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CONVERGENCE AND ACCURACY OF GIBBS SAMPLING
FOR CONDITIONAL DISTRIBUTIONS IN

GENERALIZED LINEAR MODELS1

BY JOHN E. KOLASSA

University of Rochester Medical Center

This paper presents convergence conditions for a Markov chain con-
structed using Gibbs sampling, when the equilibrium distribution is the
conditional sampling distribution of sufficient statistics from a generalized
linear model. For cases when this unidimensional sampling is done ap-
proximately rather than exactly, the difference between the target equilib-
rium distribution and the resulting equilibrium distribution is expressed
in terms of the difference between the true and approximating univariate
conditional distributions. These methods are applied to an algorithm
facilitating approximate conditional inference in canonical exponential
families.

1. Introduction. This paper presents conditions for convergence of an
algorithm that simulates observations from distributions approximating null
conditional distributions in generalized linear models in order to construct
multivariate conditional significance tests and confidence regions. Of interest
are models in which independent responses Y are observed from a density orj
mass function of the form

1 exp � y � L � � h y for � � z � and y � �Ž . Ž . Ž .Ž .j j j j j j j j

with row vectors of covariates z � � d forming rows of a full-rank matrix Z.j
Typically � may take any value in � d. Applications in this paper will
generally have � � �, or � a connected subset of �. Sufficient statistics arej j
of the form
2 T � ZT Y, with Y � � .Ž . Ł j

j

� 4Of interest is inference on components 1, . . . , a of � without specification of
the remaining components. Hypothesis testing in this context is performed by

Ž .enumerating the sample space and associated probabilities of T , . . . , T ,1 a
Ž .conditional on T , . . . , T . These probabilities area�1 d

T T3 exp � h y exp ll � ; t for ll � ; t �� t� L z � .Ž . Ž . Ž . Ž .Ž . Ž .Ý Ý Ýj jž /
Ž . j jy�YY t

Ž . � T T 4for YY t � y � z y � t , . . . , z y � t , where z is row i of Z. Werea�1 a�1 d d i
exploration of a posterior distribution on � desired, a Metropolis�Hastings
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Ž .chain might be constructed by sampling from an approximation to 3 , and
Ž .correcting this by evaluating 3 directly. In such cases, the quantity in

Ž .square brackets in 3 need not be evaluated.
Sampling values of t, rather than values of �, however, requires calculat-

Ž .ing the summation in 3 . Algorithms exist for such calculations for a logistic
� Ž .�regression Hirji, Mehta and Patel 1987 . These calculations may generally

only be done for sufficiently small data sets; for larger data sets many authors
�have recourse to Monte Carlo methods Mehta, Patel and Senchaudhuri

Ž . Ž . Ž .�1993 , Forster, McDonald and Smith 1996 , Diaconis and Sturmfels 1998 .
Ž .None of these authors has found evaluation of the bracketed quantity of 3

practical in conjunction with Monte Carlo methods.
Ž .Instead, probabilities in 3 will be calculated by using the Gibbs sampler

to construct a Markov chain whose null distribution approximates the condi-
tional distribution of interest. This approximating chain is constructed by
sampling from an asymptotic approximation instead of the true conditional
cumulative distribution functions. This paper provides a theoretical justifica-
tion for this algorithm in three ways: first, reducibility of both chains is
assessed. Next, a simple proof is given demonstrating that when the con-
structed Markov chains are irreducible, they have equilibrium distributions.
Finally, the resulting equilibrium distribution is shown to approximate the

Ž .desired conditional distribution to order O 1	n , where n indexes the num-
ber of independent replicates represented in the data set.

In cases in which the operator representing transformations has norm
Ž .strictly less than one, Schervish and Carlin 1992 approach similar problems

by representing the distribution at each step in the chain as a member of a
Ž .Hilbert space of distributions. Roberts and Polson 1994 address convergence

questions for operators with a different norm bounded away from unity.
These norm conditions do not hold for chains examined here. This paper
makes use of Markov chain convergence results in the more general cases;

Ž .these methods are described by Nummelin 1984 and reviewed by Tierney
Ž .1994 . Furthermore, these methods address convergence in cases where the
sampling performed is according to the Gibbs scheme, except that this
sampling is not from the exact conditionals, but from approximations to these

Ž .conditions. Roberts and Smith 1994 discuss conditions of aperiodicity and
irreducibility necessary for convergence.

