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This article considers the estimation of structured correlation matri-
ces in infinitely differentiable Gaussian random field models. The problem
is essentially motivated by the stochastic modeling of smooth deterministic
responses in computer experiments. In particular, the log-likelihood func-
tion is determined explicitly in closed-form and the sieve maximum likeli-
hood estimators are shown to be strongly consistent under mild conditions.

1. Introduction. In the modeling of computer experiments, it has become
quite common practice to approximate the deterministic response as a real-
ization of a stochastic process. In this regard, Sacks, Welch, Mitchell and
Wynn (1989) and Sacks, Schiller and Welch (1989) proposed modeling using
a Gaussian random field X�t�� t ∈ �0�1�d, with a multiplicative covariance
function

Cov �X�x��X�y�� = σ2
d∏

u=1
exp�−θu�xu − yu�γ�

∀ x = �x1� � � � � xd�′� y = �y1� � � � � yd�′ ∈ �0�1�d�
where γ ∈ �0�2�, θ1� � � � � θd and σ2 are strictly positive parameters. Ying (1991,
1993) investigated the asymptotic properties of the maximum likelihood esti-
mators for the parameters of the covariance function when γ = 1. In particu-
lar, he proved that the estimators are strongly consistent and asymptotically
normal under mild conditions. Unfortunately, his proof rests crucially on the
Markov property of the Gaussian process when γ = 1 and it is not clear
whether the method can be extended to γ �= 1. Recently, van der Vaart (1996)
showed that when γ = 1 and d = 2, the maximum likelihood estimators are
also asymptotically efficient.

It is of interest to note that with probability 1, the Gaussian random field
X�t�� t ∈ �0�1�d, is continuous but not mean square differentiable when γ = 1
and is infinitely mean square differentiable when γ = 2 [see Stein (1989)
and Ying (1993)]. Thus the case γ = 2 may be especially appropriate when
the deterministic response of a computer experiment is known a priori to be
smooth.
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As Ying [(1991), page 295] noted, mainly due to its fixed domain �0�1�d, the
distinctive feature of these problems is that the statistical dependence among
the observations is very strong and does not weaken with the asymptotics. In
fact the dependence actually becomes stronger as sample size increases. This
is more so for the smooth case γ = 2 than for γ = 1. In particular Ying obtained
the log-likelihood function when γ = 1 and wrote that it is very unlikely that
we can have a similar expression for the log-likelihood function when γ = 2.
He further asked whether in this case the maximum likelihood estimators for
θ1� � � � � θd and σ2 are consistent.

This article considers the case γ = 2 and reports on some partial answers to
the questions raised in the previous paragraph. More precisely, we shall focus
on the following problem. Let X�t�� t ∈ �0�1�d, denote a zero-mean Gaussian
random field with multiplicative covariance function

Cov �X�x��X�y�� = σ2
d∏

u=1
exp�−θu�xu − yu�2�

∀ x = �x1� � � � � xd�′� y = �y1� � � � � yd�′ ∈ �0�1�d�
(1)
where θ1� � � � � θd and σ2 are strictly positive unknown parameters. We are
concerned with the estimation of θ1� � � � � θd, the parameters of the correlation
function, using observations that are taken from the above random field on a
regular lattice, that is,{

X

(
i1
n
� � � � �

id
n

)
� 1 ≤ iu ≤ n� 1 ≤ u ≤ d

}
�(2)

where n is a strictly positive integer.
For simplicity, we order the elements of the set in (2) lexicographically as

a nd × 1 column vector X̃n. Thus the element X�i1/n� � � � � id/n� precedes the
element X�j1/n� � � � � jd/n� in X̃n if and only if there exists a 1 ≤ k ≤ d such
that iu = ju whenever 1 ≤ u < k and ik < jk. Then the covariance matrix∑

θ1�����θd� σ
2� n of X̃n is given by

∑
θ1�����θd� σ

2� n = σ2
d⊗

u=1
Rθu�n

�

where the symbol
⊗

denotes the Kronecker product [see Anderson (1984),
page 599] and for each 1 ≤ u ≤ d,Rθu�n

denotes the n×nmatrix whose �i� j�th
element is exp�−θu�i − j�2/n2�. The estimation of θ1� � � � � θd now reduces to
the estimation of the structured correlation matrix

⊗d
u=1Rθu�n

(and hence the
title of this article).

Since X̃n ∼ Nnd�0�∑θ1�����θd� σ
2� n�, the nd-variate normal distribution with

mean 0 and covariance matrix
∑

θ1�����θd� σ
2� n, the likelihood function
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Ln�θ1� � � � � θd� σ2� is given by

Ln�θ1� � � � � θd� σ2�= �2π�−nd/2

∣∣∣∣∑ θ1�����θd� σ
2� n

∣∣∣∣−1/2exp(−X̃′
n

∑ −1
θ1�����θd� σ

2� nX̃n/2
)

[see, e.g., Anderson (1984)] and consequently the log-likelihood function
ln�θ1� � � � � θd� σ2� satisfies

2ln�θ1� � � � � θd� σ2� = −nd log�2π� − nd log�σ2� − log
∣∣∣∣ d⊗
u=1

Rθu�n

∣∣∣∣
− σ−2X̃′

n

(⊗d
u=1Rθu�n

)−1
X̃n�

(3)

The rest of this article is organized as follows. Section 2 of this article deals
with the computation of �⊗d

u=1Rθu�n
� and �⊗d

u=1Rθu�n
�−1 and the methods

used are combinatorial rather than analytical or statistical in nature. The
key idea here (see Proposition 1) is the observation that the correlation matrix⊗d

u=1Rθu�n
can be compactly factorized into a product of triangular matrices

via the Cholesky decomposition. This dramatically eases the computation of
the determinant and inverse of

⊗d
u=1Rθu�n

in Corollaries 1 and 2, respectively.
These matrix results appear to be new and are especially satisfying as the
relatively simple closed-form expressions for the determinant, inverse and
Cholesky decomposition of

⊗d
u=1Rθu�n

are exact (not approximations). They
may also be of independent interest in combinatorics and linear algebra. The
explicit log-likelihood function ln�θ1� � � � � θd� σ2� is then derived and stated in
Theorem 1.

Section 3 defines a sieve maximum likelihood estimator �θ̂1� n� � � � � θ̂d� n� for
�θ1� � � � � θd�. Theorem 2 establishes the strong consistency of �θ̂1� n� � � � � θ̂d� n�
under mild conditions and also provides an upper bound for the rate of strong
convergence of �θ̂1� n� � � � � θ̂d� n�.

Section 4 discusses a number of related issues not addressed in this arti-
cle such as estimation of the variance σ2 and “honest” maximum likelihood
estimation (unlike sieve maximum likelihood estimation) of the parameters
�θ1� � � � � θd� of the correlation function.

The Appendix contains a number of technical lemmas that are needed in
the proof of Theorem 2. Finally we remark that many of the calculations in
this article are exact and have been checked (either numerically or symbol-
ically) for correctness using the mathematical computation software system
Mathematica [Wolfram (1996)].

2. Log-likelihood function. In this section we shall derive explicitly
the log-likelihood function as given in (3). For simplicity we write for
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each 1 ≤ u ≤ d,

Rθu�n
=


1 wu w4

u · · · w
�n−1�2
u

wu 1 wu · · · w
�n−2�2
u

w4
u wu 1 · · · w

�n−3�2
u

���
���

���
� � �

���
w

�n−1�2
u w

�n−2�2
u w

�n−3�2
u · · · 1

 �(4)

where wu = exp�−θu/n2�. To compute the Cholesky decomposition, determi-
nant and inverse of

⊗d
u=1Rθu�n

, we shall draw on some techniques from num-
ber theory and combinatorics.

Definition. The Gaussian polynomial G�m�n�q� is defined by

G�m�n�q� = �1− qn−m+1��1− qn−m+2� · · · �1− qn�
�1− q��1− q2� · · · �1− qm�

if 0 ≤ m ≤ n and G�m�n�q� = 0 otherwise.

