
The Annals of Statistics
2000, Vol. 28, No. 3, 871–879

STRONG CONSISTENCY IN NONLINEAR STOCHASTIC
REGRESSION MODELS

By K. Skouras

University College London

The class of nonlinear stochastic regression models includes most of
the linear and nonlinear models used in time series, stochastic control
and stochastic approximation schemes. The consistency of least squares
estimators was established first by Lai. We present another set of sufficient
conditions for consistency, which avoid the use of partial derivatives and
are closer in spirit to the conditions presented by Wu for non-stochastic
regression models with independent errors.

1. Introduction. Let ���� � ��t��P� be a filtered probability space and �
a compact subset of �p. We consider the general stochastic regression model:

Yt = ft�θ� + εt�(1.1)

where Yt ∈ � is �t-measurable, ft�θ� is a �t−1-measurable real function of
θ ∈ �, and �εt� is a martingale difference sequence, such that with probability
one

sup
t
Et�ε2t � <∞�(1.2)

where by Et�·� we denote the conditional expectation E�·	�t−1�.
The class of models described by (1.1) is very wide, and includes many linear

and nonlinear regression models commonly used. For example, the ft�θ�’s can
be linear or nonlinear functions of past observations Yt−1 
= �Y1�Y2� � � � �
Yt−1�, and any other covariates xt 
= �x1� x2� � � � � xt� such that xt is �t−1-
measurable. Important classes of models that can be described by (1.1) are
nonlinear time series models (with or without exogenous inputs), stochastic
control models, stochastic approximation schemes and sequential designs.

If by θ0 we denote the (unknown) true value of θ, i.e. Et�Yt� = ft�θ0� for
all t ≥ 1, then we may estimate θ0 using the least squares estimator, which
is defined as the parameter value θ̂T which minimizes the sum of squared
errors:

ST�θ� 
=
T∑
t=1

Yt − ft�θ��2�

Observe that ST�θ� is the cumulative predictive squared error loss, when one
is predicting the observations Yt using ft�θ�. The method of least squares
is based on the rationale that the sequence of true predictions ft�θ0�� is
expected to beat eventually any other sequence of predictions generated by the
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other false models, thus allowing us to identify eventually the true parameter
value θ0. Using this approach, we present in this paper a set of sufficient
conditions, on the functions ft�θ�, which guarantee the consistency of the
least squares estimator.

In contrast to the conditions of Lai (1994), ours do not assume differentiabil-
ity of ft�θ�, but only the weaker smoothness condition (3.10) below. However,
as our example 2 below shows, our conditions can be more restrictive in other
respects. In conclusion, no set of conditions is weaker than the other, and each
one can be useful in different situations.

The rest of the paper is organized as follows. In Section 2 we review the
existing sets of sufficient conditions for consistency of the least squares esti-
mator in nonlinear regression models, and in Section 3 we present our result
together with some examples. The proof can be found in Section 4.

2. Review of existing results. The strong consistency of the estimator
θ̂T for regression models is an important problem, especially for identifica-
tion and control, and has been studied extensively [see Anderson and Taylor
(1979), Christopeit and Helmes (1980), Wu (1981), Lai and Wei (1982), White
and Domowitz (1984), Gallant and White (1988), Lai (1994) and references
therein]. Hu (1996, 1997, 1998) has studied the consistency of Bayesian esti-
mators for linear and nonlinear stochastic regression models, but his results
for the general nonlinear model are confined to the case of independent er-
rors and discrete parameter sets. In order to avoid overwhelming the reader
with an extensive review of the sufficient conditions that different authors
have presented, we focus our presentation only on papers closely related to
model (1.1).

Lai and Wei (1982) have shown the consistency of least squares estimators,
under weak conditions, for linear stochastic regression models. The break-
through for the nonlinear case came from Lai (1994), who presented sufficient
conditions for consistency of least squares estimators for the model described
by (1.1) and (1.2). Lai’s conditions are the following:

Condition L1. For 1 ≤m ≤ p, let
J�m�p� = �j1� � � � � jm� 
 j1 < · · · < jm�ji ∈ 1� � � � � p� for 1 ≤ i ≤m��

and for j = �j1� � � � � jm� ∈ J�m�p�, let Djft 
= ∂mft/∂θj1 � � � θjm . Assume
that, for every t, ft�θ� has continuous partial derivatives Dj on �, for every
j ∈ J�m�p� and m = 1� � � � � p.