The first section below presents background on methods used. The second
formally defines the Markov chain and presents results on its convergence
properties.

2. Markov chain and distribution function approximation back-
ground. This section reviews background on Markov chain terminology,
Gibbs sampling and conditional distribution function approximations.

2.1. Markov chain terminology. To make connections between this work
and other Markov chain literature clearer, some common definitions concern-
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ing Markov chains are introduced. We first consider whether the state space
may be divided into two spaces, between which the chain never travels. If this
is the case, the chain is called reducible, and there are an infinite number of
equilibrium distributions for the chain, depending on how much mass is
initially allocated to each subspace. Each simulated Markov chain will re-
main in one division of the state space. If multiple chains are simulated, with
starting points selected independently from some distribution, whether the

Žproportion of time the chain visits a subset of the sample space after a
.number of initial iterations necessary to approximate equilibrium is a rea-

sonable estimate of the probability of that set depends on whether the correct
proportion of chains was started in each noncommunicating subset. Ensuring
that this happens is generally impossible. Hence we restrict attention to
irreducible chains.

We require a definition concerning whether the measure induced by cer-
tain transitions in the chain can be bounded below by a measure that does
not depend on the initial state; many convergence results depend on this
property. This section concludes with the main Markov chain convergence
result needed in this paper.

DEFINITION 2.1. A set TT � � is small if and only if there exists a constant
Ž . Ž .� � 0 and a probability measure � on � such that P t, � 
 �� � � t � TT.

DEFINITION 2.2. A Markov chain is geometrically ergodic, if there exists a
Ž .probability measure � , a constant 	 � 1 and a function 
 v such that

� Žm.Ž . Ž .� Ž . �m � �P v, � � � � � 
 v 	 . Here � is the total variation norm onTV TV

the space of finite measures on �.
�Ž . �Nummelin 1984 , Theorem 6.14 gives other logically equivalent defini-

tions of geometric ergodicity.
Convergence properties of the Markov chain are governed by the size of

iterates of the transition density, after the contributions of the small sets are
Ž . Ž .removed. Rosenthal 1995 extends results of Nummelin 1984 on geometric

convergence of Markov chains to provide a bound on the convergence rates for
the associated chains. For the present purposes the following summary of this
result will suffice.

� Žm.4LEMMA 2.3. Suppose that T is a family of Markov chains indexed byn
n, on a common state space �*, with small sets TT , associated measures �n n

Ž . Ž .and parameters � . Suppose that � and � � H � dt s t are boundedn n n �* n n
away from zero. Suppose that there exists positive measurable functions g onn
�* and constants 	 , � � 0 and 
 such that 	 � 1 is bounded away0 n n n 0 n
from 1 and

Žm�1. Žm. Žm.sup E 	 g T � g T � T � t � �� for � ,Ž . Ž .0 n n n n n
t�TT

Žm�1. Žm�1. Žm.sup E g T 1 � s T � T � t � 
 � � �.Ž . Ž .Ž .n n n n
t�TTn

4Ž .



J. E. KOLASSA132

Suppose further that the associated parameters � , 
 and 	 are bounded.n n 0 n
Then for each n an equilibrium measure � and a function 
 exist, and an n

� Žm.Ž . Ž .� Ž . �mconstant 	 � 0 exists, satisfying P v, � � � � � 
 v 	 for all n.TVn n
Ž . Ž .Furthermore, the integrals H 
 v � dv are uniformly bounded.�* n n

2.2. Gibbs sampling. The Gibbs sampler is a popular Markov chain
method useful for yielding a sample from a posterior or likelihood density. It

Ž .was first introduced by Geman and Geman 1984 in the context of image
Ž .reconstruction. The data augmentation algorithm of Tanner and Wong 1987 ,

introduced as a device for the calculation of posterior distributions, is a
Ž .two-component version of the Gibbs sampler. See Tanner 1996 for back-

ground details and important references.
Ž .Let the symbol p ��� � ��� denote the distribution of those random vari-˜

ables listed before the vertical line conditional on those listed after. To obtain
Ž .a sample from a joint conditional distribution p T , . . . , T � T , . . . , T , the˜ 1 a a�1 d

systematic scan Gibbs sampler iterates the following loop.
Sample:

1 T Žm�1. from p T � T Žm. , . . . , T Žm. , T , . . . , T .Ž . ˜Ž .1 1 2 a a�1 d

Žm�1. Žm�1. Žm. Žm.2 T from p T � T , T , . . . , T , T , . . . , T .Ž . ˜Ž .2 2 1 3 a a�1 d5Ž . ...
Žm�1. Žm�1. Žm�1.a T from p T � T , . . . , T , T , . . . , T .Ž . ˜Ž .a a 1 a�1 a�1 d

If the algorithm converges, for a sufficiently large value of m the distribution
Žm. Žm. Žof T , . . . , T approximates the equilibrium distribution p T , . . . , T �˜1 a 1 a

.T , . . . , T of the Markov chain. Independently replicating this Markova�1 d
chain l times, and only retaining the last realization each time, produces an
independent and identically distributed sample of size l from the approximat-
ing distribution. Generally, however, practitioners use more than just the

� Ž . Ž .�final chain iteration Geyer 1992 and Gelman and Rubin 1992 .

2.3. Conditional cumulative distribution function approximations. Often
Ž .the one-dimensional marginal distributions of 5 are unavailable. Kolassa

Ž .and Tanner 1994 suggest instead sampling from approximations to the
appropriate conditional cumulative distribution functions. Attention will be
primarily focused on two double saddlepoint approximations. The double
saddlepoint cumulative distribution function approximation of Skovgaard
Ž . Ž .1987 generalizes the approximation due to Lugannani and Rice 1980 .

Ž . Ž .Suppose a vector T arises from the regression model specified by 1 , 2 and
Ž . Ž .3 , with 1 representing a density with respect to Lebesgue measure, and an
approximation is desired for conditional probabilities specified by components
of T. Suppose further that Z is comprised of n repetitions of a fixed set of
covariate vectors W, divided by n, and that the approximation is desired to be



GIBBS SAMPLING IN GLMs 133

Ž .asymptotic in n. Skovgaard 1987 gives the double saddlepoint approxima-
tion as

1 1
1 �1	2' '6 F T � T � � n w � n � n w � ,Ž . Ž . ˆ ˆŽ . Ž .u �u u u ž /w zˆ ˇu u

where T denotes the vector T with component j deleted, and�j

� �� �ˆ ˆ ˜' 'z � � � , � � �ll � �ll � ,ˇ Ž . Ž .u u u u 0 0, �u

ˆ ˆ ˜w � sgn � 2 ll � � ll � .ˆ ' Ž . Ž .Ž .u u 0 0

Here ll is the log likelihood for the regression model associated with W and0
ˆ ˜t, and � and � solve

j ˆ j ˜ ˜ll � � 0 � j and ll � � 0 � j � u , � � 0,Ž . Ž . u0 0

� Ž . Ž .ll is the d � 1 � d � 1 submatrix of the matrix of second derivatives0, �u
of ll , corresponding to all components of � and T except component u, and0
� and � are the normal distribution function and density, respectively.

Ž . Ž . Ž .Jensen 1992 shows that 6 differs by a term of relative size O 1	n from

2 ' '7 F T � T � � n w � log z 	w 	 n w ,Ž . Ž . ˆ ˇ ˆ ˆŽ . Ž .Ž .u �u u u u u

Ž . Ž . Ž �1 .and so approximations 6 and 7 both have relative error of size O n .
Ž .When 1 represents a mass function and � is a lattice of equally spaced

Ž . Ž .points which without loss of generality will be taken as � , Skovgaard 1987
1ˆ ˆŽ . Ž .derives a counterpart of 6 , in which � is replaced by 2 sinh � in theu u2

definition of z , and in which t is corrected for continuity when calculatingˇu u
ˆ ˆ ˆŽ .˜�. That is, if possible values for T are 1 unit apart, � solves ll � � ; t � 0u

1 Ž .˜ ˜where t � t if j � u and t � t � . The same correction also applies to 7 .j j u u 2

Results about the accuracy of the resulting equilibrium distribution will
require that approximating steps in the constructed Gibbs sampler be close to
those in the sampler using the exact, but unknown and difficult to calculate,
conditional distributions, and so the difference in probabilities assigned by

