uniform density on 0, 1 is Lebesgue measure �. We want to show that
Ž . Ž .if II P ; � � � then, for every � � 0, � N � 0. First, suppose that there0 �

m Ž .exist m and � , . . . , � such that log f � Ý � � � c � . Let1 m 0 j�1 j j

� P , Q � sup log f x � log f x ,Ž . Ž . Ž .P Q
0�x�1

� Ž . 4 Ž .and let B � P: � P , P � � . A simple calculation shows that II P; Q �� 0
Ž . Ž .� P, Q . So it suffices to show that � B � 0.�

Ž . � Ž . � � � 4 Ž .Let Z r � � � � , � , . . . : Ý a � � � . Then � B 	� 1 2 j� r j j �

Ž � Ž .. Ž Ž .. � �� B Z r � Z r . Recall that the � ’s have been chosen so that Ý a � is� � � j j j j
finite with probability 1. It follows that for any � � 0, there exists r such0

Ž Ž .. � 4that � Z r � 0. Choose � � ��2 and choose r � max r , m � 1 . For � �� 0 0
Ž .Z r and defining � � 0 for j � m, we see that� j

� P , P � sup � � � � xŽ . Ž .Ž .Ý0 � j j j
0�x�1 j

� �� a � � �Ý j j j
j

r

� �� a � � � � � .Ý j j j
j�1

So
r

� � �� B Z r 	 � a � � � � � � � Z rŽ . Ž .Ž . Ý� � j j j �ž /j�1

r �
� �	 � a � � � � Z rŽ .Ý j j j �ž /2j�1

r �
� �	 � a � � � � .Ý j j jž /2j�1
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Ž . rSince the marginal distribution of � , . . . , � has support over all � , we see1 r
Ž � Ž ..that this latter event has positive probability. Thus, � B Z r � 0.� �

Ž .Now consider any P such that II P ; � � �. Lemma 9 says that for any0 0
a � 0 there exists a distribution P with density f such that log f is a

Ž .polynomial of finite degree and such that II P ; P � a. Further,0

f xŽ .
II P ; P � II P ; P � sup log � a � � P , P .Ž . Ž . Ž .0 � 0 �f xŽ .0�x�1 �

Choose a � ��2 and note that B 
 N . Since we have already shown that� �2 �

B has positive prior probability, the proof is complete. �� �2

3.4. Mixtures of priors. In the examples earlier in this section, the poste-
rior distributions are somewhat sensitive to the choice of prior predictive
distribution P�. In particular, the posterior predictive densities of future
observations computed from histogram and Polya tree priors tend to have´
noticeable jumps at the boundaries of the sets in the partitions TT and SS .n k
Also, a choice of P� that is particularly unlike the sample distribution of the
data will make the convergence of the posterior very slow. One way to
alleviate these problems is to use a mixture of prior distributions.

� 4Suppose that we replace P� by a family of distributions P : � � � where�

Ž . Ž�, � is a measurable space and each P � �. One typical choice is a�

location�scale family that one thinks of as a first-order approximation to the
. Ž .distribution of the data. Let � be a prior probability measure on �, � . Let

� be a random variable such that, conditional on � � � , the prior distribu-
Ž .tion on PP, CC is � , where � is constructed just like a � in one of the other� �

Ž � n.examples in this section with P replacing P�. Let � � x denote the� �

Ž .conditional posterior distribution on PP, CC given � � � after observing
n n Ž � n. n nX � x . Let � � x denote the posterior distribution of � given X � x .

Ž .Then the posterior on PP, CC is

� n � n � n� B x � � B x d� � x .Ž . Ž . Ž .H �
�

To prove consistency of this posterior, we will make some additional
Ž� Ž . 4. Ž � n.assumptions. Assume that � � : II P ; P � � � 1. Suppose that � � x is0 � �

� � �uniformly consistent a.s. � , that is, there is a subset B of XX with
Ž . �

�P B � 1 such that for every x � B and 	 � 0, there exists B � � and0 x
Ž �. Ž . Ž �. Ž � n.�N x such that � B � 1 and n 	 N x implies � A x � 1 � 	 for allx � �

� � B �.x
First, note that the conditional distribution of X n given � � � is abso-

Ž n � .lutely continuous with respect to � with density g x � �n
n Ž . Ž .H Ł f x d� P . It follows from the measure-theoretic version of Bayes’PP i�1 P i �

Ž � n.theorem that, for each n, � � x � � with probability 1 under M , then
n � Ž . �marginal distribution of X . See Schervish 1995 , Theorem 1.3.1.

