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Suppose the X0� � � � �Xn are observations of a one-dimensional
stochastic dynamic process described by autoregression equations when
the autoregressive parameter is drifted with time, i.e. it is some function
of time: θ0� � � � � θn, with θk = θ�k/n�. The function θ�t� is assumed to belong
a priori to a predetermined nonparametric class of functions satisfying the
Lipschitz smoothness condition. At each time point t those observations are
accessible which have been obtained during the preceding time interval.
A recursive algorithm is proposed to estimate θ�t�. Under some conditions
on the model, we derive the rate of convergence of the proposed estimator
when the frequency of observations n tends to infinity.

1. Introduction. Consider an autoregression model with a drifted pa-
rameter

Xk+1 = θkXk + ξk+1 � X0 = 0 � k = 0�1� � � � � n �(1)

where θk = θk�n = θ�k/n� for some function θ�t� and �ξk�nk=1 is a sequence of
random variables satisfying the following conditions:

(A1) the sequence �ξk�nk=1 is uniformly bounded: sup1≤k≤n �ξk� ≤ M almost
surely;

(A2) there exists some positive σξ such that inf 1≤k≤n Eξ
2
k ≥ σ2

ξ > 0;

(A3) �ξk�nk=1 is a martingale difference sequence with respect to an increas-
ing sequence of σ-fields ��k�nk=0 (�0 ⊆ �1 ⊆ · · · ⊆ �n), that is, ξk is
measurable with respect to �k, k = 1� � � � � n and

E
{
ξk��k−1

} = 0 � k = 1� � � � � n+ 1 �

For example, the case when �ξk�nk=1 are independent identically distributed
random variables such that Eξ1 = 0 and �ξ1� ≤ M almost surely fits in this
framework. Here �k = σ�ξ1� � � � � ξk�, k = 1� � � � � n, is the σ-field generated by
the random variables ξ1� � � � � ξk and �0 = �
��� is the trivial σ-field.

The unknown function θ�t� is assumed to belong to the class � = ��q�L�
for some q, 0 < q < 1,

��q�L� = �θ�·� � sup
t∈�0�1�

�θ�t�� ≤ q� �θ�t1� − θ�t2�� ≤ L�t1 − t2�� t1� t2 ∈ �0�1�� �
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Note that the process (1) is stable due to the condition q < 1 [see Brockwell
and Davis (1991)].

We will interpret the argument t as time and call θ�t� a nonparametric
signal. We focus on the problem of estimating a signal value θ�t� at a fixed
time point t, t ∈ �0�1�. Without loss of generality we take �0�1� to be the
time interval under consideration. The estimation problem on any finite time
interval can be reduced to this case with some minor adjustments (infinite
intervals can be treated as well).

An estimator θ̂�t� = θ̂n�t� = θ̂n�t�X1� � � � �Xn� of the signal value θ�t� is a
measurable function of the observations. It is assumed that observations (1)
appear successively so that at a fixed moment t ∈ �0�1� only those observations
Xk are accessible which have been obtained during the preceding time interval
k/n ≤ t. So, at a fixed time point t we consider only those estimators which
are based on the observations X0�X1� � � � �Xk accessible at time point t, i.e.
k/n ≤ t. Without loss of generality one can assume that �k = σ�ξ1� � � � � ξk�,
k = 1� � � � � n, is the σ-field generated by the random variables ξ1� � � � � ξk and
�0 = �
���.

The integer parameter n is the frequency of observations, i.e. the number of
observations per time unit. The estimation problem is studied in an asymptotic
setup as this parameter tends to infinity. In fact we study the sequence of
models:

Xk+1�n = θk�nXk�n + ξk+1�n � X0�n = 0 � k = 0�1� � � � � n � n = 1�2� � � � �

To avoid typographical excess, it is convenient to omit n in subscripts: for
example, θk = θk�n, Xk = Xk�n etc. Sometimes we supply the probability
and expectation signs with subscript θ, Pθ and Eθ, to emphasize that the
corresponding measure depends on θ.