Ž . Ž . Ž . Ž .approximations 6 and 7 must be considered. The derivatives of 6 and 7
have the form

j ˇ ˇ j8 f t � f t 1 � b t 	nŽ . Ž . Ž . Ž .Ž .T � T T � T u , nu �u u �u

9 � f t 1 � b j t 	nŽ . Ž . Ž .Ž .T � T u , nu �u

�ˇ ' 'Ž . Ž . � 4 Ž .for f t � n � n w � , and j � 1, 2 . Routledge and Tsao 1997ˆT �T u uu �u 1 Ž .discuss the approximation f in detail. Kolassa 1998a, b proves that ifT � Tu �u
Ž .the standardized third moments of the distributions in 1 are bounded, there

� 4exist constants � and n such that for j � 1, 2 ,0

ˇ j 210 � n � b t � � exp n w 	2 � n 
 nŽ . Ž . ˆŽ .u , n 0 u 0
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and under additional regularity conditions,

j 211 b t � � exp n w 	2 � n 
 n .Ž . Ž . ˆŽ .u , n 0 u 0

Ž .The bound 10 will be used to verify that for sufficiently large n, the
Ž . Ž .approximations 6 and 7 are monotonic, and hence can be inverted. It is

also used to define small sets as in Section 2.1, and to demonstrate that their
probability content is bounded away from zero, hence to demonstrate that the
approximate Gibbs sampling Markov chain converges geometrically. The

Ž .bound 11 will be used to demonstrate that the resulting equilibrium distri-
bution approximates the desired distribution to high order.

3. The proposed chain. Formally define the Markov chain by setting t0

� 4equal to the observed vector of sufficient statistics, and for each u � 1, . . . , a
setting

12 T Žm�1. � F †�1 V Žm�1. ; T Žm�1. , . . . , T Žm�1. , T Žm. , . . . , T Žm. ,Ž . Ž .u u 1 u�1 u�1 d

where V Žm�1. is drawn from a uniform population independently of earlieru
chain steps, and F † is a conditional cumulative distribution function approxi-

Ž .mation. We simulate 5 , but at each step replace the exact conditional
distribution function by an asymptotic approximation. One might use either
Ž . Ž . Ž . Ž .6 or 7 , or any approximation satisfying 8 � 11 , in this role. Approxima-
tions to be considered are all monotone for appropriately large n, and so the
inverse will be well defined. Call this chain the ‘‘approximating chain,’’ and
the chain formed from F rather than F † the ‘‘exact chain.’’

In what follows, irreducibility of the proposed chain is first assessed, and
then ergodicity is demonstrated.

3.1. Irreducibility of chains for certain regression models. This section
considers certain regression models, and first determines when the exact

Ž .chain defined above applied to the canonical sufficient statistics 2 is irre-
ducible. Suppose responses y� are observed, and again inference on parame-

� 4ters 1, . . . , a is desired, conditional on canonical sufficient statistics associ-
ated with the nuisance parameters. Let U be the last d � a columns of Z.

� T TEach step in this chain takes values in the set � � Z y � y � � , U y �n j j
T 4U y� ; � depends on n because Z depends on n. Irreducibility of then

approximating chain is added at the end of this section. Continuous cases are
the simplest and are considered first.

Ž .THEOREM 3.1. Suppose that the statistics T are defined as in 2 , where
each � is a connected open subset of �, and that each Y has a positivej j
density with respect to Lebesgue measure on this space. Then a Gibbs sam-
pling scheme generates an irreducible Markov chain.

PROOF. Take t0 and t1 in � . Since � is open, there exists N an integern n
Ž i Ž 2 1. . 0, 0 1such that Ł t � t � t 	N � � , for i � 1, 2. Then let v � t and forj j j j n
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� 4 m , j m , j�1 Ž 2 1. �1each m and each j � 1, . . . , a , let v � v � t � t N � , where �j j j j
is the vector of all zeros except with 1 as component j.

Let v m� 1, 0 � v m , a. For each m � N, v m , 0 lies on the segment joining t0

1 Ž m , 0 Ž 2 1. .and t , and hence by convexity of � ,Ł v � t � t 	N � � . Hencen j j j j n

the vectors v m , j all lie in � . Furthermore, v N , 0 � t1. Hence there exists an
set of transitions from t0 to t1 having a positive transition density. �

Irreducibility may fail for certain simple discrete cases. Consider the
following discrete example: � is a subset of the integers from 1 to i � 1j

Ž 2 K�1. Žfor each j. Let Z be the d � K matrix with 1, i, i , . . . , i and 1, i � 1,
Ž .2 Ž .K�1.i � 1 , . . . , i � 1 as two columns, and the rest arbitrary. Conditioning
on the sufficient statistic associated with either of these two columns in effect
conditions on all of the Y, since the Y can be reconstructed from each of these
sufficient statistics by themselves. Hence the chain is reducible, and Gibbs
sampling will not yield a sample that is a reasonable representation of the
conditional distribution of interest, for the reasons discussed in Section 2.1.