Remark. G�m�n�q� are also known as q-binomial coefficients in the com-
binatorics literature, an excellent account of which can be found in Chapter 3
of Andrews (1976).

The following lemma will be used frequently in this section.

Lemma 1. For n = 1�2� � � �, we have
n−1∏
i=0

�x+ qiz� =
n∑
i=0

G�i� n�q�qi�i−1�/2zixn−i ∀ x� q� z ∈ R�

We refer the reader to Goulden and Jackson [(1983), page 101] for the proof
of Lemma 1.

Proposition 1. (Cholesky decomposition). Let 1≤ u≤d� wu = exp�−θu/n2�
and Tθu�n

be the lower triangular matrix with positive diagonal elements such
that Tθu�n

T′
θu� n

= Rθu�n
. Then for all 1 ≤ i� j ≤ n,

�Tθu�n
�i� j =

{
w

�i−j�2
u �∏i−1

l=i−j+1�1−w2l
u ��/�

∏j−1
m=1�1−w2m

u ��1/2� if i ≥ j,

0� if i < j,
(5)

and

�T−1
θu� n

�i� j =
{ �−wu�i−jG�j− 1� i− 1�w2

u�/�
∏i−1

k=1�1−w2k
u ��1/2� if i ≥ j,

0� if i < j.
(6)

Furthermore, we have

d⊗
u=1

Rθu�n
=
( d⊗

u=1
Tθu�n

)( d⊗
u=1

Tθu�n

)′
�
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Proof. To prove (5), we observe from symmetry that it suffices to show
that for all 1 ≤ j ≤ k ≤ n,

�Rθu�n
�j� k =

j∑
i=1

�Tθu�n
�j� i�Tθu�n

�k� i�

which is equivalent to

w
�j−k�2
u =

j∑
i=1

w
�i−j�2+�i−k�2
u

{∏j−1
l=j−i+1�1−w2l

u �
}{∏k−1

m=k−i+1�1−w2m
u �}∏i−1

r=1�1−w2r
u � �(7)

Using Lemma 1 repeatedly, we observe that the right-hand side of (7) is
equal to

w
�j−k�2
u

j−1∑
i=0

w
2�j−i−1��k−i−1�
u G�i� j− 1�w2

u�
k−1∏

m=k−i
�1−w2m

u �

= w
�j−k�2
u

j−1∑
i=0

w
2�j−i−1��k−i−1�
u G�i� j− 1�w2

u�

×
i∑

m=0
�−1�mwm�m−1�+2m�k−i�

u G�m� i�w2
u�

= w
�j−k�2
u

j−1∑
m=0

�−1�mwm�m+1�
u G�m�j− 1�w2

u�

×
j−1−m∑
i=0

w
2�j−1−i��k−1−m−i�
u G�i� j− 1−m�w2

u�

= w
�j−k�2
u

j−1∑
i=0

w
2�j−1−i��k−1−i�
u G�i� j− 1�w2

u�

×
j−1−i∑
m=0

�−1�mwm�m+1�
u w

−2m�j−1−i�
u G�m�j− 1− i�w2

u�

= w
�j−k�2
u

j−1∑
i=0

w
2�j−1−i��k−1−i�
u G�i� j− 1�w2

u�
j−2−i∏
m=0

(
1−w

2�m+i+2−j�
u

)
= w

�j−k�2
u �

This proves (5). Next, to prove (6), it suffices to show that for all 1 ≤ k ≤ j ≤ n,

δj�k =
j∑

i=k

w
�i−j�2
u �−wu�i−kG�k− 1� i− 1�w2

u�
{∏j−1

l=j−i+1�1−w2l
u �
}

�∏i−1
m=1�1−w2m

u �� �(8)
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where δj�k denotes the Kronecker delta. Using Lemma 1 again, we observe
that the right-hand side of (8) is equal to

w
�j−k�2
u G�k− 1� j− 1�w2

u�
j−k∑
i=0

�−1�iwi�i−1�+2i�k−j+1�
u G�i� j− k�w2

u�

= w
�j−k�2
u G�k− 1� j− 1�w2

u�
j−k−1∏
i=0

�1−w
2�i+k+1−j�
u �

= δj�k�

Finally we observe from Anderson [(1984), page 600] that

d⊗
u=1

Rθu�n
=

d⊗
u=1

Tθu�n
T′

θu� n

=
( d⊗

u=1
Tθu�n

)( d⊗
u=1

Tθu�n

)′
�

This proves Proposition 1. ✷

Corollary 1. The determinant of the matrix
⊗d

u=1Rθu�n
is given by∣∣∣∣ d⊗

u=1
Rθu�n

∣∣∣∣ = d∏
u=1

{{ n−1∏
k=1

��1−w2k
u �n−k�

}nd−1}
�

where wu = exp�−θu/n2� whenever 1 ≤ u ≤ d.

Proof. We observe from Anderson [(1984), page 600] and Proposition 1
that ∣∣∣∣ d⊗

u=1
Rθu�n

∣∣∣∣ = d∏
u=1

[�Rθu�n
�nd−1]

=
d∏

u=1

{[ n∏
i=1

�Tθu�n
�i� i

]2nd−1}

=
d∏

u=1

{{ n−1∏
k=1

��1−w2k
u �n−k�

}nd−1}
�

This proves Corollary 1. ✷

Corollary 2. Let 1 ≤ u ≤ d andwu = exp�−θu/n2�. Then for 1 ≤ i� j ≤ n,
the �i� j�th element of the inverse of Rθu�n

is given by

�R−1
θn� n

�i� j

= �−1�i−j
i∧j∑
m=1

w
i+j−2m
u G�i−m�n−m�w2

u�G�j−m�n−m�w2
u�∏n−m

k=1 �1−w2k
u � �

(9)
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Furthermore we have ( d⊗
u=1

Rθu�n

)−1
=

d⊗
u=1

R−1
θu� n

�(10)

Proof. Equation (9) follows from Proposition 1 and the observation that
R−1

θu� n
= �T−1

θu� n
�′�T−1

θu� n
�. Equation (10) is immediate from Anderson [(1984),

page 600]. ✷

We now derive the log-likelihood function for θ1� � � � � θd and σ2.

Theorem 1. Let X̃n be defined as in Section 1 and wu = exp�−θu/n2�,
1 ≤ u ≤ d. Then the log-likelihood function ln�θ1� � � � � θd� σ2� satisfies
2ln�θ1� � � � � θd� σ2�

= −nd log�2π� − nd log�σ2� − nd
d∑

u=1

n−1∑
k=1

n− k

n
log�1−w2k

u �

− 1
σ2

n∑
i1�����id� j1�����jd=1

X

(
i1
n
� � � � �

id
n

)
X

(
j1
n
� � � � �

jd
n

)

×
d∏

u=1
�−1�iu−ju

iu∧ju∑
m=1

w
iu+ju−2m
u G�iu −m�n−m�w2

u�G�ju −m�n−m�w2
u�∏n−m

r=1 �1−w2r
u � �

Proof. Theorem1 follows immediately from(3),Corollary1andCorollary2.
✷

3. Sieve maximum likelihood estimation. Let X̃n be defined as in
Section 1 with covariance matrix

∑
θ1�����θd� σ

2� n. This section establishes the
strong consistency of a sieve maximum likelihood estimator for �θ1� � � � � θd�.
For convenience we write for 1 ≤ u ≤ d, wu = exp�−θu/n2�, w̃u = exp�−θ̃u/n2�
and Z̃n = �Z1� � � � �Znd�′ = σ−1�⊗d

u=1Tθu�n
�−1X̃n where Tθu�n

is as in

Proposition 1. Since X̃n ∼ Nnd�0� σ2⊗d
u=1Rθu�n

� and Tθu�n
T′

θu� n
= Rθu�n

,

we have Z̃n ∼ Nnd�0� I� where I is the nd × nd identity matrix.