The classical problem of estimating the constant parameter of an autore-
gression, that is, θk = θ, has been treated by a number of authors. The least
squares estimator proved to be

√
n-consistent in the stable case. The properties

of this estimator and its various modifications have been thoroughly studied
[see, e. g., Brockwell and Davis (1991), Dmitrienko et al. (1997) and further
references therein]. Poznyak (1979), Verulava (1981), Leonov (1988) consid-
ered the almost sure convergence of stochastic approximation algorithms in
the problem of estimating an autoregressive parameter. The literature on re-
cursive estimation is quite extensive; see Nevelson and Hasminskii (1973),
Ljung (1977), Ljung and Söderström (1983), Ljung (1987), Kushner and
Yin (1997) and further references therein. Dahlhaus (1997) elaborated on as-
pects of parametric inference for a rather general class of time series models
that have an evolutionary spectral representation. This class contains the au-
toregressive model (1) as a special case, with function θ known up to a finite
dimensional parameter.

When the autoregressive parameter is regarded as expressing some in-
ternal relationship of the dynamical process under study, it is natural to
consider the case when the parameter itself varies with time [cf. also with
Dahlhaus (1997)], that is, it is a function of time. In this paper we pursue
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the nonparametric formulation of the estimation problem: this function is as-
sumed to satisfy a smoothness condition rather than to belong to some para-
metric family. Since the parameter of autoregression varies with time in the
observation model considered, one should not expect the same accuracy of
estimation as in case of a constant parameter. The smoothness condition on
the function describing the drift of the autoregressive parameter enables us
to propose a consistent estimator and specify its rate of convergence which
turns out to be n1/3/ log n. The proposed estimator is based on a stochastic
approximation procedure and has a recursive form, which makes it easy to
compute.

2. A recursive estimator. The following recursive algorithm gives an
estimator for the values of the signal θk = θ�k/n�, k = 1� � � � � n:

θ̂k+1 = θ̂k + γnXk�Xk+1 − θ̂kXk� � k = 0�1� � � � � n− 1 �(2)

with the initial condition θ̂0 = 0 and γn = n−2/3 log n.
The estimator θ̂k = θ̂k�n can not be consistent for all signal values θ�k/n�,

k ≥ 0, since the true initial value θ�0� is unknown. Nevertheless, this esti-
mator is consistent beginning with a certain moment. Moreover, the rate of
convergence of the risk of this estimator is described by the following theorem.

Theorem 1. Let Jn = �i ∈ � � 2σ−2
ξ n

2/3 ≤ i ≤ n�, where σξ appears in
Condition (A2). Then, for any fixed α > 0, any sequence �kn� such that kn ∈ Jn
and any θ�·� ∈ �,

lim
n→∞

n1/3

�log n�3/2+α �θ̂kn − θkn � = 0 almost surely �(3)

Moreover, for some positive constant A, the relation

lim
n→∞max

k∈Jn

n2/3

�log n�2Eθ
(
θ̂k − θk

)2 ≤ A(4)

holds uniformly in θ�·� ∈ �.

Notice that, for any 0 < ε < 1, �k ∈ � � ε ≤ k/n ≤ 1� ⊂ Jn for sufficiently
large n.

Let θ̂�t� = θ̂n�t� be a piecewise constant continuation of θ̂k = θ̂�k/n�, k =
0�1� � � � � n, that is, θ̂�t� = θ̂i for i/n ≤ t < �i + 1�/n, i = 0�1� � � � � n − 1 and
θ̂�1� = θ̂n. The following corollary follows immediately from Theorem 1 and
the Lipschitz condition on functions from the class �.

Corollary 1. Let Tn = �t � 2σ−2
ξ n

−1/3 ≤ t ≤ 1�. Then, for any fixed α > 0,
t ∈ �0�1� and θ�·� ∈ �,

lim
n→∞

n1/3

�log n�3/2+α �θ̂�t� − θ�t�� = 0 almost surely �
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Moreover, for some positive constant A, the relation

lim
n→∞max

t∈Tn

n2/3

�log n�2Eθ
(
θ̂�t� − θ�t�)2 ≤ A

holds uniformly in θ�·� ∈ �.

Remark 1. The estimator (2) is in fact a particular one from the class of
recursive estimators proposed by Poznyak (1979) [cf. also Verulava (1981) and
Leonov (1988)] for the case of constant autoregressive parameter, with the
difference that the sequence γn is specified. This estimator may be thought
of as a recursive version of the least squares estimator. Indeed, θ̂k+1 = θ̂k −
αn∇Jk�θ̂k�, k = 0�1� � � � � n − 1, where ∇Jk�u� = ∂�Xk+1 − uXk�2/∂u and
αn = γn/2.