Consider a second logistic regression example, presented in Table 1, in
which the first and last components of the sufficient statistic are conditioned
on. No series of rearrangements of the indicators in v, each keeping the first,
last and second or third components of s fixed, will draw s closer to t.

One might be tempted to try to extend the argument of Theorem 3.1 to
discrete distributions that will hold asymptotically as the density of discrete
points of � increases. However, such applications usually involve positiven
probability on the boundary points of the sets � , which may leave boundaryj
points of � not communicating with other state space points.n

Instead, combinatoric arguments examining rearrangements of the
counts in y are necessary. Two lemmas follow, with conditions including
the following:

Ž .13 Each � has at least two elements and consists of consecutive integers.j

TABLE 1
Logistic regression example leading to a reducible Markov chain

Index N y v

1 1 0 0 0 1 1 0
2 1 1 0 0 0 0 0
3 1 0 1 0 0 0 0
4 1 1 1 0 1 0 1
5 1 0 0 1 1 0 0
6 1 1 0 1 0 0 0
7 1 0 1 1 1 0 0
8 1 1 1 1 1 0 0

Ts � Z y 1 0 0 0
Tt � Z v 1 1 1 0
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Ž .14 All items in the last column of Z are identical and nonzero, and other
columns of Z consist of at most two distinct values.

Ž .15 There exists a path through the rows of Z, where two rows are connected
if they are identical except for one entry.

The first concerns possible rearrangements of these counts with their total
held constant. The second, doing most of the work of this section, considers
modification to these rearrangements necessary to keep some of the sufficient
statistics constant. These results depend on characteristics of the design
matrix Z; specifically, they depend on the existence of paths through the rows
of Z. A theorem follows which summarizes these results. This section con-
cludes with a corollary giving a sufficient condition for irreducibility.

Ž . Ž . Ž .LEMMA 3.2. If conditions 13 � 15 hold for the statistics T of 2 , then for
Ž .any k and l such that y � 0 and y � max � , there is a series of changes tol k k

y that causes only one component of t � ZTy to change at each stage, that
never changes t , and that will result in y being increased by one, y being1 k l
decreased by one and all others returned to their initial values.

Ž .PROOF. Let g , . . . , g be the indices for the path connecting row g � k1 i 1
Ž .to row g � l as in condition 15 . It will be shown that through a series ofi

movements in which y is increased and y is decreased, y will beg g kj j�1

increased by one and y will be decreased by one and all other counts y willl g j

be returned to their initial values. This will be enough to prove the lemma.
Inductively, if i � 2, then the result is trivial. Suppose the result holds for
paths of length no longer than i � 1. If y � 0 then set y � 1, decreaseg gi� 1 i�1

Ž .y by one and then apply the induction hypothesis to the series g , . . . , g .g 1 i�1i
Ž .If y � 0, then apply the induction hypothesis to the series g , . . . , g ,g 1 i�1i� 1

increase y by one and decrease y by one. The result follows by induction.g gi� 1 i

�

Ž . Ž . Ž .LEMMA 3.3. For the statistics T of 2 , assume conditions 13 � 15 and

Ž .16 None of the last d � a components of T are at their extreme values.

Ž .Then for any k and l such that y � 0 and y � max � , and such thatl k k
rows k and l agree on their first a elements, there is a series of changes to y,
that causes only one component of t � ZTy to change at each stage, that never
changes any of the sufficient statistics corresponding to components where
rows k and l agree, and that will result in y being increased by one, y beingk l
decreased by one and all others returned to their initial values.

Ž .PROOF. If a � d, this is Lemma 3.2. Let g , . . . , g be the indices for the1 i
Ž .path connecting all cells, as in condition 15 . Suppose that the result holds

for a � 1. Let m be the number of times this path crosses between rows that
differ in entry a. The lemma reduces to the induction hypothesis for a if
m � 0. Suppose it holds for paths with fewer than m such crossings, and
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suppose that the current path has m such crossings. Choose k*, k† and l*, l †

representing two pairs of rows in the chain between which covariate a
changes, in different directions, such that k* precedes l*.

