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We suggest a sequential, or “tracking,” algorithm for estimating a
smooth fault line in a response surface. The method starts with an approx-
imation to a point on the line, and from there the line is tracked as it mean-
ders through the plane. The technique differs from recent approaches in
that it does not require a large part of the plane to be searched for evidence
of a fault line. This offers potential computational savings, and produces a
method that is invariant under rotations of coordinate axes (except insofar
as a rotation might affect the estimated starting point, and the relative
orientation of the grid on which calculations are done). That feature is
important if design points are not located on a regular grid. We investi-
gate properties of the method under very general conditions on the design,
allowing Poisson cluster processes, jiggled grid processes and determinis-
tic, regular lattices. Uniform rates of convergence are derived in all these
settings, for the case of noisy data, and shown to be within logarithmic
factors of optimal pointwise convergence rates in the no-noise setting.

1. Introduction. The topic of estimating a fault line in a regression prob-
lem with bivariate design has received considerable recent attention. For
example, in the context of square lattices a maximum-likelihood approach
has been adopted by Rudemo and Stryhn (1994), a pointwise procedure has
been suggested by Qiu and Yandell (1997), and a multistage method has
been proposed by Qiu (1998). Special features of the case where design vari-
ables are on a regular lattice have been addressed by Hall and Raimondo
(1997a, b, 1998).

Recently introduced techniques, such as those of Qiu and Yandell (1997) and
Qiu (1998), involve computing diagnostics in places that can be some distance
from the fault line and then combining the conclusions of different diagnostic
analyses so as to produce an estimator. In the present paper we develop an
alternative, “tracking” method. It is designed to follow, or track, a fault line
once the algorithm has been given a point that lies near the line. With high
probability the new method produces an estimator which never strays far from
the fault line.

An advantage of this approach, apart from potential savings in computation,
is that it is able to follow a wiggly fault line as it meanders almost arbitrar-
ily across the plane. Methods that first make a global assessment of poten-
tial fault lines in the data, and then try to piece this information together
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to produce a single curve, can become confused when a fault line doubles back
towards itself. Moreover, some contemporary methods are applicable only to
square-lattice designs, and would require major modification if they were to
be used for irregularly distributed designs. Additionally, methods or theoret-
ical arguments that require a fault line to admit a functional equation, for
example of the form y = g(x), have to be applied in a piece-by-piece way in
regions where the equation would be multiple valued. In addition to not suf-
fering from these problems, a tracking approach produces results that, modulo
choice of starting point and of the grid on which computations are done, are
independent of choice of coordinate axis. This is particularly relevant when
the design points are not on a lattice. A case in point is estimation of ben-
thic impacts (e.g., sediment particle sizes, concentrations of hydrocarbons and
selected metals and biological information) from undersea drill cuttings. The
drill sites are not located at vertices of a regular lattice, and concentrations,
etc. can exhibit fault lines due to sharp changes in geological features on the
ocean floor.

In addition to introducing and trying out a tracking method and describing
its properties, one of our aims in this paper is to bring out differences between
rates of approximation that are obtainable for different types of point pro-
cesses. Hall and Raimondo (1997a) showed that, even for a problem as simple
as estimating a straight-line fault across a square lattice, and even when there
is no noise and the image is only black and white, the rate of approximation
depends intimately on the nature of the line. If its slope is rational relative
to the lattice axes, if we observe the line within a fixed region of the plane
and if the lattice in that region contains roughly » points per unit area, then,
unless the line actually passes through one or more lattice points, the optimal
rate at which its location can be estimated is O(v~/?) as v — oco. However, if
the line has irrational gradient then, depending on the “type” of the irrational
number (e.g., whether it is a quadratic irrational), the line can be estimated
with error as low as O(v71).

The latter rates are similar to those obtained for a straight-line fault when
design points come from a Poisson process with intensity v. However, for
both lattice designs and Poisson-distributed designs the optimal rate is slower
when the fault line is curved. For example, minimax-optimal rates in the case
of Poisson-distributed points, when there is no noise and the fault line has
bounded curvature, are known to be O(v~2/3), with a logarithmic factor in
the case of uniform rates; see Korostelev and Tsybakov (1993), particularly
Section 5.3 and Theorem 5.3.3, and Mammen and Tsybakov (1995).