Lemma 2. With the above notation, we have for all 1 ≤ j ≤ i ≤ n with
1 ≤ u ≤ d,

(
T−1

θ̃u� n
Tθu�n

)
i� j

=
{∏j−1

s=1 �1−w2s
u �∏i−1

r=1�1− w̃2r
u �

}1/2 i∑
m=j

�−w̃u�i−mw�m−j�2
u

×G�m− 1� i− 1� w̃2
u�G�j− 1�m− 1�w2

u��
(11)
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Hence (
T−1

θ̃u� n
Tθu�n

)2
i� i

=
i−1∏
k=1

(
1−w2k

u

1− w̃2k
u

)
≥ e−θu�θu/θ̃u�i−1�(12)

for sufficiently large n uniformly over θ̃u > 0, 1 ≤ u ≤ d and 1 ≤ i ≤ n.

Proof. Equation (11) follows immediately from Proposition 1. Next
observe that

0 ≤
(
−2kθ̃u

n2

)−1
�exp�−2kθ̃u/n2� − 1�

= 1+
∞∑
r=1

(
−2kθ̃u

n2

)r 1
�r+ 1�! ≤ 1 ∀ θ̃u > 0� 1 ≤ k ≤ n− 1�

Also

log
{ i−1∏
k=1

[
1+

∞∑
r=1

(
−2kθu

n2

)r 1
�r+ 1�!

]}

≥ log
{ n−1∏

k=1

[
1+

∞∑
r=1

(
−2kθu

n2

)r 1
�r+ 1�!

]}
≥ −θu�

for sufficiently large n uniformly over 1 ≤ i ≤ n. Thus

(
T−1

θ̃u� n
Tθu�n

)2
i� j

=
i−1∏
k=1

(
1−w2k

u

1− w̃2k
u

)

=
(
θu

θ̃u

)i−1{ i−1∏
k=1

[
1+

∞∑
r=1

(
−2kθu

n2

)r 1
�r+ 1�!

]}

×
{ i−1∏

l=1

[
1+

∞∑
s=1

(
−2lθ̃u

n2

)s 1
�s+ 1�!

]}−1

≥ e−θu�θu/θ̃u�i−1�

for sufficiently large n uniformly over θ̃u > 0, 1 ≤ u ≤ d and 1 ≤ i ≤ n. This
proves (12). ✷

Let ν, αu, βu, 0 ≤ u ≤ d, be absolute constants such that 0 < ν < 1,
0 < α0 < σ2 < β0 < ∞ and 0 < αu < θu < βu < ∞, 1 ≤ u ≤ d. We define a
sieve on the parameter space of �θ1� � � � � θd� and 'n where

'n =
{(

i1
nnν � � � � �

id
nnν

)
� αu ≤ iu

nnν ≤ βu� iu integer,1 ≤ u ≤ d

}
�(13)
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The sieve maximum likelihood estimator for �θ1� � � � � θd� is that element
�θ̂1� n� � � � � θ̂d� n� ∈ 'n such that

sup
{
ln�θ̂1� n� � � � � θ̂d� n� σ̃2�� σ̃2 ∈ �α0� β0�

}
= sup

{
ln�θ̃1� � � � � θ̃d� σ̃2�� σ̃2 ∈ �α0� β0�� �θ̃1� � � � � θ̃d� ∈ 'n

}
�

Proposition 2. Let 'n be as in (13) and �σ2� θ1� � � � � θd� ∈ ∏d
u=0�αu�βu�.

Further let X̃n be defined as in Section 1 with covariance matrix
∑

θ1�����θd� σ
2� n.

Then for all 0 < ρ < 1− ν with probability 1,

1
nd

inf
{
ln�θ1� � � � � θd� σ2� − ln�θ̃1� � � � � θ̃d� σ̃2�� σ̃2 ∈ �α0� β0��

�θ̃1� � � � � θ̃d� ∈ 'n

∖ d∏
u=1

�θu − d−1θun
−ρ� θu + θun

−ρ�
}
→ ∞�

as n → ∞.

Proof. First let τ and ξ be absolute constants such that 0 < ρ < τ < ξ < 1
and 0 < ν < ξ − ρ. Then for sufficiently large n,

1
nd

inf
{
ln�θ1�����θd�σ2�−ln�θ̃1�����θ̃d�σ̃2�� σ̃2∈�α0�β0��

�θ̃1�����θ̃d�∈'n

∖ d∏
u=1

�θu−d−1θun
−ρ�θu+θun

−ρ�
}

≥ 1
nd

min
[
inf

{
ln�θ1�����θd�σ2�−ln�θ̃1�����θ̃d�σ̃2�� σ̃2∈�α0�β0��

�θ̃1�����θ̃d�∈'n�
d∏

u=1
�θ̃u/θu�≥1+n−τ

}
�

inf
{
ln�θ1�����θd�σ2�−ln�θ̃1�����θ̃d�σ̃2�� σ̃2∈�α0�β0���θ̃1�����θ̃d�∈'n�

d∏
u=1

�θ̃u/θu�≤1+n−τ�θ̃v/θv≤1−d−1n−ρ for some 1≤v≤d

}]
�

Thus to prove Proposition 2, it suffices only to show that with probability 1,

1
nd

inf
{
ln�θ1� � � � � θd� σ2� − ln�θ̃1� � � � � θ̃d� σ̃2�� σ̃2 ∈ �α0� β0��

�θ̃1� � � � � θ̃d� ∈ 'n�
d∏

u=1
�θ̃u/θu� ≥ 1+ n−τ

}
→ ∞

(14)
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and

1
nd

inf
{
ln�θ1� � � � � θd� σ2� − ln�θ̃1� � � � � θ̃d� σ̃2�� σ̃2 ∈ �α0� β0��

�θ̃1� � � � � θ̃d� ∈ 'n

d∏
u=1

�θ̃u/θu� ≤ 1+ n−τ�

θ̃v/θv ≤ 1− d−1n−ρ for some 1 ≤ v ≤ d

}
→ ∞�

(15)

as n → ∞.
Next we observe from (3) and Corollary 1 that

2
nd

[
ln�θ1� � � � � θd� σ2� − ln�θ̃1� � � � � θ̃d� σ̃2�]
= log

(
σ̃2

σ2

)
+

d∑
u=1

n−1∑
k=1

n− k

n
log

(
1− exp�−2θ̃uk/n2�
1− exp�−2θuk/n2�

)

+ 1
ndσ̃2

X̃′
n

( d⊗
u=1

Rθ̃u�n

)−1
X̃n − 1

ndσ2
X̃′

n

( d⊗
u=1

Rθu�n

)−1
X̃n�

(16)

Using the strong law of large numbers, we further observe that as n → ∞,

1
ndσ2

X̃′
n

( d⊗
u=1

Rθu�n

)−1
X̃n → 1(17)

almost surely, and

d∑
u=1

n−1∑
k=1

n− k

n
log

(
1− exp�−2θ̃uk/n2�
1− exp�−2θuk/n2�

)

=
(
n− 1
2

) d∑
u=1

�1+ o�1�� log
(
θ̃u
θu

)
�

(18)

uniformly over �θ̃1� � � � � θ̃d� ∈
∏d

u=1�αu�βu�.
To prove (14), we observe from (16), (17) and (18) that

lim inf
n→∞

2
nd

inf
{
ln�θ1� � � � � θd� σ2� − ln�θ̃1� � � � � θ̃d� σ̃2�� σ̃2 ∈ �α0� β0��

�θ̃1� � � � � θ̃d� ∈ 'n�
d∏

u=1
�θ̃u/θu� ≥ 1+ n−τ

}

≥ lim inf
n→∞

{
inf

[
log

(
α0
σ2

)
+ n− 1

2

d∑
u=1

log
(
θ̃u
θu

)
−1�

d∏
u=1

�θ̃u/θu� ≥ 1+n−τ
]}

= lim
n→∞n1−τ/2 = ∞

almost surely. This proves (14).
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To prove (15), we observe without loss of generality that it suffices to show
that, with probability 1, for all 2 ≤ p ≤ d+ 1,