Remark 2. As is evident from the proof, we have in fact established a
slightly stronger result instead of (3): for any fixed α� ε > 0 and any sequence
�kn� such that kn ∈ Jn,

∞∑
n=1
Pθ

{
n1/3�log n�−�3/2+α��θ̂kn − θkn � > ε

}
<∞

uniformly in θ�·� ∈ �. One can make the corresponding assertion from Corol-
lary 1 slightly stronger as well: for any fixed α� ε > 0 and t ∈ �0�1�,

∞∑
n=1
Pθ

{
n1/3�log n�−�3/2+α��θ̂�t� − θ�t�� > ε

}
<∞

uniformly in θ�·� ∈ �.

Remark 3. Analyzing the proof of the theorem, one can see that the choice
γn = n−2/3 log n comes essentially from the balancing the terms in the upper
bound for the risk of the estimator and the size of the set Jn. Note also that
taking γn = Cn−2/3 log n leads to Jn = �i ∈ � � 2σ−2

ξ C
−1n2/3 ≤ i ≤ n�. So,

we can enlarge the set Jn by taking a bigger constant C, but the constant A
becomes then bigger too.

Remark 4. As an Associate Editor pointed out, in practice the choice of the
step size γ should depend only on characteristics of the process. This raises
the problem of adaptation of the recursive procedure to the local properties
of the underlying signal θ, for example by choosing the step size γ from the
data alone. This is particularly important when the signal function is not
homogeneously smooth. We give here some heuristic arguments. Assuming
that the signal function θ is differentiable (denote by θ′k the derivative of θ
at k/n) and analyzing the proofs of Lemma 3 and the theorem (neglecting for
the moment the log factor), one can see that the optimal γ at the kth step
is proportional to ��θ′k�/n�2/3 ≈ �θk − θk−1�2/3, explaining why the optimal γ
only depends on the characteristics of the process and not on the choice of n.
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One may now insert some estimator of �θk − θk−1�2/3 to get a fully adaptive
procedure.

Remark 5. It is easy to see thatE
{
θ̂k+1

∣∣X0�X1� � � � �Xk
} = θ̂k+γnX2

k�θk−
θ̂k�. In a way, this expresses the requirement for the algorithm (2) to update
the estimator θ̂k correctly in the sense of shifting the estimator in the right
direction.

Remark 6. Interestingly, although the requirement (A2) comes from the
proof, an informal interpretation of this can be as follows: Xi should be
“bounded away from zero” (recall that EXi = 0) so that the magnitude of
the step in the algorithm (2) is not too small.

Remark 7. Since we know that �θk� < 1, k = 0�1� � � � � n, one can use a
truncated version of the estimator: θ̂tk = �θ̂k�1−1 = max

{− 1�min�θ̂k�1�
}
� k =

0�1� � � � � n. The estimator θ̂t = �θ̂t0� θ̂t1� � � � � θ̂tn� is certainly not worse than the
estimator θ̂.

Remark 8. Since the unknown signal θ�t� satisfies the Lipschitz condition,
it is natural to take a continuous continuation of θ̂k = θ̂�k/n�, k = 0�1� � � � � n.
Obviously, the corollary is also true for piecewise linear continuation

θ̂�t� = �i+ 1�θ̂i − iθ̂i+1 + n�θ̂i+1 − θ̂i�t for i/n ≤ t < �i+ 1�/n �

i = 0�1� � � � � n− 1 and θ̂�1� = θ̂n�

3. Proof of the theorem. The idea of the proof is as follows. First, by
backward recursion we bound from above the absolute value of the difference
between the estimator θ̂k and the function value θk = θ�k/n� by a sum of two
terms which we call the “stable term” and the “martingale term.” The deeper
the backward recursion level is, the smaller the first and the bigger the second
term is. Similar to the bias-variance trade-off, we choose the level of recursion
and the step size γn by balancing the terms against each other.

To start, we define the difference between the estimator and the signal
value

Yk = θ̂k − θk � k = 0�1� � � � � n�

Further, introduce the notation

Qk = γnXkξk+1 + θk − θk+1� k = 0�1� � � � � n�

and establish the following conventions throughout this paper:
m∑

i=m+1
bi = 0 �

m∏
i=m+1

bi = 1 for any sequence �bi��(5)

The proof of the theorem is based on several lemmas below. The first lemma
gives an upper bound for the absolute value of the difference Yk by a sum of
the above mentioned stable and martingale terms.
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Lemma 1. For any integers k and k0 such that 0 ≤ k0 ≤ k ≤ n − 1, the
inequality

�Yk+1� ≤ �Yk0 �
k∏
i=k0

�1− γnX2
i � + 2 max

k0≤i≤k

∣∣∣∣
i∑
l=k0
Ql

∣∣∣∣
is true for sufficiently large n, uniformly in θ�·� ∈ �.