As Mammen and Tsybakov note, the estimators that have been shown to
achieve these rates are not really practical, for a variety of reasons. In the
case of noisy data the tracking-type estimators proposed in the present paper
are at once practicable and able to achieve optimal rates up to at most a log-
arithmic factor. The problem of fault-line estimation is closely related to that
of edge detection in image analysis [e.g., Marr and Hildreth (1980), Huertas
and Medioni (1986)]. The connection between techniques for image analysis
and statistical methods based on smoothing has been drawn by, for example,
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Titterington (1985a, b) and Cressie [(1993), pages 528—-530]. Fault-line estima-
tion has links to boundary-estimation problems in other contexts, for example,
in econometrics [e.g., Seiford (1996), Kneip, Park and Simar (1998), Gijbels,
Mammen, Park and Simar (1999)]. There is also a strong connection to change-
point analysis; see, for example, Miiller (1992), Eubank and Speckman (1994)
and Miller and Song (1994).

Section 2 describes our tracking method and illustrates its implementation.
Theoretical properties are presented in Section 3, with technical arguments
deferred to Section 4.

2. Methodology and numerical implementation. Let ¢ denote a
smooth, contiguous, rectifiable curve in the plane, of length / > 0 and not
intersecting itself. (However, we allow the possibility that the curve is closed.)
Suppose the locus of points on ¢ is determined by the functions (x(s), y(s)),
where s denotes the distance along ¢ from a point @ at one end of the curve;
and assume that x(-) and y(-) are smooth. No matter whether ¢ is open or
closed we can distinguish left- and right-hand sides of ¢, with parity deter-
mined by tracing ¢ in the direction of increasing s. By convention, neither the
left nor the right side of ¢ includes any part of ¢ itself.

Consider a response surface with formula z = f(x, y), where x, y, z are
scalars and the function f is smooth except for a fault line of which ¢ is at
least a part. We observe noisy values of the response surface, generated by
the model

Z,=f(X;,Y;)+ e,

where the sequence of pairs (X, Y ;) represents a realization of a point process
in the plane, and conditional on these points, the errors ¢; are independent
and have zero mean. We employ these data to construct a tracking estimator
£ of ¢ , as follows.

Assume we have a st/ailrting point @ and a starting estimate 6 of the orien-
tation of the curve at @. It may be supposed that all potential estimates of
points on ¢ are confined to a square grid ¢, and likewise that estimates of the
orientation of ¢ are restricted to a discrete grid &’. (If the process of points
(X,;,Y;) was on a lattice then generally 4 would be much finer than this.)
Suppose we have constructed £ as far as a point P with coordinates (x, y),
where our estimate of the tangent to ¢, in the direction of travel along ¢, is
a unit vector . We show how to construct the next point, P’ say, with coordi-
nates (&, ) and tangent estimate in the direction of another unit vector, 6.

Let (&, m, 0) denote the line through P’ in the direction of the unit vector
0, and let g(u, v|é, n, a, b, 0) be the function that equals a (respectively, b)
to the left (right) of %(¢, n, 6). Let || denote the Euclidean norm, let ZEO)
denote summation over all pairs (X;, Y;), let K be a smooth, nonnegative,
univariate kernel function, and let 2~ > 0 be a bandwidth. Choose (£, 7, 0)
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to minimize
(0)
S(f’ , 0)2 lnf Z{Zz _g(Xi’Yi|§: n’a’b’ 9)}2
(21) —oo<a, b<oo ;
x K{ll(x, y) — (X3, Y)|/R},

among those four or five of the eight grid neighbors (£, ) of (x, y) which
are such that the unit vector in the direction of the line from (x, y) to (£, n)
has a nonnegative dot-product with w. Choose the sign of the associated unit
vector 6 so that w - 6 > 0, and further limit the choice of 6 to those points in
&' that are contained in the arc centered at o that is O(h°) radians wide, for
some ¢ > 0.

Our results and their proofs may be generalized to the case of arbitrarily
fine grids ¢, ', and even to the continuum. The method discussed theoret-
ically in Section 4 is simplified so that technical arguments are relatively
transparent, and so that the number of steps needed to traverse the curve is
reasonably small without hindering accuracy. Therefore it is applied to rela-
tively coarse grids &, &’; finer grids produce methods that are closer to being
truly rotationally invariant.

High-order methods, for example based on capturing curvature as well as
slope in local approximations to ¢, are also feasible. They require more com-
plex local approximations to the response surface, however, if full benefit is to
be gained in terms of convergence rates. For example, if we model curvature
of ¢ then we should also model the tangent planes to the response surface
on either side of ¢, as well as the surface heights. This means that, overall,
eight (rather than three) parameters need to be fitted locally. That reduces
the attractiveness of the procedure.

To explore numerical performance of the method we investigated several
levels of noise degradation of various surfaces defined by response functions
and considered designs in the form of either a regular lattice or a homoge-
neous Poisson process. An explicit formula can be derived for the quantity
S(&, m, 0) defined at (2.1); see (4.1). To minimize S we used an algorithm
based on golden-section search, described for example, in Press, Teukolsky,
Vetterling and Flannery, (1992). Writing w, representing a unit vector, for the
previously estimated real-valued tangent direction, the search for a minimum
was carried out within an arc approximately 77/10 radians wide, centered at .