1
nd

inf
{
ln�θ1� � � � � θd� σ2� − ln�θ̃1� � � � � θ̃d� σ̃2�� σ̃2 ∈ �α0� β0��

�θ̃1� � � � � θ̃d� ∈ 'n�
d∏

u=1
�θ̃u/θu� ≤ 1+ n−τ� θ̃1/θ1 ≤ 1− d−1n−ρ�(19)

θ1/θ̃1 ≥ · · · ≥ θp−1/θ̃p−1 ≥ 1 ≥ θp/θ̃p ≥ · · · ≥ θd/θ̃d

}
→ ∞�

as n → ∞. Let �⊗d
u=1T

−1
θ̃u� n

Tθu�n
�i denote the ith row of the nd × nd lower

triangular matrix
⊗d

u=1T
−1
θu� n

Tθ̃u� n
and let �·� denote the Euclidean norm in

Rnd
. We observe from Corollary 2 and Anderson [(1984), page 600] that

X̃′
n

( d⊗
u=1

Rθ̃u�n

)−1
X̃n

= σ2Z̃′
n

( d⊗
u=1

Tθu�n

)′( d⊗
u=1

T−1
θ̃u� n

)′( d⊗
u=1

T−1
θ̃u� n

)( d⊗
u=1

Tθu�n

)
Z̃n

= σ2Z̃′
n

( d⊗
u=1

T−1
θ̃u� n

Tθu�n

)′( d⊗
u=1

T−1
θ̃u� n

Tθu�n

)
Z̃n

= σ2
nd∑
i=1

∥∥∥∥( d⊗
u=1

T−1
θ̃u� n

Tθu�n

)′

i

∥∥∥∥2∥∥Z̃n

∥∥2
×
{ nd∑
j=1

�⊗d
u=1T

−1
θ̃u� n

Tθu�n
�i� j

��⊗d
u=1T

−1
θ̃u� n

Tθu�n
�′i�

Zj

�Z̃n�

}2
�

(20)

Next we observe from the definition of the Kronecker product that there is a
bijective mapping ψ� ∏d

u=1�1� � � � � n� → �1� � � � � nd� such that ψ�i1� � � � � id� = i
if and only if

d∏
u=1

(
T−1

θ̃u� n
Tθu�n

)
iu� iu

=
( d⊗

u=1
T−1

θ̃u� n
Tθu�n

)
i� i

�

Hence for τ < ξ < 1 and 2 ≤ p ≤ d+ 1, it follows from (12) and (20) that

X̃′
n

( d⊗
u=1

Rθ̃u�n

)−1
X̃n

≥ σ2 exp�−�θ1 + · · · + θd��
n∑

i1�����id=1

{ d∏
u=1

(
θu

θ̃u

)iu−1}∥∥Z̃n

∥∥2
×
{

nd∑
j=1

�⊗d
u=1T

−1
θ̃u� n

Tθu�n
�ψ�ii�����id�� j

��⊗d
u=1T

−1
θ̃u� n

Tθu�n
�′ψ�ii�����id��

Zj

�Z̃n�

}2



STRUCTURED CORRELATION MATRICES 891

= σ2 exp�−�θ1 + · · · + θd��
n∑

i1�����id=1

{ d∏
u=1

(
θu

θ̃u

)ip−1}{ p−1∏
u=1

(
θu

θ̃u

)iu−ip}

×
{ d∏
u=p+1

(
θ̃u
θu

)ip−iu}∥∥Z̃n

∥∥2{ �⊗d
u=1T

−1
θ̃u� n

Tθu�n
�ψ�ii�����id�Z̃n

��⊗d
u=1T

−1
θ̃u� n

Tθu�n
�′ψ�ii�����id���Z̃n�

}2

≥ σ2 exp�−�θ1 + · · · + θd��
{ d∏
u=1

(
θu

θ̃u

)i∗p−1}{ p−1∏
u=1

(
θu

θ̃u

)i∗u−i∗p}

×
{ d∏
u=p+1

(
θ̃u
θu

)i∗p−i∗u}∥∥Z̃n

∥∥2{ �⊗d
u=1T

−1
θ̃u� n

Tθu�n
�ψ�i∗i �����i∗d�Z̃n

��⊗d
u=1T

−1
θ̃u� n

Tθu�n
�′ψ�i∗i �����i∗d���Z̃n�

}2

�

(21)

for sufficiently large n uniformly over θ̃u > 0� 1 ≤ u ≤ d, where

i∗u = �2d−unξ� ∀ 1 ≤ u ≤ d�

Here �·� denotes the greatest integer function. For simplicity we write

'∗
n =

{
�θ̃1� � � � � θ̃d� ∈ 'n�

d∏
u=1

�θ̃u/θu� ≤ 1+ n−τ� θ̃1/θ1 ≤ 1− d−1n−ρ�

θ1/θ̃1 ≥ · · · ≥ θp−1/θ̃p−1 ≥ 1 ≥ θp/θ̃p ≥ · · · ≥ θd/θ̃d

}
�

Then for sufficiently large n,

inf
�θ̃1�����θ̃d�∈'∗

n

{ d∏
u=1

(
θu

θ̃u

)i∗p−1}{ p−1∏
u=1

(
θu

θ̃u

)i∗u−i∗p}{ d∏
u=p+1

(
θ̃u
θu

)i∗p−i∗u}

≥
(

1
1− d−1n−ρ

)i∗1−1∧
min

p∈�2�����d�

{(
1

1+ n−τ

)i∗p( 1
1− d−1n−ρ

)i∗1−i∗p}
≥ exp�d−12d−3nξ−ρ��

(22)

Consequently we observe from (21) and (22) that for sufficiently large n,

P

(
inf

�θ̃1�����θ̃d�∈'∗
n

{
X̃′

n�
⊗d

u=1Rθ̃u�n
�−1X̃n

�Z̃n�2

}

>
σ2

exp��θ1 + · · · + θd��
exp�d−12d−4nξ−ρ�

)
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≥ P

(
inf

�θ̃1�����θ̃d�∈'∗
n

{ ∣∣�⊗d
u=1T

−1
θ̃u� n

Tθu�n
�ψ�i∗1�����i∗d�Z̃n

∣∣
��⊗d

u=1T
−1
θ̃u� n

Tθu�n
�′ψ�i∗1�����i∗d���Z̃n�

}2

> exp�−d−12d−4nξ−ρ�
)

≥ 1− ∑
�θ̃1�����θ̃d�∈'n

P

( ∣∣�⊗d
u=1T

−1
θ̃u� n

Tθu�n
�ψ�i∗1�����i∗d�Z̃n

∣∣
��⊗d

u=1T
−1
θ̃u� n

Tθu�n
�′ψ�i∗1�����i∗d���Z̃n�

≤ exp�−d−12d−5nξ−ρ�
)
�

(23)

Next we shall use a geometrical argument to obtain a bound for the second
term of the right-hand side of (23). For m ≥ 1, let ∂m denote the surface
area of the unit hypersphere Sm−1 = �x ∈ Rm� ∑m

i=1 x
2
i = 1�. Then ∂m =

2πm/2/2�m/2�, [see, e.g., Anderson (1984), page 280].
Let �e1� � � � � end� be an orthonormal basis for Rnd

such that

e1 =
�⊗d

u=1T
−1
θ̃u� n

Tθu�n
�′ψ�i∗1�����i∗d�∥∥�⊗d

u=1T
−1
θ̃u� n

Tθu�n
�′ψ�i∗1�����i∗d�

∥∥ �
and consider the transformation of this set of rectangular coordinates ��y1� � � ��
ynd� �= 0� − ∞ < y1� � � � � ynd < ∞� to its corresponding polar coordinates
��r�φ1� � � � � φnd−1�� r > 0� −π/2 < φ1� � � � � φnd−2 ≤ π/2� and − π < φnd−1 ≤
π�. The Jacobian of such a transformation is given by [see, e.g., Anderson
(1984), pages 279–280]

rn
d−1 cosn

d−2�φ1� cosn
d−3�φ2� · · · cos�φnd−2��

Since Z̃n ∼ Nnd�0� I�� Z̃n/�Z̃n� is uniformly distributed on the surface of
Snd−1 with probability 1 and hence using Stirling’s approximation [see, e.g.,
Feller (1968), page 66],