Condition L2. For every θ1� θ2 in � let

AT�θ1� θ2� 
=
T∑
t=1

ft�θ1� − ft�θ2��2�

For every λ �= θ0 there exists 1 < rλ < 2, and an open ball B�λ� centered at λ,
such that with probability one,

AT 
= inf
θ∈B�λ�

AT�θ0� θ� → ∞(2.3)
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and

max
1≤m≤p , j∈J�m�p�

T∑
t=1

∫
B�λ�j�

Djft�2dθj1 · · ·dθjm +AT�θ0� λ� = O
(
A
rλ
T

)
�(2.4)

where

B�λ� j� 
= �θj1� � � � � θjm� 
 �λ1� � � � � λj1−1� θj1� λj1+1� � � � �
λjm−1� θjm� λjm+1� � � � � λp� ∈ B�λ���

Remark 1. In Condition L2, equation (2.3), the stochastic quantity
AT�θ0� θ� is the accumulated one-step ahead squared predictive bias when
one is predicting Yt using ft�θ� instead of the optimum prediction ft�θ0�. In
that sense, AT (which depends on λ, although we omit this dependence from
the notation for simplicity) is a measure of the information available in the
data for separation of θ0 from the subset B�λ�. In order to be able to identify
θ0 with probability one, this information should tend to infinity, as is described
in equation (2.3). Condition L3, equation (2.4), describes the permitted rate
of growth for AT�θ0� λ� and for the integrated squared partial derivatives of
ft�θ�. See Remark 3 for a discussion of why such a condition is needed.

When the ft�θ� are non-stochastic continuous functions, and (εt) is a sequence
of independent identically distributed errors, Wu (1981) showed that consis-
tency can be established under the following conditions (using the same nota-
tion as in Lai’s conditions):

Condition W1. For every λ �= θ0 there exist an open ball B�λ� centered
at λ, such that for some M> 0 and 1 < rλ < 2:

AT = inf
θ∈B�λ�

AT�θ0� θ� → ∞�(2.5)

T∑
t=1

sup
θ∈B�λ�

ft�θ� − ft�θ0��2 = O
(
A
rλ
T

)
(2.6)

and, for all t,

sup
θ�θ′∈B�λ��θ �=θ′

	ft�θ� − ft�θ′�	
�θ− θ′� ≤M sup

θ∈B�λ�
	ft�θ� − ft�θ0�	�(2.7)

The two sets of conditions look similar, for example conditions (2.3) and (2.5)
are the same, but there is an important difference in the smoothness condition
that the two authors use. Lai uses partial derivatives, while Wu uses Condi-
tion (2.7) which allows him to use probabilistic results for Lipschitz continuous
functions. As Lai pointed out [Lai (1994), Section 2] this approach can not be
extended directly to the case where �εt� is a martingale difference sequence
and ft�θ� are �t−1-measurable and a stronger smoothness condition is needed.
He overcame this problem using Condition L2, which allows the embedding of
the functions ft�θ� in a suitably chosen Hilbert space, and therefore results
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for martingales taking values in Hilbert spaces can be used to establish con-
sistency. Our approach uses a modified version of the smoothness condition
(2.7), based on stochastic Lipschitz upper bounds.

3. Main result. We introduce the following condition:

Condition C1. For every λ �= θ0 there exists 1 < rλ < 2, and an open ball
B�λ� centered at λ, such that with probability one:

AT = inf
θ∈B�λ�

AT�θ0� θ� → ∞(3.8)

and
T∑
t=1

sup
θ∈B�λ�

ft�θ� − ft�θ0��2 = O
(
A
rλ
T

)
�(3.9)

Also, there is a sequence of �t−1-measurable positive variables Mt�λ� such
that for all θ1� θ2 in B�λ�

	ft�θ1� − ft�θ2�	 ≤ h��θ1 − θ2��Mt�λ��(3.10)

and with probability one,

1
AT

T∑
t=1
Mt�λ� = O�1��(3.11)

where h�·� is a non-random function such that h�y� ↓ h�0� = 0, as y ↓ 0.