We experimented with a number of variants of the methodology suggested
above. One was to take (£, 1) equal to (x, y) in (2.1), and move an amount
8 in the direction of the fitted value of 6, rather than move directly to a
neighboring point of the grid . (We took 6 = 0.005.) Another was to mix this
approach with the method suggested at (2.1), thereby refitting location. We
found that it was adequate, and saved time, to refit location at points distant
8 and &/2 on either side of (x, ¥) on the line that passed through (x, y) and
was perpendicular to the estimated orientation of the curve at (x, y).

In low-curvature parts of € the cycle length between successive location
refittings could be varied within a wide range, from 1 to about 10 steps, without
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having any noticeable effect on performance. However, refitting at each step
was noticeably beneficial in places of high curvature. A related matter is that
of estimating 0, which represents a derivative and so is inherently more prone
to error than an estimate of €. Nevertheless, these difficulties could be over-
come in part by using a smaller value of 6 in places where ¢ has higher
curvature. It might even be appropriate to use cycle length and & as spatially
varying tuning parameters. In principle, curvature could be estimated from
values of ¢ computed in earlier steps, and used to select these quantities at
the current location.

For definiteness, the curves shown here were drawn using an algorithm that
refitted location at each step. Also, to smooth out sharp turns to some extent
we derived 6 from a moving average of the present step and two previous ones,
with weights 0.6, 0.3 and 0.1.

It was found efficacious to smooth over an ellipse, rather than a disc, with
its shorter axis in the direction of motion. We took the two axis lengths to be
0.08 and 0.12.

For brevity and simplicity we present here only our results for a single
response surface, illustrated in panel (a) of Figure 1 and given in polar coor-
dinates by

f(r, ¢) =1I[8r < exp{cos(3¢)} + sin(¢/2)], 0<d¢ <2m,

where I denotes the indicator function. This example illustrates how the algo-
rithm copes with “meandering functions” that do not admit simple repre-
sentations in Cartesian coordinates. We used the biweight kernel, K(x) =
(15/16) (1 — x2)2 for |x| < 1, and took noise to be Normal N(0, o?), where
o = 0.5 or 0.75. Design points were either on a regular 330 x 330 lattice
within the square [—0.55, 0.55] x [—0.55, 0.55], or in the form of a homoge-
neous Poisson process with the same expected number of points per unit area.
Typical realizations of lattice-distributed, noisy data are illustrated in panels
(b) and (c) of Figure 1, corresponding to the two respective values of o.

Our first objective was to estimate € over its full length. For that purpose,
and for definiteness, we chose the single starting point @ = (0.2, 0.08) (which

is located close to ¢) and the approximate tangent direction 6(0) = 7. If Q is
selected by eye, and if the design points form a regular lattice, then one or more
of the design points may lie on the line that divides the kernel domain into
two half-discs, causing ambiguity. While in theory this causes only negligible
problems, in practice the possibility of these ties should be recognised.
Panels (a)—(d) of Figure 2 are to be read in pairs, the left-hand side showing
the case of a lattice design and the right-hand side, the case of Poisson-
distributed design. Each pair of panels corresponds to a different value of o.
Six typical realizations are superimposed in each panel, and show that per-
formance deteriorates only slightly when o = 0.75. From the displays, the
conclusion can be drawn that even those parts of € where absolute curvature
briefly exceeds an absolute value of 30, cause few problems. However, we found
in numerical work not given here that erratic behavior of the estimates begins
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FiGg. 1. Panel (a) shows the original response surface, and panels (b) and (c) depict the superpo-
sition of Normal N(0, 0%) noise with o = 0.5 and o = 0.75, respectively, in the case of lattice
design. The lattice edge width is 1/300.
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to occur regularly for o = 0.75 if the previously mentioned auxiliary devices
are not employed. Moreover, we found generally that higher noise levels, say
o = 1.0, most often led to unsatisfying results in the nonstraight parts of €. It
would be possible, however, to improve performance here by further increasing
the intensity of the point process.

Finally, to conclude this numerical example, we investigated the sensitiv-
ity of the algorithm with respect to the starting point @ We continued to
use the previous regression surface, focusing now on the higher noise level
o = 0.75 and the case of Poisson-distributed design. Figure 3 displays our
simulation results. Panels (a)—(d) depict behavior of three typical estimates
in the respective cases @ = (¢ + 0.08%,0) with ¢ = ¢/8 ~ 0.34 and % €
{-2,...,1}. In this part of our example we smoothed over discs (instead of
ellipses) with radius A = 0.08, and for illustration we have added a disc of
that radius, centered at Q, to our displays. Also, on this occasion we tracked
the fault line on both sides of the stjlrting point. The results indicate that the
algorithm is sensitive to choice of @, although it readily tracks the fault line
once the latter has been found. In practice it is a good idea to experiment with
different, neighboring starting points.