P

( ∣∣�⊗d
u=1T

−1
θ̃u� n

Tθu�n
�ψ�i∗1�����i∗d�Z̃n

∣∣
��⊗d

u=1T
−1
θ̃u� n

Tθu�n
�′ψ�i∗1�����i∗d���Z̃n�

≤ exp�−d−12d−5nξ−ρ�
)

≤ 2π�∂nd�−1
[ ∫ cos−1�− exp�−d−12d−5nξ−ρ��

cos−1�exp�−d−12d−5nξ−ρ��
dφ1

]
×
[ ∫ π/2

−π/2
cosn

d−3�φ2�dφ2

]
· · ·
[ ∫ π/2

−π/2
cos�φnd−2�dφnd−2

]
≤ ∂nd−1�∂nd�−13 exp�−d−12d−5nξ−ρ�
≤ exp�−d−12d−6nξ−ρ��

(24)
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for sufficiently large n, say n ≥ n0, uniformly over �θ̃1� � � � � θ̃d� ∈
∏d

u=1�αu�βu�.
Consequently, it follows from (24) that

∞∑
n=n0

∑
�θ̃1�����θ̃d�∈'n

P

( ∣∣�⊗d
u=1T

−1
θ̃u�n

Tθu�n
�ψ�i∗1�����i∗d�Z̃n

∣∣
��⊗d

u=1T
−1
θ̃u�n

Tθu�n
�′ψ�i∗1�����i∗d���Z̃n�

≤exp�−d−12d−5nξ−ρ�
)

≤
(

d∏
u=1

βu

) ∞∑
n=n0

ndnν

exp�−d−12d−6nξ−ρ�

≤∞�

(25)

since ν < ξ − ρ. By the Borel–Cantelli lemma [Chung (1974), page 73], we
conclude from (23) and (25) that

P

(
inf

�θ̃1�����θ̃d�∈'∗
n

{
X̃′

n�
⊗d

u=1Rθ̃u�n
�−1X̃n

�Z̃n�2

}

≤ σ2

�exp�θ1 + · · · + θd��
exp�d−12d−4nξ−ρ�i.o.

)
= 0�

and hence with probability 1,

lim inf
n→∞ exp�−d−12d−4nξ−ρ� inf

�θ̃1�����θ̃d�∈'∗
n

{
X̃′

n�
⊗d

u=1Rθ̃u�n
�−1X̃n

�Z̃n�2

}

>
σ2

�exp�θ1 + · · · + θd��
�

(26)

Now it follows from (16), (17), (18) and (26) that with probability 1,

lim inf
n→∞

2
nd

inf
{
ln�θ1� � � � � θd� σ2� − ln�θ̃1� � � � � θ̃d� σ̃2��

σ̃2 ∈ �α0� β0�� �θ̃1� � � � � θ̃d� ∈ 'n�

d∏
u=1

�θ̃u/θu� ≤ 1+ n−τ� θ̃1/θ1 ≤ 1− d−1n−ρ�

θ1/θ̃1 ≥ · · · ≥ θp−1/θ̃p−1 ≥ 1 ≥ θp/θ̃p ≥ · · · ≥ θd/θ̃d

}

≥ lim inf
n→∞

{
log

(
α0
σ2

)
− 1+ n− 1

2
log

( d∏
u=1

αu
θu

)

+ σ2

β0 exp��θ1 + · · · + θd��
exp�d−12d−4nξ−ρ�

}
= ∞�

This proves (19) and the proof of Proposition 2 is complete. ✷
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Theorem 2 below shows that the sieve maximum likelihood estimator
�θ̂1� n� � � � � θ̂d� n� for �θ1� � � � � θd� is strongly consistent and also provides an
upper bound for the rate of strong convergence of �θ̂1� n� � � � � θ̂d� n� under mild
conditions.

Theorem 2. Let 'n be as in (13) with 4/5 ≤ ν < 1 and �σ2� θ1� � � � � θd� ∈∏d
u=0�αu�βu�. Further let X̃n be defined as in Section 1 with covariance matrix∑
θ1�����θd� σ

2� n. Then for all 0 < ρ < 1− ν with probability 1,

�θ̂1� n� � � � � θ̂d� n� ∈
d∏

u=1
�θu − d−1θun

−ρ� θu + θun
−ρ�

for sufficiently large n.

Proof. We observe from Proposition 2 that to prove Theorem 2, it suffices
to show that with probability 1,

1
nd

[
ln�θ1� � � � � θd� σ2� − ln�θ̃1� � � � � θ̃d� σ2�]→ 0�(27)

as n → ∞ uniformly over �θ̃1� � � � � θ̃d� ∈
∏d

u=1�θu − n−nν
� θu + n−nν�. From (3)

and Corollary 1, we have

2
nd

�ln�θ1� � � � � θd� σ2� − ln�θ̃1� � � � � θ̃d� σ2��

=
d∑

u=1

n−1∑
k=1

n− k

n
log

(
1− exp�−2θ̃uk/n2�
1− exp�−2θuk/n2�

)

+ 1
ndσ2

X̃′
n

( d⊗
u=1

Rθ̃u�n

)−1
X̃n − 1

ndσ2
X̃′

n

( d⊗
u=1

Rθu�n

)−1
X̃n�

(28)

We observe from (18) that
d∑

u=1

n−1∑
k=1

n− k

n
log

(
1− exp�−2θ̃uk/n2�
1− exp�−2θuk/n2�

)
→ 0�(29)

as n → ∞ uniformly over �θ̃1� � � � � θ̃d� ∈
∏d

u=1�θu − n−nν
� θu + n−nν�. Further-

more using (12), we have∣∣∣∣∣
(
T−1
θ̃u� n

Tθu�n

)
i� i

− 1

∣∣∣∣∣
=
∣∣∣∣∣
{

i−1∏
k=1

(
1− exp�−2kθ̃u/n2� − exp�−2kθu/n2�

1− exp�−2kθu/n2�

)}−1/2
− 1

∣∣∣∣∣
=
∣∣∣∣∣
{

i−1∏
k=1

[
1+ �θ̃u − θu� exp�−2kθu/n2�

∑∞
r=0�−2k�θ̃u − θu�/n2��r��r+ 1�!�−1

θu
∑∞

s=0�−2kθu/n2�s��s+ 1�!�−1
]}−1/2

− 1

∣∣∣∣∣
≤ max

{
1−

(
1+ 2

nn
ν
θu

)−�i−1�/2
�

(
1− 2

nn
ν
θu

)−�i−1�/2
− 1

}
≤ 2n

nn
ν
θu

(30)
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for sufficiently large n uniformly over 1 ≤ i ≤ n and θ̃u ∈ �θu−n−nν
� θu+n−nν�.