Theorem 1. Assume that Condition C1 holds. Then, with probability one,
�θ̂T − θ0� → 0.

Remark 2. Equations (3.8) and (3.9) are the same as Wu’s conditions (2.5)
and (2.6), the only difference being that since ft�θ� are stochastic in our case,
these conditions should hold with probability one. Although we have managed
to keep most of Wu’s conditions, our approach is not a direct extension of his
method. Our condition described by equations (3.10) and (3.11) is a modifi-
cation (with random norming) of the Lipschitz-L1 condition used by Andrews
(1987) [see also Gallant and White (1988)]. Using this condition, together with
martingale arguments, we can establish a uniform law of large numbers (cf.
Lemma 1), which is the necessary tool for the proof of the main result.

Remark 3. Observe that in all sets of conditions discussed or presented
in this paper, there is one condition that asks that the information AT should
tend to infinity, and a smoothing condition that sets a restriction on the rate
of growth for some upper bound either on the partial derivatives [equation
(2.4)], or on the Lipschitz bound [equations (2.6), (2.7) and (3.9)–(3.11)]. These
two conditions serve two different aims in the proof. The first condition makes
sure that any two models in the family are “far” enough apart, in terms of
their predictive performance, so that when one of them is the true model one
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can identify it. The second condition makes sure that in small neighborhoods
all models are “close” enough, so that when all of them are wrong one can
establish that their predictive performances are uniformly inferior to that of
the true model.

Example 1. Let Y0 = 0, and �t = σ�Y0� � � � �Yt�. Consider the model

Yt =
{
α �θ−Yt−1� + εt θ ≥ Yt−1�
β �θ−Yt−1� + εt θ < Yt−1�

where α > β > 0 are known constants, � = �−R�R�, and �εt� is a martingale
difference sequence satisfying condition (1.2). Since for each t, ft�θ� has no
derivative at θ = Yt−1, Lai’s conditions cannot be used. The conditions cannot
be modified in a way that avoids the problem of nonexistence of the derivative
at a single point, because Yt−1 is stochastic and can take values anywhere
in �.

For every θ1 ≥ θ2 ∈ � we have

	ft�θ1�−ft�θ2�	 =


α �θ1 − θ2�� Yt−1 < θ2�
β �Yt−1 − θ2� + α �θ1 −Yt−1�� θ2 ≤ Yt−1 < θ1�
β �θ1 − θ2�� θ1 ≤ Yt−1�

(3.12)

We can now study if Condition C1 holds. Let λ �= θ0. We study only the case
λ > θ0, as the other case can be studied similarly. Let B�λ� = �λ1� λ2� such
that θ0 < λ1 < λ < λ2. Then, using equation (3.12), we can show that

inf
θ∈B�λ�

	ft�θ0� − ft�θ�	 ≥ β �λ1 − θ0�
and

sup
θ∈B�λ�

	ft�θ0� − ft�θ�	 ≤ �α+ β� �λ2 − θ0��

and therefore conditions (3.8) and (3.9) hold, with AT = T. Now, for every
θ1� θ2 in B�λ�,

	ft�θ1� − ft�θ2�	 ≤ �α+ β� 	θ1 − θ2	�
and it is easily shown that conditions (3.10) and (3.11) hold with h�	θ1−θ2	� =
	θ1−θ2	 andMt�λ� = �α+β�. Since Condition C1 holds, then the least squares
estimator is consistent.

Example 2. Consider the model Yt = exp �−θxt� + εt, where θ ∈ �α�β�,
with α > 0, and �xt� is a sequence of bounded positive regressors, such that
xt is �t−1-measurable, where �t−1 is the σ-algebra generated by �x1�Y1� � � � �
xt−1�Yt−1�. For every θ1� θ2 there exist constants c1� c2 > 0 so that

c1 	θ1 − θ2	xt ≤ 	 exp �−θ1 xt� − exp �−θ2 xt�	 ≤ c2 	θ1 − θ2	xt�(3.13)

and therefore for every open interval B�λ�, which does not include θ0, there
is a constant C > 0 such that