3. Theoretical properties. We assume that ¢ is traced out within a com-
pact rectangle 2, with its ends at points @; and @ on the left- and right-
hand sides of %, respectively, and that these sides have no other point with
¢ in common. Let @ denote the first point on ¢ that is distant A from the
left-hand side of #. We start tracing our estimator ¢ ata point @ distant A
from the left-hand side of #, representing an approximation to @, and stop
as soon as we get within 4 of the other side of #. See Remark 3.4 for methods
for calculating both @ and a starting orientation.

The estimator is the piecewise-linear curve defined by joining successive
estimates of points on the curve. For simplicity of exposition we take these
points to be vertices (£, 1) of a square lattice & with edge width B;h2, for
some B; > 0, traced out within #. We take the set of candidates for unit
vectors 6 to be defined by at least B,A~! points regularly spaced around the
circumference of the unit circle, centered at the origin, where By > 0.

Next we specify conditions (C,) on the response surface. Let a general point
P on the fault line € be represented by (x(s), y(s)), for 0 < s < [ say, where
[l < o0, Q; and Qp are represented by (x(0), ¥(0)) and (x(I), ¥(I)), respec-
tively, and s denotes the distance of P along ¢ from @;. Assume ¢ does not
self-intersect, and that the first two derivatives of x(-) and y(-) are uniformly
bounded on [0, []. We assume too that f and each of its first derivatives is
uniformly bounded in the intersection #;, of # with the left-hand side of ¢,
and also in the intersection #p of # with the right-hand side; and that if, for
(x,y) € ¢, we define f(x,y) to equal the limit of f(x, y;) as (xq, y1) con-
verges to (x, y) through values in #;, and fr(x, y) to be the limit of f(x, y;)



720 P. HALL AND C. RAU

< | pu
o o
'R N
o o
> 2 >2
o N
Q1 <?
< <
o o
-0.2 0.0 0.2 -0.2 0.0 0.2
X X
(a) (b)
< |
o
N
o
(=}
>S1
N
Q@
<
Q@
-0.2 0.0 0.2 -0.2 0.0 0.2
X . X
(©) (d

FIG. 2. Performance of the algorithm is illustrated for N(0, 02) noise, with o = 0.5 in panels
(a) and (b), and o = 0.75 in panels (¢) and (d). Panels (a) and (c) depict the case of gridded
design, while panels (b) and (d) are for the case of Poisson-distributed design. The starting point
@ = (0.2, 0.08) is encircled.
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Fi1G. 3. Panels show the effects of choice of Q on behavior of the tracking estimate. Three realiza-
tions are depicted on each panel, represented, respectively, by empty diamonds, by empty triangles
pointing upward and by empty triangles pointing downward. The starting point @ is represented
by a filled diamond. It moves steadily from the left-hand side to the right-hand side of the curve
as we progress through panels (a)—(d).

as (x4, y;) converges to (x, y) through values in #5, then

in |fL(x’y)_fR(x>y)|>0'
(x, y)et

Assume the errors ¢; are independent and identically distributed with zero
mean and a distribution that has finite moment generating function in the
neighborhood of the origin; call this condition (C,,.). Suppose K is a non-
negative function supported on [0, 1], not vanishing on [0, 1) and Lipschitz
continuous on [0, 00). Call these conditions (Cy,,).

We assume the following condition, (C,,), of the point process &, from
which come the points (X, Y;): either £, is homogeneous Poisson with inten-
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FiG. 3. Continued

sity v, or it is supported on a regular triangular, square or hexagonal lattice
with v points per unit area; call this (C,,). Of the bandwidth & we assume
the following condition, (Cy,): A = A(v) — 0 as v — o0; in the Poisson case,
(log v)?/(vh?®) — 0; and in the lattice case, 1/(vh*) — 0. (A logarithmic factor
is not required in the lattice case; see Section 4.1 for discussion.)

THEOREM. Assume that conditions (Cyy), (Cerr), (Crer)s (Cpp) and (Cy,) are
satisfied, that @ is within C1h?% of Q and that the slope 0 is within Cyh of the
slope of ¢ at Q for some constants C,Cy > 0. Then with probability 1, for
some Cy > 0, € is contained in the envelope of all points that lie within C3h?
of €. Moreover, with probability 1 the algorithm terminates after O(h™?) steps.