Next, note that in the earlier examples in this section, we transformed the
Ž .data to the interval 0, 1 using F�. The resulting distribution for P, the
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distribution of the transformed data, gave probability 1 to the set of probabili-
Ž .ties with densities that are strictly positive on all of 0, 1 . This, together with

Ž . nII P ; P � � implies that for all n, the n-fold product of P on XX is0 � 0
absolutely continuous with respect to M .n

� Ž � n.Let C be the set of sequences x such that � � x � � for all n. Since
Ž . �Ž . �Ž . �M C � 1, then P C � 1 and P C � B � 1. For each x � C � B, n 	n 0 0

Ž �.N x implies

� n � n � n � n
�� A x � � A x d� � x � 1 � 	 � B x � 1 � 	 .Ž . Ž .Ž . Ž . Ž .H� � � x

�Bx

�Ž Ž � n.Since 	 is arbitrary, this proves that P lim � A x � 1.0 n�� �

Uniform consistency is difficult to verify in general, and we do not believe
�that it is a necessary condition. For example, Ghosal, Ghosh and Ramamoor-

Ž .thi 1999b use a continuity condition instead of uniform consistency to prove
�a weaker form of consistency for location mixtures of symmetric Polya trees.´

On the other hand, uniform consistency does hold in the simple case in
which � is a finite set. For example, � might consist of a Polya tree, an´
exponential family and a histogram. The posterior, as the prior, would then
be a mixture of these three types of distributions.

3.5. A counterexample. In this section, we present an example in which
Assumption 1 holds but Assumption 2 fails and the posteriori is inconsistent.
The idea of the example is that the prior � is split evenly between disjoint
sets of probabilities PP and PP�. There are distributions P � PP such that0 0
Ž . Ž .II P ; P is arbitrarily small and � N � 0 for all � � 0. The densities in PP�0 �

however, are very far from P in Hellinger distance, yet they track the data0
sufficiently well to acquire significant posterior probability infinitely often.

For each positive integer N, let
21 1 2 2 N � 1

TT � 0, , , , . . . , , 1N 2 2 2 2½ 5/ /2 N 2 N 2 N 2 N

� �be a partition of 0, 1 . Let PP be the set of probabilities with densityN
functions that are constant on every interval in TT and that assume only theN

2 N 2 �2Ž .two values 0 and 2. The cardinality of PP is q � . Let a � N �c ,2N N N 0N

where
�

228 c � 1�N .Ž . Ý0
N�1

� �Our prior distribution will place probability a � 2 q on each distribution inN N
PP for all N. The other half of the probability is distributed as follows. Let UUN 0
be the set of all normal distributions with variance 1 and mean � where

2'� �� � 0, 2 . Let � � � �2. Let � have prior density

1 1 11
29 exp � I � where c � exp � d� .Ž . Ž . HŽ0, 1. 1ž / ž /c � �01
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� �Let PP be the collection of all distributions on 0, 1 obtained by transforming0
the distributions in UU by the standard normal cumulative distribution0

Ž . Žfunction �. That is, each P � PP has density of the form f x � exp ��� 0 P��1' Ž .. Ž .� 2� � x for 0 � x � 1 and some � � 0, 1 .
Ž . � �Now, suppose that f x � 1 is the uniform density on 0, 1 and that0

� 4�X are i.i.d. with this density. We will show that Assumption 1 holds butn n�1
that the posterior is not consistent in the Hellinger distance metric. Using the
well-known formula for Kullback�Leibler distance between Normals, it fol-

Ž .lows that II P ; P � � and the prior for � puts positive probability on every0 �

neighborhood of 0, which means that � puts positive probability on every set
N . So Assumption 1 holds. Second, let PP� � �� PP . Each P � PP�� N�1 N

' '' 'Ž .satisfies d P , P � 2 � 2 , so A � PP� � � for all � � 2 � 2 . We will0 �

Ž � n.prove that lim sup � PP� x � 1 a.s., hence the conclusion to Theorem 1n��

fails.
2 2 N 2 � nŽ .If N 	 n, then for all x , . . . , x , there are at least distributions21 n N � n

n Ž . n �P � PP such that Ł f x � 2 . So, for every x ,N i�1 P i

n 2aN 2 N � nnf x d� P 	 2Ž . Ž .Ł ÝH P i 2ž /2 q N � nPP� i�1 NN	 n'

2 N 2 � n
2ž /N � nn�1� 2 aÝ N 22 NN	 n'

2ž /N
na n � 1N	 1 �Ý 2ž /2 NN	 n'

na n � 1N	 1 �Ý 2ž /2 NN	n

30Ž .

nn � 1 aN	 1 � Ý2ž / 2n N	n

nn � 1 1
	 1 � 2ž / 2c nn 0

exp �2Ž .
	 ,

2c n0

Ž .for all but finitely many n, where c is defined in 28 . The inequality on the0
combinatorial terms follows from noting that the ratio of the two terms
consists of the product of n fractions, each of which is greater than or equal