Proof. First notice that

Xk+1 =
k+1∑
i=1
ξi

k∏
j=i
θj � k = 1� � � � � n �

From this and the conditions on the sequence �ξk�nk=1, it follows that

EθX
2
k+1 ≤

M2q2

1− q2 and �Xk� ≤
Mq

1− q � k = 0�1� � � � � n �(6)

almost surely.
According to (1) and (2), we have the following representation:

Yk+1 = θ̂k + γnXk�Xk+1 − θ̂kXk� − θk+1
= Yk�1− γnX2

k� + γnXkξk+1 + θk − θk+1 = Yk�1− γnX2
k� +Qk �

Iterating in the last relation gives

Yk+1 = Yk0
k∏
i=k0

�1− γnX2
i � +

k∑
i=k0
Qi

k∏
j=i+1

�1− γnX2
j� �

Using Abel’s transformation for series, we have

k∑
i=k0
Qi

k∏
j=i+1

�1− γnX2
j�

=
k∑
i=k0
Qi −

k−1∑
i=k0

i∑
j=k0

Qj

(
k∏

l=i+2
�1− γnX2

l � −
k∏

l=i+1
�1− γnX2

l �
)

(7)

=
k∑
i=k0
Qi −

k−1∑
i=k0

i∑
j=k0

QjγnX
2
i+1

k∏
l=i+2

�1− γnX2
l � �

Now recall that �Xk�, k = 0�1� � � � � n, are all bounded by the same constant
Mq�1−q�−1 almost surely. Let n be sufficiently large, so that γnX

2
l ≤ 1 for all

l = 0�1� � � � � n. One can take for example n ≥N0, with N0 = max�M6q6/�1−
q�6�m0�, m0 = min�m � j1/3 ≥ log j for all j ≥ m�. Thus, from the last two
relations we obtain that for n ≥N0

�Yk+1� ≤ �Yk0 �
k∏
i=k0

�1− γnX2
i �
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+ max
k0≤i≤k

∣∣∣∣
i∑
l=k0
Ql

∣∣∣∣
(
1+

k−1∑
i=k0
γnX

2
i+1

k∏
l=i+2

�1− γnX2
l �
)
�

Notice that the relation (7) holds for any sequence �Qi�. So, taking in partic-
ular Qk0 = 1 and Qi = 0 for i > k0, we derive the following relation:

k−1∑
i=k0
γnX

2
i+1

k∏
l=i+2

�1− γnX2
l � = 1−

k∏
j=k0+1

�1− γnX2
j� ≤ 1

for sufficiently large n (for example n ≥N0). Therefore, by combining the last
two relations we obtain the assertion of the lemma. ✷

In the second lemma the expectation of the stable term is essentially eval-
uated.

Lemma 2. Let k and k0 be any integers such that 0 ≤ k0 ≤ k ≤ n. Then,
for sufficiently large n,

Eθ

k∏
i=k0

�1− γnX2
i �2 ≤ �1− γnσ2

ξ �k−k0 and Eθ

k∏
i=k0

�1− γnX2
i � ≤ �1− γnσ2

ξ �k−k0

uniformly in θ�·� ∈ �.

Proof. Recall that, according to (A3), �ξk�nk=1 is a martingale difference
with respect to ��k�nk=0 and, according to (6), �Xk� ≤ Mq�1 − q�−1, k =
0�1� � � � � n, almost surely. Let n be sufficiently large, so that

γnσ
2
ξ ≤ 1 � γnX

2
k ≤ σ2

ξ � γnX
4
k ≤ σ2

ξ � k = 0�1 � � � � n �

almost surely. Since, by (A2), for any m = 1� � � � � n,

E
{�1− γnX2

m�2
∣∣�m−1

} = E{1− 2γnX
2
m + γ2nX4

m

∣∣�m−1
}

≤ 1− 2γn�σ2
ξ + θ2m−1X

2
m−1� + γnσ2

ξ ≤ 1− γnσ2
ξ

and similarly

E
{�1− γnX2

m�
∣∣�m−1

} ≤ 1− γnσ2
ξ

uniformly in θ�·� ∈ �, we have that

E
k∏
i=k0

�1− γnX2
i �2 = EE

{
k∏
i=k0

�1− γnX2
i �2

∣∣∣∣�k−1
}

= E
{
E
[�1− γnX2

k�2
∣∣�k−1] k−1∏

i=k0
�1− γnX2

i �2
}

≤ �1− γnσ2
ξ �E

k−1∏
i=k0

�1− γnX2
i �2
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and analogously