COROLLARY. Assume the conditions of the theorem. Then, provided h —
0 and either v='3(logv)?® = o(h) (in the Poisson process case) or v_1/* =
o(h) (for a regular lattice), the conclusion of the theorem holds. Therefore,
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~1/2

any convergence rate that is slower than v=2/3(log v)*3 or v=1/2, respectively, is

achievable almost surely by the estimator €.

REMARK 3.1 (Proximity to optimal convergence rates in the deterministic
case). That the convergence rate O(v~?/3), modulo logarithmic factors, is opti-
mal in the Poisson case follows from work of Korostelev and Tsybakov [(1993),
Section 5.3] and Mammen and Tsybakov (1995). The optimal rate for lattice
data is O(v~1/2).

Likewise, any convergence rate that is slower than »~1/3(log v)?/3 or v=/4, in

the Poisson and lattice cases respectively, is achievable in approximating the
slope of ¢ by the value of 0, computed by least-squares as at (2.1). These are
within at most logarithmic factors of the best that are possible in a minimax
sense. It is essentially this property which guarantees that, as claimed in the
theorem, the algorithm concludes after O(h~?) steps, since it ensures that the
direction in which we move when estimating the curve by a sequence of points
on an O(h?) grid is close to being the correct one, that is, along the curve.

REMARK 3.2 (Oversmoothing). Condition (C,,,) is deliberately constructed
so as to produce enough oversmoothing to allow a relatively simple asymptotic
description of . We may smooth a little less, producing a slightly faster con-
vergence rate in the Poisson case (although only by a logarithmic factor), at
the expense of a more complex asymptotic description of ¢ and a longer proof.

REMARK 3.3 (More general point processes). The theorem may be general-
ized to include the cases where &2, is a Poisson cluster process or a jittered
grid process. The latter were discussed by Korostelev and Tsybakov (1993).
In all these settings the conditions on the bandwidth, and the conclusions of
the theorem and the corollary, are the same as in the Poisson process case.
For Poisson and Poisson cluster processes, the intensity need not be constant.
It is sufficient that the process have intensity v A(x, y) at each point (x, y) in
the plane, where A is kept fixed as v diverges, and is bounded away from zero
and has bounded first derivatives in #.

REMARK 3.4 (Estimating the starting point and slope). Assume ¢ cuts the
y axis &/, with equation x = 0, at a point @ where ¢ is not tangential to the
axis, and that @ is unique within .# N .2»7. Suppose too that ¢ has two bounded
derivatives in a neighborhood of @. Let 2 = h(v) denote a bandwidth sequence
that satisfies (C,,,) in the Poisson case, that is, (logv)?/(vh®) — 0. Below we
describe, in the Poisson case, a method for calculating an estimate é of @
which lies on .7 and, under the above conditions, achieves O(A?) accuracy
with probability 1. It involzes employing a univariate change-point method to
compute a pilot estimator @;, with an error of order 4(3/2)=¢ for any given ¢ > 0,
and then refining this to Q by using the least-squares criterion at (2.1) with
(x, ) there taken equal to the coordinates of 61. In addition, the approach we
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describe below provides a starting orientation which achieves O(h) accuracy
with probability 1, so that the estimators obtained by this procedure satisfy
the assumptions of the theorem, almost surely.

Let iy = v~(1/2+4 where 0 < A < 1, and project vertically onto .27 all those
points (X;,Y;) € &£, within the band | X;| < A;. This produces a linear point
process with intensity 2vh,. From these data and their associated Z;’s, a stan-
dard change-point estimator [see, e.g., Muller (1992), Eubank and Speckman
(1994)] may be employed to derive an estimator @1 of @, with coordinates
(0, 9) say, subject to an error of O{(vh;)~1*® + h,} almost surely, for all § > 0.
In view of our choice of A4, this is of order »~(/2*2 Since h satisfies (Cy,)
then the error equals O(h(3/2)=?) for each & > 3A.

Choose A € (0, %), or alternatively ¢ € (0, %), and substitute the coordinates

(x,y)=1(0, y) of Ql into the definition of S(¢, 1, ) at (2.1). Choosing (&, 7, 0)
to minimize S produces the coordinate pair (£, n) of a point @2 which, with
probability 1, is within O(h?) of @, and a starting orientation 6 which, with
probability 1, is within O(%) of the slope of ¢ at @. (Methods outlined in

Section 4.2 may be used to derive these results.) Taking Q =(0,7) and 6 = 6,
we obtain the desired starting point and starting orientation for the algorithm.