Next we shall show that ∣∣∣(T−1
θ̃u� n

Tθu�n

)
i� j

∣∣∣ ≤ n−nν/4�(31)

for sufficiently large n uniformly over 1 ≤ j < i ≤ n and θ̃u ∈ �θu − n−nν
� θu +

n−nν�. We observe from (11) that for all 1 ≤ j ≤ i ≤ n with 1 ≤ u ≤ d,

{ �∏i−j
r=1�1− w̃2r

u ���∏j−1
t=1 �1−w2t

u ��∏i−1
s=i−j+1�1− w̃2s

u �

}1/2(
T−1

θ̃u� n
Tθu�n

)
i� j

=
i−j∑
m=0

�−w̃u�i−j−mwm2

u G�m� i− j� w̃2
u�
[

m+j−1∏
s=m+1

�1−w2s
u �

�1− w̃2s
u �

]
�

(32)

Next define recursively for k = 0�1� � � � � i− j,

ηi�j�m� i−j = 1 ∀ 0 ≤ m ≤ i− j�

ηi� j�m� i−j−k = κj�mηi� j�m+1� i−j−k+1 − λmηi�j�m� i−j−k+1

∀ 0 ≤ m ≤ i− j− k�

(33)

where

κj�m = w2m+1
u

[(
1−w

2�m+j�
u

)(
1− w̃

2�m+1�
u

)(
1− w̃

2�m+j�
u

)(
1−w

2�m+1�
u

)
]

∀ m = 0�1� � � � �

λm = w̃2m+1
u ∀ m = 0�1� � � � �

(34)

Then it follows from (32), (33) and induction that for all 1 ≤ j ≤ i ≤ n,
0 ≤ k ≤ i− j with 1 ≤ u ≤ d,

{ �∏i−j
r=1�1− w̃2r

u ���∏j−1
t=1 �1−w2t

u ��∏i−1
s=i−j+1�1− w̃2s

u �

}1/2(
T−1

θ̃u� n
Tθu�n

)
i� j

=
i−j−k∑
m=0

�−w̃u�i−j−k−mwm2

u G�m� i− j− k� w̃2
u�

(35)

×
[

m+j−1∏
s=m+1

�1−w2s
u �

�1− w̃2s
u �

]
ηi�j�m� i−j−k

= ηi�j�0�0

j−1∏
s=1

1−w2s
u

1− w̃2s
u

�
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To investigate the asymptotics (as n → ∞) of ηi�j�0�0 when j < i, it is conve-
nient to rewrite (33) in the following way. For each m = 0�1� � � �, define

ηj+1� j�0�0�m� = κj�m − λm ∀ 1 ≤ j ≤ n�

ηi� j�0�0�m� = �κj�m − λm�ηi−1� j�0�0�m+ 1�
+ λm�ηi−1� j�0�0�m+ 1� − ηi−1� j�0�0�m��

∀ 1 ≤ j < i− 1 ≤ n− 1�

(36)

Then ηi�j�0�0 = ηi�j�0�0�0� whenever 1 ≤ j < i ≤ n. For example, we have

ηj+2� j�0�0�m� = �κj�m − λm��κj�m+1 − λm+1�
+ λm�κj�m+1 − λm+1 − κj�m + λm��

ηj+3� j�0�0�m� = �κj�m − λm��κj�m+1 − λm+1��κj�m+2 − λm+2�
+ λm+1�κj�m − λm��κj�m+2 − λm+2 − κm+1 + λm+1�
+ λm�κj�m+1 − λm+1 − κj�m + λm��κj�m+2 − λm+2�
+ λm�κj�m − λm��κj�m+2 − λm+2 − κj�m+1 + λm+1�
+ λm�λm+1 − λm��κj�m+2 − λm+2 − κj�m+1 + λm+1�
+ λ2m�κj�m+2 − λm+2 − κj�m+1 + λm+1 − κj�m+1

+ λm+1 + κj�m − λm��

(37)

and so on. We observe via induction that ηi�j�0�0�m� can be expressed as a
sum of �i − j�! terms where each term is a product of factors of the form λk,∑k

l=0�−1�lk!λm+k−l�l!�k− l�!�−1 or ∑k
l=0�−1�lk!�κj�m+k−l−λm+k−l��l!�k− l�!�−1.

We further observe that each term is also of degree i−j in these factors. Next
for each k = 0�1� � � �, we define the order of

∑k
l=0�−1�lk!λm+k−l�l!�k− l�!�−1 to

be k and the order of
∑k

l=0�−1�lk!�κj�m+k−l − λm+k−l��l!�k− l�!�−1 to be k+ 1.
Then each of the �i−j�! terms of ηi�j�0�0�m� has a sum of orders equal to i−j.

Remark. As an illustration, we observe from (37) that ηj+2� j�0�0 and
ηj+3� j�0�0 can be expressed as a sum of 2! and 3! terms, respectively. Fur-
thermore, for example, �κj�m − λm��κj�m+1 − λm+1� is of order 2 and degree
2 whereas λm�λm+1 − λm��κj�m+2 − λm+2 − κj�m+1 + λm+1� is of order 3 and
degree 3.

Finally among the �i−j�! terms of ηi�j�0�0�m�, let ai� j� r� s� t denote the num-

ber of terms having exactly r−s factors of the type∑k1
l=0�−1�lk1!λm+k1−l�l!�k1−

l�!�−1 for some k1 = 1�2� � � �, and exactly s factors of the type
∑k2

l=0�−1�lk2!
�κj�m+k2−l − λm+k2−l��l!�k2 − 1�!�−1 for some k2 = 0� 1� � � � � where the sum
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of the orders of these latter s factors is t. Then it follows from (36) that

aj+1� j�1�1�1 = 1 ∀ 1 ≤ j ≤ n�

ai� j� r� s� t = ai−1� j� r−1� s−1� t−1 + sai−1� j� r� s� t−1 + �r− s�ai−1� j� r� s� t
+ �i− j− r�ai−1� j� r−1� s� t ∀ 1 ≤ j < i− 1 ≤ n− 1�

(38)

Consequently, from Lemmas 3 and 4 (see the Appendix), we have

�ηi�j�0�0� = �ηi�j�0�0�0��

≤ ∑
r� s� t

�exp�3θu/n��r−s
(
4eθu
n2

)i−j−t( e3n

θ2un
nν

)s(17θu
n

)t

ai� j� r� s� t

≤ exp�3θu�
(
17θu
n

)i−j ∑
r� s� t

(
1
n

)i−j−t( e3n

θ2un
nν

)s

ai� j� r� s� t�

and using Lemma 5 (see the Appendix),

�ηi�j�0�0� ≤ exp�3θu�
(
17θu
n

)i−j
��i− j�!�1/4

n∑
r� s� t=1

e34i−j

θ2un
nν−1

≤
(
68θu
n

)i−j
��i− j�!�1/4 exp�3�θu + 1��n4

θ2un
nν ∀ 1 ≤ j < i ≤ n�

(39)

whenever n ≥ Cθu
= max�C∗

θu
�C∗∗

θu
�C∗∗∗

θu
� uniformly over θ̃u ∈ �θu − n−nν

� θu +
n−nν�. Since �i−j�i−j ≤ ei−j�i−j�! [see, e.g., Feller (1968), page 54], it follows
from (35) and (39) that∣∣∣∣(T−1

θ̃u� n
Tθu�n

)
i� j

∣∣∣∣
=
∣∣∣∣ηi�j�0�0

{ j−1∏
s=1

1−w2s
u

1− w̃2s
u

}{ ∏i−1
s=i−j+1�1− w̃2s

u �
�∏i−j

r=1�1− w̃2r
u ���∏j−1

t=1 �1−w2t
u ��

}1/2∣∣∣∣
≤ 2�ηi�j�0�0�

{ �i− 1�!
�j− 1�!�i− j�!

}1/2{ ni−j

�2θu��i−j�/2��i− j�!�1/2
}

≤ 2 exp�3�θu + 1��n4�68θu�i−j
θ2un

i−jnnν

{ �i− 1�!
�j− 1�!