† Ž .If that portion of the path from k to l* contains all zeros, by condition 16
there exists another row c with the same value for covariate a that is
positive. By the induction hypothesis on m there exists a sequence of rear-
rangements after which y is positive. Similarly, if that portion of the pathl*
from k† to l* contains all counters at their maximal values, there exists a
sequence of rearrangements after which y † is below its maximal value.k
Perform these rearrangements, so that without loss of generality one may
assume that y is positive and y † is below its maximal value.l* k

Now perform the steps of Lemma 3.2 to decrease y and increase y .k k*
Perform the steps of Lemma 3.2 to decrease y † and increase y . Nowl l
simultaneously increase y † and y † and decrease y and y . Finally, returnl k l* k*
the value of y , if necessary. By induction the result holds for all m and thenc
for all a. �

Ž . Ž . Ž .THEOREM 3.4. For the statistics T of 2 , under conditions 13 � 16 , the
associated Gibbs sampling Markov chain associated with conditioning on all
but the first a entries of T is irreducible.

PROOF. If t � ZTy, s � ZTv, s � t and the last d � a components of s and
t agree, there exist k and l such that y � v , and y � v . It suffices to showk k l l
that there exists a sequence of rearrangements of y decreasing y andk
increasing y , such that at each stage, only one component of the sufficientl
statistic vector changes, that none of y , . . . , y changes, and such thata�1 d
other components of y remain unchanged. This follows from Lemma 3.3. �

Ž .COROLLARY 3.5. The result of Theorem 3.4 holds if condition 15 is
replaced by 3�.

Ž .17 For each row z with a nonfixed unit entry, say in column j, there exists a
row w identical to z in Z, except that w has a zero in column j, and
these pairs exhaust Z.

Ž . Ž .Condition 17 implies condition 15 of Theorem 3.4. �

These results apply to the Gibbs sampling from the exact conditional
distributions of interest. These results also apply to the approximate Gibbs
scheme when the approximation attaches positive conditional probability

Ž .whenever the exact conditional probability is positive. Relation 10 insures
Ž . Ž .that this holds for sufficiently large n in approximations 6 and 7 whenever

Ž .the standardized third moments of the distributions in 1 are bounded.
Whether n is large enough can be evaluated practically by noting whether
any of the univariate conditional distribution function approximations are
nonincreasing. Hence the irreducibility results apply to approximating chains
more general than those formed from saddlepoint approximations.
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3.2. Convergence of the Markov chain. Convergence of the Markov chain
Ž .constructed by Kolassa and Tanner 1994 will be demonstrated by showing

that certain sets are small and by using convergence criteria given by
Ž .Nummelin 1984 to demonstrate the existence of an equilibrium distribution.

Let � be a measure of �* with respect to which the probability distributionsn
Ž .3 are absolutely continuous; � will typically be multivariate Lebesguen
measure or counting measure on a lattice with spacings 1	n. Small sets for

˜this chain may now be defined with reference to derivatives of F. For each j,
j Tˆ� � Ž . Ž .and each random vector V, let V � E V � V , . . . , V . Let g t � nt � t �j�1 d n

ˆ T ‡ ‡ ˆŽ Ž .. Ž . Ž Ž ..�K � t � � t � K � t , where � is the maximum likelihood estimator
for the regression model, and � ‡ is the maximum likelihood estimator for the

Ž . � Ž .reduced model with the first a columns of Z removed. Let TT � � t � g t �n
4 Ž .� . TT � and g satisfy the requirements of Section 2.1.n

Ž .LEMMA 3.6. Construct a Markov chain according to 5 , where the transi-
tions come from an approximating distribution function with derivative of

ˇ jŽ . Ž .form 8 and with the function b satisfying 10 . Then for any � � 0 thereu, n
Ž .exists n such that if n � n then TT � is a small set for this chain, with a0 0

corresponding � independent of n.