4. Proof of the theorem.

4.1. Intuitive outline of the proof. First we consider the Poisson case. Let 2
be a disc of radius 4 in the plane, centered at (x, y) and with points (X, Y;) of
the Poisson process &, distributed through it. The disc represents the region of
support of the kernel function K{||(x, y) — (-, -)||/~} appearing in (2.1). Recall
that the line % = %(¢, 1, 6) represents the boundary where the jump in the
local linear model fitted at (2.1) occurs.

Suppose the part of ¢ which lies within 2 is distant C; A2, at its furthest
point, from that part of % that lies within the disc. (The symbols Cy, C,...
here and below denote positive constants.) Then within the disc there is a
region, with area O(h?), between the line % and the curve ¢. To see why the
area is of this size, note that the region can be approximated by a rectangle
of which one side is of length Cyh (the order of the length of a diameter of
the disc; the line % will not be far from being a diameter), and the other is of
length C3h? (the order of the distance between % and ¢).

The region can be thought of as representing errors arising from two sources:
(a) approximating the curve ¢ by a straight line in our local linear model
and (b) putting the approximating line in the wrong position. When we fit
the local linear model we can detect errors of types (a) and (b) if the number
of Poisson-distributed points falling within the region is large enough. Since
the region has area O(4?) then the number of points there is O(vA?), and so
we can detect the errors if 4 is chosen so that vA? is sufficiently large.

We can determine what is required by “sufficiently large” by arguing as
follows. For small A, the response surface will be locally constant on either
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side of the jump, and we can estimate the two constants to within o,(1) by
fitting the local linear model. Since the jump is O(1) and not o(1) then we
do not have to be very accurate when estimating the constants. Now, the
performance of the least-squares fit will deteriorate noticeably as soon as the
number of points in the region increases beyond roughly O(1), because then
the fitted constant there will either be the one for the high side of the jump
when it should be that for the low side, or vice versa. Taking account of the
need to control moderate deviations, it turns out that “roughly O(1)” has to
be interpreted as a power of log v.

Hence, we conclude that vA3 should be no smaller than a certain power
of log v; or equivalently, that the diameter % of the original disc centered at
(x, y) should be no smaller than »~1/3, multiplied by a logarithmic factor.
As the argument above suggests, if A is chosen in this way, then the least-
squares fitting procedure proposed at (2.1) can detect departures of up to
O(h?) from the true curve. And, by its nature, having detected the departure
the least-squares procedure applies an appropriate correction. It is critical to
this argument that we start the curve-tracking procedure at a point which is
within O(A°) of the true curve, for some ¢ > 1. But once that is done, the fact
that we can detect each time the curve estimate wanders beyond Czh? away
from the true curve (for some C5 > 0), and correct for it, means that we can
stay within the range O(h?) on all subsequent steps.

Similarly it can be shown that, provided the grid of 6 values contains at
least O(h~!) elements, the estimate of the slope of ¢ which is given by the
value of 0 defined by minimizing S(¢&, 7, 0) at (2.1), is within O(h) of the true
slope. [The O(h) and O(h?) assertions here and above apply with probability 1,
uniformly along the length of ¢.]

When points of &, are distributed on a lattice, rather than randomly dis-
tributed, an extra restriction is necessitated by the fact that regions which
are narrower than a constant multiple of v~1/2 (the distance between adjacent
rows of points) might not receive any points at all. In particular, in order for
the region whose width is 42 to be guaranteed to have enough points to sustain
our earlier argument, it is necessary that A2 be an order of magnitude larger
than »~1/2, That is, in the case of lattice-distributed design points, # must be
an order of magnitude larger than v~/4, as assumed in condition (Cy,).

This point is related to the reason why a log v factor is not required in the
condition (C;,,) in the lattice case. Indeed, theoretical arguments in the lattice
case demand only that the number of lattice points within a rectangle with
dimensions 8, A x 8,h? diverges to infinity at a rate faster than (log »)?, for any
fixed 8;, 89 > 0. Provided the edge length of the lattice is of strictly smaller
order than A2, or equivalently, provided vA* — oo, the number of points in the
rectangle is asymptotic to 8;8,vA3, which in the lattice case is polynomially
large in v.