Ž 2 . Ž 2 .to N � n � 1 � 2 N .
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Ž .Next, consider the integral over PP . Recalling the definition of c in 29 ,0 1
we have that for all x� and all n

n n1 11 �1'f x d� P � exp � � n� � 2� � x d�Ž . Ž . Ž .Ł ÝH HP i iž /2c �PP 0i�1 1 i�10

n1
�1' '� exp �2 n � 2 max 0, � x ,Ž .Ý i½ 5ž /2c1 i�1

' Ž .because 1�� � n� 	 2 n for all � � 0, 1 and all n. We know that with
� n �1Ž .4probability 1, max 0,Ý � x � 0 infinitely often according to the law ofi�1 i

the iterated logarithm. It follows that, with probability 1,
n 1 '31 f x d� P � exp �2 n , i.o.Ž . Ž . Ž . Ž .ŁH P i 2cPP i�1 10

Ž . Ž .It follows from 30 and 31 that
n '�� PP� x exp 2 n � 1 cŽ . Ž . 1�32 P 	 i.o. � 1.Ž . 0 n�ž /� PP x c nŽ .0 0

Ž .Since the fraction on the right-hand side of the inequality in 32 goes to
Ž � n.infinity and � PP � PP� x � 1, we have that0

n ��lim sup � PP� x � 1 a.s. P .Ž . 0
n��

4. Discussion. We have given two conditions that imply consistency of
the posterior, and we have shown how to verify the conditions in a few

Ž . Ž .examples. Geman and Hwang 1982 and Wong and Shen 1995 give results
Ž .on consistency of sieve maximum likelihood estimators MLE’s . Some of their

conditions are similar to ours. Our major difference between proving consis-
tency for MLEs and posterior distributions using sieves is that for MLEs the
sieve plays a crucial role in the definition of the MLE. That is, the MLE is the
element of FF that leads to the largest value of the likelihood function. If onen
changes to a different sieve, the sequence of MLEs will change. On the other
hand, when using sieves to prove consistency of posterior distributions, only
the prior distribution and likelihood affect the posterior. The particular sieve
used to prove consistency is only a tool for the proof. Of course some sieves
are easier to work with than others, but they do not figure in the computation
of posterior probabilities.

We have not discussed rates of convergence in this paper. It is possible to
compute rates of convergence by replacing the fixed � in Theorem 1 with a

� 4� Ž .decreasing sequence � . See Shen and Wasserman 1998 and Ghoshal,n n�1
Ž .Ghosh and van der Vaart 1998 .

APPENDIX

Proof that Radon-Nikodym derivatives are jointly measurable. We
use the following lemma in much of this paper. The notation comes from
Section 2.
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LEMMA 10. For every Q � QQ, there is a version f of dQ�d� such that theQ
Ž . Ž .function g: QQ � XX � � defined by g Q, x � f x is jointly measurable.Q

Ž .PROOF. Since XX , BB is separable, there exists a countable collection
� 4�BB � B of elements of BB such that BB is the smallest �-field containing0 n n�1

� 4� � C4BB . Create a sequence � of partitions of XX as follows. Let � � B , B .0 n n�1 1 1 1
For n � 1, let � consist of the intersections of B and BC with all of then n n
elements of � . In this way we have that � is a refinement of � for alln�1 n n�1
n � 1 and �� � generates the �-field BB. Let m be the number ofn�1 n n

� 4distinct nonempty sets in � and let � � B , . . . , B .n n n, 1 n, m n

For each Q � QQ each n and each x � XX , define
mn Q BŽ .n , i

33 f x � I x ,Ž . Ž . Ž .ÝQ , n Bn , i� BŽ .n , ii�1

Ž .where we can let the fraction be 0 whenever � B � 0. We will prove thatn, i
Ž . Ž .g : QQ � XX � � defined by g Q, x � f x is jointly measurable, thatn n Q, n

Ž .g � � lim sup g is a jointly measurable and that g � Q, � is a version ofn�� n
dQ�d� for each Q.

Ž . Ž .First, define h Q � Q B . This function is clearly continuous in then, i n, i
total variation topology and hence in the Hellinger topology. Since continuous
functions are measurable, h is measurable as a function from QQ to �. Sincen, i
h depends only on Q, it can also be considered as a measurable functionn, i
from QQ � XX to �. Since B � BB, we know that I is measurable as an, i Bn , i

function from XX to � and can also be considered as a measurable function
from QQ � XX to �. Hence h I is a measurable function from QQ � XX to �.n, i Bn , i

Ž . Ž .Since all � B are constants, we have that each term in the sum in 33 isn, i
Ž .measurable, so the sum is measurable. Hence, g �, � is jointly measurable.n

Which terms in the sum are 0 for all x and Q is predetermined by the values
Ž .of � B , so this does not affect measurability. Since the lim sup of an, i

sequence of measurable functions is measurable, it follows that g � �
lim sup g is measurable.n�� n