AT = inf
θ∈B�λ�

T∑
t=1

exp �−θxt� − exp �−θ0 xt��2 ≥ C
T∑
t=1
x2t(3.14)
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and

T∑
t=1

sup
θ∈B�λ�

exp �−θxt� − exp �−θ0 xt��2 = O
(
T∑
t=1
x2t

)
�(3.15)

Equations (3.13), (3.14) and (3.15) show that the least squares estimator is
consistent if

T∑
t=1
x2t → ∞ and

T∑
t=1
xt = O

(
T∑
t=1
x2t

)
�(3.16)

Lai’s conditions in this example boil down to the single condition
∑
x2t →

∞, which is weaker than (3.16) which excludes cases where 	xt	 → 0. From
examples 1 and 2, we see that no set of conditions is weaker than the other,
and each one can be useful in different cases.

Example 3. Consider the power curve model Yt = �t + θ�d + εt, where
d ≥ 1/2 is a known constant, and � = �α�β� ⊆ �. Wu (1981) considered
the same model, but with independent errors. For every B�λ� which does not
include θ0, it is easy to show that there exists a constant C > 0 such that

AT = inf
θ∈B�λ�

T∑
t=1

{
�t+ θ�d − �t+ θ0�d

}2
≥ C T2d−1�(3.17)

T∑
t=1

sup
θ∈B�λ�

{
�t+ θ�d − �t+ θ0�d

}2
= O�T2d−1�(3.18)

and also that there are constants c1 and c2 such that

	�t+ θ�d − �t+ θ0�d	 ≤ c1 	θ− θ0	 �t+ c2�d−1�(3.19)

The fact that

T∑
t=1

�t+ c2�d−1 = O�Td��

combined with equations (3.17), (3.18) and (3.19), implies that Condition C1
holds, and therefore the least squares estimator is consistent.

4. Proof. First we need to prove the following lemma:

Lemma 1. Assumption C1 implies that, with probability one,

1
AT

sup
θ∈B�λ�

∣∣∣ T∑
t=1
εt ft�θ� − ft�θ0��

∣∣∣→ 0�
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Proof. The technique we use is an extension, to martingale error differ-
ences, of the approach used by Andrews (1987). Let B�θ� ρ� 
= s ∈ B�λ� 

�θ − s� < ρ�, and lt�θ� 
= ft�θ� − ft�θ0��. Observe that for every θ ∈ B�λ�
and ρ > 0,

1
AT

T∑
t=1
Et

{
sup

s∈B�θ�ρ�
εtlt�s� − inf

s∈B�θ�ρ�
εtlt�s�

}

= 1
AT

T∑
t=1

[
Et

{
sup

s∈B�θ�ρ�
εtlt�s� − εtlt�λ�

}
+Et

{
εtlt�λ� − inf

s∈B�θ�ρ�
εtlt�s�

}]

≤ 2 h�ρ�
{
sup
t
Et�	εt	�

} {
1
AT

T∑
t=1
Mt�λ�

}
�

Since supt Et�ε2t � <∞, then supt Et�	εt	� <∞, which implies that with prob-
ability one,

lim
ρ→0

[
lim sup
T→∞

1
AT

T∑
t=1
Et

{
sup

s∈B�θ�ρ�
εtlt�s� − inf

s∈B�θ�ρ�
εtlt�s�

}]
→ 0�(4.20)

Let δ > 0. Using result (4.20) for every θ there exists an event F�θ�, with
PF�θ�� = 1, such that for all ω in F�θ� we can choose ρθ so that for all
T ≥ 1,

lim sup
T→∞

1
AT

T∑
t=1
Et

{
sup

s∈B�θ�ρθ�
εtlt�s� − inf

s∈B�θ�ρθ�
εtlt�s�

}
< δ�

The collection of balls B�θ� ρθ�� θ ∈ B�λ�� is an open cover of B�λ�, and
therefore, since B�λ� is bounded, there is a finite subcover B�θj� ρθj�� j =
1� � � � � J�. For ease of notation let Bj = B�θj� ρθj�.