}1/2{ ni−j

�2θu��i−j�/2��i− j�!�3/4
}

≤ 2 exp�3�θu + 1��n4n�i−j�/2

θ2un
nν�i− j�5�i−j�/8 exp

[
e5�68θu�8
8�2θu�4

]
�

(40)

for sufficiently large n uniformly over 1 ≤ j < i ≤ n and θ̃u ∈ �θu − n−nν
� θu +

n−nν�.
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Case 1. Suppose 1 ≤ i − j < nν. Then clearly the right-hand side of (40)
is bounded by n−nν/4 for sufficiently large n uniformly over 1 ≤ i−j < nν and
θ̃u ∈ �θu − n−nν

� θu + n−nν�.

Case 2. Suppose i − j ≥ nν. Since ν ≥ 4/5, the right-hand side of (40) is
bounded by

2 exp�3�θu + 1��n4

θ2un
nν

(
n

n5ν/4

)�i−j�/2
exp

[
e5�68θu�8
8�2θu�4

]
≤ n−nν/4�

for sufficiently large n uniformly over nν ≤ i−j ≤ n and θ̃u ∈ �θu−n−nν
� θu+

n−nν�.

Cases 1 and 2 prove that (31) holds. Finally it follows from (20), (30), (31)
and the strong law of large numbers that with probability 1,

1
ndσ2

X̃′
n

( d⊕
u=1

Rθ̃u�n

)−1
X̃n → 1�(41)

as n → ∞ uniformly over �θ̃1� � � � � θ̃d� ∈ ∏d
u=1�θu − n−nν

� θu + n−nν�. Now we
conclude that (27) holds using (17), (28), (29) and (41). ✷

Remark. It is evident from the proof of Theorem 2 that strong consistency
holds for sieve maximum likelihood estimators of �θ1� � � � � θd� with coarser
sieves than that given by (13) and 4/5 ≤ ν < 1. However we feel that this
is somewhat academic since most statisticians would prefer to use a finer (as
opposed to a coarser) sieve if both would lead to estimators possessing similar
asymptotic properties. This is mainly due to the expectation of better finite
sample performance from estimators derived from the finer sieve.

4. Final remarks. This article has shown that sieve maximum likeli-
hood estimation of �θ1� � � � � θd� is strongly consistent when γ = 2. However
we observe from the proof of Proposition 2 that it seems likely that the same
result should hold for “honest” maximum likelihood estimation as well and
that the use of a sieve is probably only a means to avoid further technical
complications.

The consistency of the maximum likelihood estimate for the variance σ2

is still an open question when γ = 2. In any case, the analysis of the log-
likelihood function of θ1� � � � � θd and σ2 indicates that in terms of accuracy,
maximum likelihood estimation of σ2 is at least an order more difficult than
sieve maximum likelihood estimation of �θ1� � � � � θd�.

A more detailed and precise study of the large sample behavior of the ele-
ments of the lower triangular matrix

⊕d
u=1T

−1
θ̃u� n

Tθu�n
of Lemma 2 may help

resolve the above issues.
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APPENDIX

Lemma 3. Let λm be defined as in (34). Then there exists a constant C∗
θu

(depending only on θu) such that∣∣∣∣ k∑
l=0

�−1�lk!λm+k−l
l!�k− l�!

∣∣∣∣ ≤ (
4eθu
n2

)k

exp�3θu/n� ∀0 ≤ m < m+ k ≤ n�

whenever n ≥ C∗
θu

uniformly over θ̃ ∈ �θu − n−nν
� θu + n−nν�.

Proof. We observe that
k∑
l=0

�−1�lk!λm+k−l
l!�k− l�! =

k∑
l=0

�−1�k−lk!
l!�k− l�! exp�−θ̃un

−2�2m+ 1+ 2l��

=
∞∑
r=0

(
− θ̃u
n2

)r r∑
s=0

�2m+ 1�r−s2s
s!�r− s�!

k∑
l=0

�−1�k−lk!ls
l!�k− l�!

=
∞∑
r=k

(
− θ̃u
n2

)r r∑
s=k

�2m+ 1�r−s2s
s!�r− s�!

k∑
l=0

�−1�k−lk!ls
l!�k− l�! �

(42)

Since kk ≤ ekk! [see, e.g., Feller (1968), page 54], it follows from (42) that∣∣∣∣ k∑
l=0

�−1�lk!λm+k−l
l!�k− l�!

∣∣∣∣ ≤ ∞∑
r=k

(
θ̃u
n2

)r r−k∑
s=0

2k�2m+ 1�r−k−s2s+kks+k
�s+ k�!�r− k− s�!

≤
∞∑
r=k

(
θ̃u
n2

)r �4e�k�2m+ 1+ 2k�r−k
�r− k�!

≤
(
4eθ̃u
n2

)k ∞∑
r=0

(
θ̃u�2n+ 1�

n2

)r 1
r!

≤
(
4eθ̃u
n2

)k

exp�θ̃u�2n+ 1�/n2� ∀ 0 ≤ m < m+ k ≤ n�

This proves Lemma 3. ✷

Lemma 4. Let κj�m and λm be defined as in (34). Then there exists a con-
stant C∗∗

θu
(depending only on θu) such that∣∣∣∣ k∑

l=0

�−1�lk!�κj�m+k−l − λm+k−l�
l!�k− l�!

∣∣∣∣
≤ e3n

θ2un
nν

(
17θu
n

)k+1
∀ 0 ≤ m ≤ m+ k ≤ n− j�

whenever n ≥ C∗∗
θu

uniformly over θ̃u ∈ �θu − n−nν
� θu + n−nν�.
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Proof. It is convenient to expand �1−w
2�m+1�
u �−1 as(

1−w
2�m+1�
u

)−1
= n2

2�m+ 1�θu

[
1+

∞∑
r=1

(
− 2�m+ 1�θu

n2

)r 1
�r+ 1�!

]−1

= n2

2�m+ 1�θu
∞∑
s=0

(
− 2�m+ 1�θu

n2

)sBs

s!
�

whereBs’s are the Bernoulli numbers [see, e.g., Graham, Knuth and Patashnik
(1994), pages 283–289]. Hence

1− w̃
2�m+1�
u

1−w
2�m+1�
u

= θ̃u
θu

∞∑
r=0

(
− 2�m+ 1�

n2

)r r∑
s=0

θ̃suθ
r−s
u Br−s

�s+ 1�!�r− s�! �

Using a similar argument, we have

�1−w
2�m+j�
u ��1− w̃

2�m+1�
u �

�1− w̃
2�m+j�
u ��1−w

2�m+1�
u �

=
∞∑

r2=0

(
− 1
n2

)r2 r2∑
r4=0

�2m+ 1�r4

×
r2∑

r1=0

r1∧r4∑
r3=0∨�r4−r2+r1�

r1!�r2 − r1�!�2j− 1�r1−r3
r3!�r4 − r3�!�r1 − r3�!�r2 − r1 + r3 − r4�!

×
r1∑

s1=0

θ
s1
u θ̃

r1−s1
u Br1−s1

�s1 + 1�!�r1 − s1�!
r2−r1∑
s2=0

θ̃
s2
u θ

r2−r1−s2
u Br2−r1−s2

�s2 + 1�!�r2 − r1 − s2�!
�

(43)
Writing θu = θ̃u + εu, it follows from (43) after some rather involved calcula-
tions that

κj�m − λm

= w̃2m+1
u

{
w2m+1

u �1−w
2�m+j�
u ��1− w̃

2�m+1�
u �

w̃2m+1
u �1− w̃

2�m+j�
u ��1−w

2�m+1�
u �

− 1

}

= εu

∞∑
r=1

(
− 1
n2

)r r∑
r4=0

�2m+ 1�r4
r∑

s=1∨�r−r4�

θ̃r−su

�r− s�!

×
{(

s−1∑
r2=r−r4

ε
s−1−r2
u

�s− r2�!
r2∑

r1=0

r1∧�r2−r+r4�∑
r3=0∨�r1−r+r4�

× r1!�r2 − r1�!�2j− 1�r1−r3
r3!�r2 − r+ r4 − r3�!�r1 − r3�!�r− r4 − r1 + r3�!