PROOF. Demonstrating the above result requires the construction of the
measure � . In the continuous case, the transition kernel for this chain isn
given by

a
˜ 'P t, v � � n w w 	z dw 	dt 1 � b t, v 	n ,Ž . Ž .Ž . Ž .ˆ ˆ ˇ ˆŽ .Ž .Łn u u u u u n

u�1

Ž . � a Ž Ž . . �where b t, v � n Ł 1 � b v ; v , . . . , v , t , . . . , t 	n � 1 . Let m �n u�1 u u 1 u�1 u�1 d
T a, the expectation of T conditional on all but the first a components. Choose

Ž . Ž .Ž .n such that n 
 n implies b m, m � �n . Since w 	z dw 	dt andˆ ˇ ˆ0 0 n 0 u u u u
Ž .b t, v are jointly continuous, there exist � � 0 and a matrix � such that for TT

˜ T� Ž . ŽŽ .Ž . Ž .. Ž .as above, then inf P t, v 	exp n	2 t � u � t � u � n � n , t, v �n 0' 'Ž . Ž .4TT �	 n � TT �	 n � 0. For a Borel set HH � � letn

n T'�* HH � n exp � t � u � t � u � dtŽ . Ž . Ž . Ž .H nž /2Ž .HH�TT �	 n'

and
'�* HH � TT �	 nŽ .Ž .

� HH � . �Ž .n '�* TT �	 nŽ .Ž .
We now construct a function g as in Lemma 2.3 as a preliminary step in

demonstrating convergence of the Markov chain.

LEMMA 3.7. Under the conditions of Lemma 3.6, there exists � � 0 such
Ž . Ž .that for sufficiently large n the pair g and TT � satisfy 4 , with 	 � 1,n n

� � 0, and 
 all independent of n.n n
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Ž � Ž j. �PROOF. Let C � sup E w T � T � t , . . . , T � tˆn
 n , 1� j� a, t � � j j�1 j�1 d d0 n
. Ž .� 1	n 	n. Under 11 , for n suitably large, C is bounded. Then0

n 2jE g T � V � E E w T � T , . . . , T � VŽ . Ž .ˆÝn j j�1 d2 j

1 C a aC
� E 1 � � V � � .Ý2 n 2 2nj

Choose � large enough so that n sufficiently large, inf 
 a	2 � 1. �v � TTŽ� 	 n .'

THEOREM 3.8. The Markov chain defined in Lemma 2.3 is geometrically
ergodic, for sufficiently large n.

The convergence properties follow by applying the results, Lemmas 2.3 and
3.7 to the small set TT and the positive function g defined above.

While aperiodicity is difficult to prove in general, it is quite easy to
demonstrate in practice. One need only exhibit a chain state t for which
˜ Ž .P t, t � 0. Lemma 3.6 used the fact that for sufficiently large n this holds atn

˜ Ž .m. In all examples we have investigated P t, t � 0 for the observed vector ofn
sufficient statistics, but in general one could check all of the sampled vectors
until such a point is found.

Ž .Tierney 1994 discusses strategies for demonstrating uniform and geomet-
Ž .ric ergodicity. Schervish and Carlin 1992 discuss strategies for demonstrat-

ing that a Markov chain is geometrically ergodic and provide a simple
counterexample demonstrating that uniform ergodicity is not to be expected
from the Gibbs sampler.

Since the unidimensional sampling steps are not exactly the conditional
distributions arising from the resulting equilibrium distribution, this equilib-
rium distribution may depend on the order in which sampling is done. The
following section will show, however, that all of these alternate equilibrium
distribution will well approximate the desired multivariate conditional distri-
bution.

3.3. Accuracy of the equilibrium distribution. Let � be as in Section 3.2,n
1Ž . � 4let HH � L � , and let HH � g � HH � H g d� � 0 . For a transition density Pn 0 n n

Ž . mformed from Gibbs sampling in 5 , let S : HH � HH be the operator mapping an
measure g to the measure

18 Smg A � P Žm. v, A � � A g v � dv .Ž . Ž . Ž . Ž . Ž . Ž .� 4Ž . Hn n n n
TTn

Heuristically this operator maps an unconditional distribution on the state
space for the initial value of chain iterations to the distribution after m

˜Žm.iterations of the chain. Similarly, let P be the transition density associatedn
Ž . Ž .with Gibbs sampling as in 5 , with observations drawn from 6 rather than

˜m ˜Žm.Ž .the exact full conditional distribution, and let S be as in 18 with Pn n
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Žm. ˇ Ž .replacing P . Form P t, � by taking the pointwise minimum for then
˜ Ž . Ž .densities representing P t, � and P t, � , multiplied by a rescaling factor ton n

ˇforce it to integrate to unity. Let S be the associated operator. Straightfor-n
m ˜m 1ward calculations demonstrate that S and S result from iterations of Sn n n