Ž .All that remains is to show that g � Q, � is a version of dQ�d� for each Q.
For each Q � QQ, let f 
 be an arbitrary version of dQ�d�. Since we haveQ
assumed that � is a probability measure we can think of f 
 as a finite-meanQ

Ž .random variable on the probability space XX , BB, � . Let BB stand for then
finite �-field generated by the partition � . It follows that BB is the smallestn
�-field containing �� BB . If A � BB , then A is a union of some of the B ,n�1 n n n, i
say B , . . . , B . It follows thatn, i n, i1 k

k k

f x d� x � Q B � Q B � g Q, x d� x .Ž . Ž . Ž . Ž .Ž .� ÝH HQ n , i n , i nj jž /A Aj�1 j�1

Ž . Ž 
 � . � 4�It follows that g Q, � � E f BB for all n. Since BB is an increasingn Q n n n�1
Ž .sequence of �-fields, we have that g Q, � is a martingale adapted to thatn

Ž � 
 �. � Ž .sequence of �-fields. Since E f � 1, Levy’s theorem Schervish 1995 ,´Q
� Ž . � � Ž 
 � .Theorem B.118 applies and g Q, � converges a.s. � to E f BB , where BBn Q � �

is the �-field generated by �� BB . We already saw that BB � BB. Since f 

n�1 n � Q
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Ž . 
 � �is BB-measurable, we have that g Q, � converges to f a.s. � . This impliesn Q
Ž . 
 Ž . � � 
Ž .that lim sup g Q, x � f x a.s. � , hence g Q, � is a version of dQ�d�.n�� n Q

�

( )Measurability of IIII P ; P .0

Ž .LEMMA 11. II P ; P is measurable as a function of P.0

Ž . Ž .PROOF. Let g P, x � f x be the function constructed in the proof ofP
� 4Lemma 10. Define h: PP � XX � � � �� by

f xŽ .0
h P , x � f x log .Ž . Ž .0 g P , xŽ .

Ž . Ž . Ž .This h is also jointly measurable and II P ; P � H h P, x d� x . Let h �0 XX

h�� h� where h�	 0 and h�	 0 are known as the positive and negative
Ž .parts of h. Since II P ; P 	 0 for all P and since0

II P ; P � h P , x d� xŽ . Ž . Ž .H0
XX34Ž .

� h� P , x d� x � h� P , x d� x ,Ž . Ž . Ž . Ž .H H
XX XX

�Ž . Ž .we must have that H h P, x d� x � � for all P. So, if we can prove thatXX

Ž .both integrals on the far right-hand side of 34 are measurable functions of
P, we are done. The proofs are identical. Let h* be a nonnegative measurable

Ž . � 4�function of P, x and approximate it from below by a sequence h ofn n�1
Ž . m n Ž .nonnegative simple functions, where each h P, x � Ý a I P, x . Then i�1 n, i An , i

monotone convergence theorem implies that for every P,

lim h P , x d� x � h* P , x d� x .Ž . Ž . Ž . Ž .H Hn
n�� XX XX

Since the limit of measurable functions is measurable, all we need to prove is
that the integral of each h is measurable. But this will follow if the integraln
of each indicator function is measurable. This last fact is proven in Schervish
Ž .1995 , Lemma A.61. �

Ž . �PROOF OF LEMMA 9. Fix � � 0, 1 . Let h � log dP �d� and let A � x:0 b
� � 4 � � 4 � � 4 Ž . Ž . Ž .h � b , A � x: h 	 b and A � x: h � �b . Define � x � h x I x �b b Ab

Ž . Ž � � .� �bI x � bI . Choose b such that E h I � � where the expectation isA A � h � 	 bb b
Ž � �. Ž � �with respect to �. Thus, E h � � � � and by Markov’s inequality, P h �0
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. � � 2 �r b bb � ��b. Choose g � CC such that H � � g d� � � e . Let a � e . Then,r b

dP0
� � � �� � g dP � � � g d�H H0 d�

dP0
� �� a � � g d� � b � rb P � aŽ .H 0 ž /d�

dP0
� � � r � 1 bP log � bŽ . 0 ž /dQ

� � � r � 1 � .Ž .
Let c � He g d�. Then

dP0
II P ; P � E log � g � log cŽ .0 g ž /d�

dP0
� �� E log � � � E � � g � log c

d�

� r � 3 � � log c.Ž .
Finally,

c � e ��� d� � er b� g � � � �Ž .H
�b � r b �1 � �� 1 � e e � e � g � � d�Ž . H

� 1 � e�b e� � �Ž .
� 1 � e�Ž b�1. � e� .
�Ž b�1. Ž . Ž .For large b, log c � e � e� � 3� so that II P ; P � r � 6 � . �0 g
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