4.2. Details of the proof. Let (x,y) be a point on the grid ¢ of potential
estimates of points on ¢, and let (£, ) be any point on & which is within 43/2
of (x, y). (We could replace h%2 by h¢ for any 1 < ¢ < 2.) Let 7 = 7(¢£, 1)
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denote the disc of radius 24 centered at (¢, ), and let (&, 1, 0) be the line
passing through (¢, ) in the direction of the unit vector 0. Then %(¢, 7, 0)
divides 7 into two half-discs, .7;(&, 1, 0) and (&, 1, 6), say. For j =1,2 let

ZEJ ) denote summation over indices i such that (X;,Y;) € 7;(§,m, 0). Write
&, for the set of all possible values of (x, y, &, 1, 0). [For simplicity of notation
we do not indicate dependence on (x, y), and until the paragraph containing
(4.7) and (4.8) we also suppress dependence on (¢, 1, 6).] Put

)
K; = K{|(x,y) = (X;,Y,)ll/h}, K(J)ZZKI',

oW oW
w ) = Y (X, Y)K,, g () = 3 & K,
; ,

12
. W o
M) = (K(J)) > Z,K; = pu) &)
i

. ‘ W ()
SEJ)Zf(Xi’Yi)_IJ’(J)a A(J):ZSEJ) & Ki’ Sl:zs? Ki’
i i

L o
Sp= Y Y () K,  Si= ¥ (8V)«,

j=1,2 i j=1,2

, W)
Sy= Y AD,  S= Y i)YV K,.
j=1,2 j=1,2 i
In this notation, the quantity S(¢, n, 6) defined at (2.1) is given by
() -
4.1) S(&n, 0= > Y (Z;—MY)Y K, =8, +8S;—S3+28,—28;.
j=12 i

[In passing from (2.1) to (4.1) we have found the values of a and b that mini-
mize the sum of squares on the right-hand side of (2.1), and substituted them
back into the formula.] By the Cauchy—Schwarz inequality, |S5| < (S3S3)Y2,
and so

(4.2) IS(¢,m, 0) = (S1+ S2)| < S5 +2|S4| +2(S, S5)"/*.
Next we develop bounds to T; = §/)k(/) and Ty = AY). Both T; and
Ty may be written in the form T = }°; ¢,w;, where the weights w; are

such that w = sup; |w;| and W2 = ¥; w? are both finite. Since, by (C,,),
the distribution of the errors ¢; has a finite moment generating function v,
say, in a neighborhood of the origin, then there exist constants D;, Dy > 0
such that |log y(¢)| < D, t? whenever |t| < D,. Given u > 0, put x = uW
and ¢t = min{u/(2D;W), Dy/w}. Then, by Markov’s inequality, using con-
dition (C,,) and noting that |tw;| < D, for each i, we have that P'(T >
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x) < E'(e!T7%*) < exp(D,t?W? — tx), where P’ and E’ denote probability
and expectation conditional on the points of &2,. Considering separately the
cases u < 2D, Dy,W/w and u > 2D;D,W/w we may show that for all u >
0, D;#?W? — tx < —C,u min(u, W/w), where C; > 0 depends only on D,
and D,. Furthermore, in the cases T' = T, and T = T, we have, respec-
tively, w < sup K and w < 2(sup K) (sup|f|). From these results, and their
analogues in the opposite tail, we deduce that in either case,

(4.3) P(IT| > uW) < 2 exp {—Cyu min(u, W)}.

Note that in the case of T),, W = W, where W? = zﬁj) K? and W3 =
Zgj ) (651 ))2 K?. When ambiguity could otherwise occur we shall write T, as
Tgej) and W, as Wge]). In this notation, and using (4.3), we have

P'{(S585)"/2 = (25, sup K)"2 u)

=P{S;>2(supK)u?} < Y P{(TY)? /D) > (sup K) u?)
Jj=1,2

<y P/(T(lj) > W(lj) u) <2 > exp{—Cyu min(u, W(lj))}.
j=1,2 j=1,2
Also, provided u > 1,

P{|Sy] > 2u?max (%, 1)} < 3 P’{|T(2j)| > u? max (W(Zj), 1)}
j=1,2

<2 ) exp [—02 u? max (1, 1/W(2j))

J=1,2
. 2 () ()
x min {z®max (1, 1/Wy"), Wy }]

<4 exp(-C, u2).
Therefore, by (4.2), if u > 1,
(4.4) IS(£,m, 0) — (S1 + Sp)| < C3u?max (Sy%,1) Z1,
where C3 > 0 depends only on sup K, and the nonnegative random variable
Z1 = Z(u) satisfies
(4.5) P(Z,>1)<6 Y exp{—Cyu min (u, W)},
j=1,2
If the points in &2, are Poisson-distributed then, for all C > 0,
46) P| inf  {min(W", W) =cvh?|=1-0@),
(x, 5, & m, 0)ef,

where C4 > 0 depends only on K. To appreciate why, use Markov’s inequality
to prove that P{|(W{")2 — E(W{)?| > evh?} = O(wC) for all &,C > 0, uni-
formly in (x, y, & 1, 0) € %,. Direct calculation shows that E(W')2/(vh?) is
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bounded away from 0 uniformly in (x, y, &, 1, 6) € ;. From these properties
and the fact that &, has O(VC) elements for some C > 0, we obtain (4.6).