If F0 = ⋂J
j=1F�θj�, then for all ω ∈ F0 and any θ ∈ B�λ�, we have (for T

sufficiently large),

1
AT

T∑
t=1
εtlt�θ� ≤ max

j

1
AT

T∑
t=1

[
sup
s∈Bj

εtlt�s� −Et
{
sup
s∈Bj

εtlt�s�
}]

+max
j

1
AT

T∑
t=1
Et

{
sup
s∈Bj

εtlt�s� − inf
s∈Bj

εtlt�s�
}

(4.21)

≤ max
j

1
AT

T∑
t=1

[
sup
s∈Bj

εtlt�s� −Et
{
sup
s∈Bj

εtlt�s�
}]

+ δ�

In the same way we can show that

1
AT

T∑
t=1
εtlt�θ� ≥ min

j

1
AT

T∑
t=1

[
inf
s∈Bj

εtlt�s� −Et
{
inf
s∈Bj

εtlt�s�
}]

− δ�(4.22)
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Let Vt�·� denote conditional variance given �t−1. For every j,

Vt

{
sup
s∈Bj

εtlt�s�
}
≤ Et

{
sup
s∈Bj

εtlt�s�
}2

≤ Et�ε2t �
{
sup
s∈Bj

l2t �s�
}
�

which implies, using the fact that supt Et�ε2t � < ∞ and (3.9), that with prob-
ability one,

T∑
t=1
Vt

{
sup
s∈Bj

εtlt�s�
}
= O

(
T∑
t=1

sup
s∈Bj

l2t �s�
)
= O�ArλT ��(4.23)

It is known [Lai and Wei (1982)] that for any r > 1/2,

T∑
t=1

[
sup
s∈Bj

εtlt�s� −Et
{
sup
s∈Bj

εtlt�s�
}]

= o
([

T∑
t=1
Vt

{
sup
s∈Bj

εtlt�s�
}]r)

�

which implies, using result (4.23), that

1
AT

T∑
t=1

[
sup
s∈Bj

εtlt�s� −Et
{
sup
s∈Bj

εtlt�s�
}]

→ 0�(4.24)

Using a similar method we can also show that for every j,

1
AT

T∑
t=1

[
inf
s∈Bj

εtlt�s� −Et
{
inf
s∈Bj

εtlt�s�
}]

→ 0�(4.25)

From equations (4.24) and (4.25) we deduce that the upper and lower limits
in (4.22) and (4.22) converge to +δ and -δ respectively. Since δ was arbitrary,
the result follows. ✷

Proof of Theorem 1. Let δ > 0. Since � is bounded, then the setBc�δ� 
=
θ ∈ � 
 �θ − θ0� > δ� can be covered by a finite number of balls B�λ� (with
radius ρλ), λ ∈ Bc�δ�, such that assumption C1 holds for each one of them.
Since there is a finite number of balls that cover Bc�δ�, it is sufficient, in order
to establish consistency of the least squares estimator θ̂T, to focus on one of
the balls Bλ, and to show that inf θ∈BλST�θ� −ST�θ0�� → ∞.

The least squares estimator θ̂T minimizes ST�θ�, and therefore it can equiv-
alently be defined as the parameter value which minimizes ST�θ� − ST�θ0�.
We define (for every θ in B�λ� and also θ0)

LT�θ� 
=
1
AT

ST�θ� −ST�θ0��

and

L∗
T�θ� 
=

1
AT

T∑
t=1
Et

[
Yt − ft�θ��2 − Yt − ft�θ0��2

]
�
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Observe that θ0 minimizes the function L∗�θ� and for every T and θ �= θ0,

L∗
T�θ� −L∗

T�θ0� = L∗
T�θ� =

1
AT

T∑
t=1

ft�θ� − ft�θ0��2 ≥ 1�

In order to show that inf θ∈BλST�θ� − ST�θ0�� → ∞, it is sufficient, since
AT → ∞, to show that with probability one,

sup
θ∈B�λ�

∣∣∣LT�θ� −L∗
T�θ�

∣∣∣ = o�1��
or equivalently that with probability one,

sup
θ∈B�λ�

1
AT

∣∣∣∣∣
T∑
t=1
εt ft�θ� − ft�θ0��

∣∣∣∣∣ = o�1��
The result follows from Lemma 1. ✷
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