1̃ ˜ ˜ ˜ ˇŽ .Ž . � Ž . Ž .4 Ž .and S . Let D be the operator aD g A � H P v, A � P v, A g dv ,n n n � n nn ˜and let D be the corresponding operator with P in place of P . Sincen n n
˜S � � S � � 0, then˜n n n n

ˇ ˜19 I � S � � � � D � � D � ,Ž . Ž .˜ ˜Ž .n n n n n n n

where I is the identity operator.
� � � �When S � 1, and � is the norm on the space of operatorsHH � HH HH � HHn 0 0 0 0

from HH into itself, then I � S has a continuous inverse, and � � � may˜0 n n n
� �be isolated by multiplying by this inverse. The condition S � 1 isHH � HHn 0 0

� Ž . 4implied by inf P t, v � t � � � 0 for all t � � , as demonstrated by Robertsn n n
Ž .and Polson 1994 . The following theorem addresses cases in which this

minorization condition does not hold.

˜THEOREM 3.9. If the Markov chain with transition kernel P is irreduciblen
and if the approximating chain is constructed as in Section 3, with the

Ž . Ž . Ž .asymptotic approximation used in 12 satisfying 8 � 11 , then the equilib-
� � Ž .rium distribution for the approximating chain satisfies � � � � O 1	n .˜ TVn n

Ž .Furthermore, these conditions are met by the asymptotic approximations 6
Ž .and 7 .

˜Ž . Ž . Ž .PROOF. Conditions 8 � 11 imply that there exists n such that P v, t0 n
Ž . Ž .� P v, t � is bounded by a constant times n	 n � n P v, t if n � n .' Ž .n 0 n�n 00

The uniformity of the double saddlepoint density approximation implies that
Ž .the density of � t is bounded above and below by constants timesn

˜Ž .n	 n � n � t , then D � is bounded by a constant times � .' Ž . ˜ ˜0 n�n n n n0
h ˇjŽ . ŽChoose any integer h � 0. Multiply 19 by Ý S , to obtain I �j�0 n

ˇh�1 h ˇj ˜ ˇh�1.Ž . � � Ž .S � � � � Ý S � D � � D � , and � � � � S � � � �˜ ˜ ˜ ˜h n n j�0 n n n n n n n n n n
h ˇj ˜� �Ý S D � � D � . Let � be the measure assigning probability one to t.˜j�0 n n n n n t

ˇh�1 h ˇj ˜� � � � Ž .Ž . � �Hence � � � � H S � � � � dt � Ý S D � � D � .˜ ˜ ˜TV TVn n n t n n j�0 n n n n n
ˇ ˇ ˜ Ž .Since S � 	 S and S � 	 S if n � B 	 	 � 1 , then for such n,' ' 'n 1 n n 1 n 0 1

�h 	2 ˜ h ˇj ˜� � � Ž . Ž . Ž . Ž .� � � � �� � � � 	 H 
 t � dt � 
 t � dt �Ý S D � � D � ,˜ ˜ ˜TV TVn n 1 n n n n j�0 n n n n n
ˇ Ž	 1.and the equilibrium density � for P satisfies � � � G . Choose 	 as inˇ ˇn n n n s, �

˜Lemma 3.7 and choose 
 as in Lemma 2.3, corresponding to the chain withn
kernel P . Note thatn

n � n �' 0˜ ˜D � Sn n�n0' n � n � �Ž .n 0

and

n � n n � �' Ž .0˜ ˜S � S ,n�n n0 ' n � n � �Ž .n 0
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˜ ˜with the same relationships holding for D and D in place of D and S .� � � �
�1 �1˜ ˜Hence for sufficiently large n, D � n 	 S and D � n 	 S . Then' 'n 1 n n 1 n

�h 	2 ˜ �1 h j	2 ˜j� � � Ž . Ž . Ž . Ž .� �� � � � 	 H 
 t � dt � 
 t � dt � n Ý 	 S � �˜ ˜ ˜TVn n 1 n n n n j�0 1 n n
j �S � . Let h � � to findTVn n

�
�1 j	2 j j˜� � � � � �� � � � n 	 S � � S �˜ ˜ÝTV TV TVž /n n 1 n n n n

j�0

�1 ˜� n 
 t � dt � 
 t � dt ;Ž . Ž . Ž . Ž .˜H n n n n

the integral above is bounded by Lemma 2.3.
Ž . Ž .The suitability of 6 and 7 was discussed in Section 2.2. �
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