×
r1∑

s1=0

θ
s1
u θ̃

r1−s1
u Br1−s1

�s1 + 1�!�r1 − s1�!
r2−r1∑
s2=0

θ̃
s2
u θ

r2−r1−s2
u Br2−r1−s2

�s2 + 1�!�r2 − r1 − s2�!

)
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+
(

s∑
r1=1

r1∧�s−r+r4�∑
r3=0∨�r1−r+r4�

r1!�s− r1�!�2j− 1�r1−r3
r3!�s− r+ r4 − r3�!�r1 − r3�!�r− r4 − r1 + r3�!

×
r1∑

s1=0

θ̃
r1−s1
u Br1−s1

�s1 + 1�!�r1 − s1�!
s1∑

s3=1

s1!θ̃
s1−s3
u ε

s3−1
u

�s1 − s3�!s3!
s−r1∑
s2=0

θ̃
s2
u θ

s−r1−s2
u Bs−r1−s2

�s2 + 1�!�s− r1 − s2�!

)

+
(

s!
�s− r+ r4�!�r− r4�!

s∑
s2=0

θ̃
s2
u Bs−s2

�s2 + 1�!�s− s2�!
s−s2∑
s3=1

�s− s2�!θ̃s−s2−s3u ε
s3−1
u

�s− s2 − s3�!s3!

)}
�

Consequently we observe that

k∑
l=0

�−1�lk!�κj�m+k−l−λm+k−l�
l!�k−l�!

=εu

∞∑
r=k∨1

(
− 1
n2

)r r∑
r4=k

r4∑
r5=k

r4!�2m+1�r4−r52r5
r5!�r4−r5�!

k∑
l=0

�−1�k−lk!lr5
l!�k−l�!

×
r∑

s=1∨�r−r4�

θ̃r−su

�r−s�!

×
{(

s−1∑
r2=r−r4

ε
s−1−r2
u

�s−r2�!
r2∑

r1=0

r1∧�r2−r+r4�∑
r3=0∨�r1−r+r4�

× r1!�r2−r1�!�2j−1�r1−r3
r3!�r2−r+r4−r3�!�r1−r3�!�r−r4−r1+r3�!

×
r1∑

s1=0

θ
s1
u θ̃

r1−s1
u Br1−s1

�s1+1�!�r1−s1�!
r2−r1∑
s2=0

θ̃
s2
u θ

r2−r1−s2
u Br2−r1−s2

�s2+1�!�r2−r1−s2�!

)

+
(

s∑
r1=1

r1∧�s−r+r4�∑
r3=0∨�r1−r+r4�

r1!�s−r1�!�2j−1�r1−r3
r3!�s−r+r4−r3�!�r1−r3�!�r−r4−r1+r3�!

×
r1∑

s1=0

θ̃
r1−s1
u Br1−s1

�s1+1�!�r1−s1�!
s1∑

s3=1

s1!θ̃
s1−s3
u ε

s3−1
u

�s1−s3�!s3!
s−r1∑
s2=0

θ̃
s2
u θ

s−r1−s2
u Bs−r1−s2

�s2+1�!�s−r1−s2�!

)

+
(

s!
�s−r+r4�!�r−r4�!

s∑
s2=0

θ̃
s2
u Bs−s2

�s2+1�!�s−s2�!
s−s2∑
s3=1

�s−s2�!θ̃s−s2−s3u ε
s3−1
u

�s−s2−s3�!s3!

)}
�

Since �Bs/s!� ≤ 1 for all s = 0�1� � � � � [see, e.g., Graham, Knuth and Patashnik
(1994), page 286], for n sufficiently large such that �εu/θ̃u� ≤ 1�1/2 ≤ θu/θ̃u ≤ 2
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and �8θ̃u/n� < 1, we have for all 0 ≤ m ≤ m+ k ≤ n− j,∣∣∣∣ k∑
l=0

�−1�lk!�κj�m+k−l − λm+k−l�
l!�k− l�!

∣∣∣∣ ≤ 2k�εu�
θ̃u

∞∑
r=k

2e3
(
4θ̃u
n2

)r

�r− k+ 1��2n�r

+ 2k�εu�
θ̃u

∞∑
r=k

e11/4
(
4θ̃u
n2

)r

�r− k+ 1��2n�r

+ 2k�εu�
θ̃u

∞∑
r=k

e3/4
(
4θ̃u
n2

)r

�r− k+ 1�

× �2�n− j� + 1�r

≤ 4e3�εu�
θ̃u

(
16θ̃u
n

)k ∞∑
r=k

�r− k+ 1�
(
8θ̃u
n

)r−k

= 4e3�εu�
θ̃u

(
16θ̃u
n

)k

�1− 8θ̃un
−1�−2�

This proves Lemma 4. ✷

Lemma 5. Let ai� j� r� s� t be defined as in (38). Then there exists a constant
C∗∗∗
θu

(depending only on θu) such that

1
��i− j�!�1/4

(
e3n

θ2un
nν

)s( 1
n

)i−j−t
ai� j� r� s� t ≤

e34i−j

θ2un
nν−1 ∀1 ≤ j < i ≤ n�(44)

whenever n ≥ C∗∗∗
θu

.

Proof. Clearly, (44) holds when i = j + 1 for all n = 1�2� � � � � since
aj+1� j�1�1�1 = 1. Next we assume that i > j+ 1 and we divide the remainder
of the proof into two cases.

Case 1. Suppose that s ≥ �i− j�1/4. Since ai� j� r� s� t ≤ �i− j�! and ν ≥ 4/5,

1
��i− j�!�1/4

(
e3n

θ2un
nν

)s(
1
n

)i−j−t
ai� j� r� s� t ≤

(
e3n

θ2un
nν

)�i−j�1/4(
1
n

)i−j−t
��i− j�!�3/4

≤ e34i−j

θ2un
nν−1 ∀1 < j+ 1 < i ≤ n�

whenever n ≥ C†
θu

for some constant C†
θu

(depending only on θu).

Case 2. Suppose that s < �i− j�1/4. Let C∗∗∗
θu

be a constant such that (44)

is true for integers less than i� C∗∗∗
θu

≥ C†
θu

and e3θ−2u n1−nν
< 1 whenever
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n ≥ C∗∗∗
θu

. Using (38) and induction, we have

1
��i− j�!�1/4

(
e3n

θ2un
nν

)s(
1
n

)i−j−t
ai� j� r� s� t

= 1
��i− j�!�1/4

(
e3n

θ2un
nν

)s(
1
n

)i−j−t
ai−1� j� r−1� s−1� t−1

+ s

��i− j�!�1/4
(

e3n

θ2un
nν

)s(
1
n

)i−j−t
ai−1� j� r� s� t−1

+ 1
��i− j�!�1/4

(
e3n

θ2un
nν

)s(
1
n

)i−j−t
�r− s�ai−1� j� r� s� t

+ 1
��i− j�!�1/4

(
e3n

θ2un
nν

)s(
1
n

)i−j−t
�i− j− r�ai−1� j� r−1� s� t

≤ 1
��i− 1− j�!�1/4

(
e3n

θ2un
nν

)s−1(
1
n

)i−j−t
ai−1� j� r−1� s−1� t−1

+ 1
��i− 1− j�!�1/4

(
e3n

θ2un
nν

)s(
1
n

)i−j−t
ai−1� j� r� s� t−1

+ 1
��i− 1− j�!�1/4

(
e3n

θ2un
nν

)s(
1
n

)i−1−j−t
ai−1� j� r� s� t

+ 1
��i− 1− j�!�1/4

(
e3n

θ2un
nν

)s(
1
n

)i−1−j−t
ai−1� j� r−1� s� t

≤ 4�e34i−1−j�
θ2un

nν−1 ∀1 < i− j ≤ n− j�

whenever n ≥ C∗∗∗
θu

. The last inequality uses the induction hypothesis that
(44) is true for integers less than i. This proves Lemma 5. ✷
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