E
k∏
i=k0

�1− γnX2
i � ≤ �1− γnσ2

ξ �E
k−1∏
i=k0

�1− γnX2
i �

uniformly in θ�·� ∈ �. By iterating these relations, we obtain that

E
k∏
i=k0

�1− γnX2
i �2 ≤ �1− γnσ2

ξ �k−k0E�1− γnX2
k0
�2 ≤ �1− γnσ2

ξ �k−k0 �

E
k∏
i=k0

�1− γnX2
i � ≤ �1− γnσ2

ξ �k−k0

for sufficiently large n and uniformly in θ�·� ∈ �. The lemma is proved. ✷

The next lemma provides an upper bound for the expectation of the mar-
tingale term.

Lemma 3. Let k and k0 be any integers such that 0 ≤ k0 ≤ k ≤ n. Then,
for some positive constants B1 and B2,

Eθ max
k0≤i≤k

{
i∑
l=k0
Ql

}2

≤ B1γ
2
n�k− k0� +B2�k− k0�2n−2

uniformly in θ�·� ∈ �.

Proof. Obviously

E max
k0≤i≤k

{
i∑
l=k0
Ql

}2

≤ 2γ2nE max
k0≤i≤k

{
i∑
l=k0
Xkξk+1

}2

+ 2 max
k0≤i≤k

�θi − θk0�2�(8)

Recall that the function θ�t� satisfies the Lipschitz smoothness condition.
Therefore,

max
k0≤i≤k

�θi − θk0�2 ≤ max
k0≤i≤k

L2�i− k0�2n−2 = L2�k− k0�2n−2(9)

uniformly in θ�·� ∈ �.
It remains to evaluate the first term in the right-hand side of (8). Notice

that the sequence
{
Xlξl+1

}n
l=1 is a martingale difference relative to the nested

sequence ��l�nl=1. Indeed, by (6), E�Xlξl+1� ≤ σ2
ξq�1− q2�−1/2 and

E
(
Xlξl+1

∣∣�l) =XlE (ξl+1 ∣∣�l) = 0 � l = 1� � � � � n �

Therefore
{∑i

l=k0Xlξl+1
}k
i=k0 is a martingale. By applying Doob’s maximal

inequality for martingales, we get that

E max
k0≤i≤k

{ i∑
l=k0
Xlξl+1

}2
≤ 4E

{ k∑
l=k0
Xlξl+1

}2
≤ B3�k− k0�
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uniformly in θ�·� ∈ �. The last inequality is due to the martingale difference
property: E

{
Xlξl+1Xmξm+1

} = 0 if l �= m. Combining the last relation with
(8) and (9) completes the proof of the lemma. ✷

Now we proceed to prove the theorem. First notice that, according to (2),

θ̂k =
k−1∑
i=1
γnXiXi+1

k−1∏
j=i+1

�1− γnX2
j� �

Since �Xi�ni=0 are uniformly bounded, �θ̂k� ≤ C1nγn = C1n
1/3 for some posi-

tive constant C1 and sufficiently large n. Consequently, we have the following
preliminary uniform rough estimate:

�Ym� ≤ C1n
1/3 + q ≤ C2n

1/3 � m = 0�1� � � � � n �(10)

for sufficiently large n.
Fix k0, 0 ≤ k0 ≤ n− 1. Then the last relation and Lemma 1 imply that, for

0 ≤ k0 < k ≤ n and sufficiently large n,

�Yk+1� ≤ C2n
1/3

k∏
i=k0

�1− γnX2
i � + 2 max

k0≤i≤k

∣∣∣∣
i∑
l=k0
Ql

∣∣∣∣(11)

uniformly in θ�·� ∈ �.
Choose the level of backward recursion k0 as follows: k0 = k0�k� = ⌈

k −
2σ−2
ξ γ

−1
n log n

⌉
, where �b� denotes the smallest whole number which is equal

to or greater than b. So,

2σ−2
ξ γ

−1
n log n− 1 ≤ k− k0 ≤ 2σ−2

ξ γ
−1
n log n

and therefore k0�k�’s are properly defined for those k’s which satisfy

k+ 1 ∈ �i ∈ � � 2σ−2
ξ γ

−1
n log n ≤ i ≤ n� = Jn

(and also for k = n). Now it is easy to derive the following bound:

�1− γnσ2
ξ �k−k0 ≤ C3�1− γnσ2

ξ �2σ
−2
ξ γ

−1
n log n ≤ C4e

−2 log n = C4n
−2(12)

for sufficiently large n and uniformly over k such that k+ 1 ∈ Jn.
Denote for brevity φn = n1/3/�log n�3/2+α. Since k− k0 ≤ 2σ−2

ξ γ
−1
n log n and

max
k0≤i≤k

∣∣∣∣∣
i∑
l=k0
Ql

∣∣∣∣∣ ≤ γn max
k0≤i≤k

∣∣∣∣∣
i∑
l=k0
Xlξl+1

∣∣∣∣∣+ max
k0≤i≤k

�θi − θk0 � �

from (11) it follows that, for sufficiently large n and any k such that k+1 ∈ Jn,

P �φn�Yk+1� > ε� ≤ P
{
C2φnn

1/3
k∏
i=k0

�1− γnX2
i � > ε/3

}

+P
{
2φnγn max

k0≤i≤k

∣∣∣∣∣
i∑
l=k0
Xlξl+1

∣∣∣∣∣ > ε/3
}
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+P
{
2φn max

k0≤i≤k
�θi − θk0 � > ε/3

}
�

Now use Markov’s inequality, Lemma 2 and (12) to bound from above the first
term in the right hand side of the last inequality by

3ε−1C2φnn
1/3E

k∏
i=k0

�1− γnX2
i � ≤

3C2n
2/3�1− γnσ2

ξ �k−k0
ε�log n�3/2+α ≤ C5

n4/3�log n�3/2+α

for sufficiently large n, uniformly in θ�·� ∈ � and over k such that k+ 1 ∈ Jn.
The third term is zero for n large enough, uniformly in θ�·� ∈ � and over k
such that k+ 1 ∈ Jn, because

φn max
k0≤i≤k

�θi − θk0 � ≤
L�k− k0�n1/3
n�log n�3/2+α ≤ C6

�log n�3/2+α �

To evaluate the second term, we apply the Azuma-Hoeffding inequality [see,
e.g., Williams (1991); the inequality can also be derived from a general re-
sult in de la Peña and Giné (1999)] for a martingale �Ml�ml=1 whose incre-
ments dl = Ml −Ml−1 (with M0 = 0) are bounded in absolute value by
cl: P�sup1≤l≤mMl ≥ x� ≤ exp�−x2/�2∑ml=1 c2l ��. As we already know from

the proof of Lemma 3,
{∑i

l=k0Xlξl+1
}k
i=k0 is a martingale with bounded in-

crements �Xlξl+1� ≤ M2q/�1 − q� = B. So, applying the Azuma-Hoeffding
inequality gives

P

{
2φnγn max

k0≤i≤k

∣∣∣∣∣
i∑
l=k0
Xlξl+1

∣∣∣∣∣ > ε/3
}
≤ 2 exp

{
−ε

2n2/3�log n�1+2α
72B2�k− k0�

}

≤ 2 exp
{−C7�log n�1+2α

} ≤ C8n
−2

uniformly in θ�·� ∈ � and over k such that k+1 ∈ Jn. Since the above estimates
for the all three terms are uniform in θ�·� ∈ � and over k such that k+1 ∈ Jn
(i.e., the constants C5, C6 and C8 do not depend on k), we conclude that, for
any sequence �kn� such that kn ∈ Jn,

∞∑
n=1
P�φn�Ykn � > ε� <∞

uniformly in θ�·� ∈ �. The relation (3) follows by the Borel-Cantelli lemma.
As γn = n−2/3 log n and k−k0 ≤ 2σ−2

ξ γ
−1
n log n, using (11), Lemmas 2 and 3

yield that, for sufficiently large n and uniformly over k such that k+ 1 ∈ Jn,
EY2

k+1 ≤ 2C2
2n

2/3�1− γnσ2
ξ �k−k0 +C9

[
γ2n�k− k0� + �k− k0�2n−2

]
≤ C10n

2/3n−2 +C11�log n�2n−2/3

uniformly in θ�·� ∈ �, which establishes (4). The proof of the theorem is com-
plete. ✷
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