When the points in &2, are on a triangular, square or hexagonal lattice,
condition (C,,,) and the fact that the lengths of lattice edges are asymptotic to
a constant multiple of »~1/2 imply that for all sufficiently large v, (W(IJ )2 /(vh?)
is bounded away from O uniformly in (x, y, &, , ) € #;. In this case, (4.6)
holds in a degenerate form, with its right-hand side replaced by 1, for some
C,>0.

From (4.4), (4.5) and (4.6), and the fact that vA?/log v — oo under condition
(Cyyw), we may show that for any C5; > 0 there exists Cy > 0 such that,
uniformly in choices of (x, y, &, 1, 0) € 4,

|S(&,m, 8) = {S1 + Sz(£, m, 0)}]

(4.7
< Cg (logv)max {Sy(&, m, 0)'/2, 1} Zy(¢, m, 0),

(4.8) P{Zy(&,m,0) > 1} < Cqv™%.

[Take u in (4.4) and (4.5) to equal a sufficiently large constant multiple of
(log v)¥/2.] From this point we explicitly state the dependence of S;, on (¢, 1, 6).

Since the number of elements of ¢ is only polynomially large in v, and
since the constant C; at (4.8) may be taken arbitrarily large, then by (4.7),
(4.8) and the Borel-Cantelli lemma we have that with probability 1, for all
sufficiently large v,

(4.9) |S(§a n, 0) - {Sl + 82(67 m, 0)}| = C’7 (log V) max {S2(§’ m, 6)1/27 ]-}
' for all (x, y, £, 7, 6) € .

Likewise, going back to the bound at (4.3) and taking u equal to a sufficiently
large constant multiple of (log »)!/2, we may prove that with probability 1, for
all sufficiently large v,

(4.10) |eY(&, m, 0)| k(& m, 0)Y2 < Cylogy for all (x, y, &, 1, 0) € 4.

Let D (depending only on B;) denote an upper bound, uniformly in (£, 1) €
# and in all directions, for the absolute value of the first directional derivative
of f at (¢, n). Write k(D) = k(- (¢, n, 6) for the sum of K; over indices i such
that (X;,Y;) € (£ 7, 0) is on the left-hand side of ¢, and let x/*? denote
the same for the right-hand side of €. Let b = b(&, n) be the integral mean
value, taken over (u,v) € € NT (&, ), of |[fr(u,v) — fr(u,v)|, with b = 0 if
€NT (&, 1) is empty. Then, if (X;,Y;) € (&, 1) is on the left-hand side of €,

b2 (K(j))71 —4Dh < |5§j)| <bk? (K(j)yl +4Dh,

and if (X;,Y;) is on the right-hand side of ¢ then the same is true provided
k(-2 is replaced by «(/- 1)._[Here and in (4.11) below we suppress dependence
of k), k-1 k(J-2) and 55” on (¢, 1, 0).] Squaring, multiplying by K;, adding
over i such that (X;,Y;) € 7;(¢, 1, 6) and noting that

(k2 / K(j))2 KD 4 (kD) /K<j))2 KD = (1) (52D ),
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we deduce that
b(b—16 Dh) kD V-2 (K(j))71

() . . . .
(4.11) <3 (351))2 K, <b(b+16 Dh) kD x(0:2) (K(J))*1

+16 k) D* B2,
Next we prove that for a constant Cg > 0, and for j =1, 2,
(4.12) (k) — Cgrh?) (vh?) ™! = o(1),

where the random variable represented by “o(1)” is of that size uniformly in
(x, ¥, &, m, 0) € &, with probability 1. To derive (4.12), consider first the case
where # is a Poisson process. Condition on the number N(/) of nonvanishing
terms in the series defining (), and then use Bernstein’s inequality to bound
the probability

7(C, N9) = P{|) — E(xD|NW)| > Cvar(K(j)IN(j))l/Z log v| N}

in the case N/) > (logv)?, to prove that if C > 0 is given then C’ > 0 may
be chosen so large that E{m(C’, N))} = O(»~°). Also, E(x/)|N")) equals a
constant multiple of N), and for each C > 0,

P{|NY) — E(NY)| > C (varND)"21ogv} = O(v~°).

Note too that var(x(/)|N()) and var(N())) are bounded above and below by
constant multiples of N/) and vh?, respectively, and that E(N)) = 17vh?.
(The variable N) is Poisson-distributed with this mean.) Combining these
results with the Borel-Cantelli lemma, and exploiting the fact that the number
of elements of ¢; is only polynomially large in v, we obtain (4.12) in the Poisson
case.

The context where &, is a lattice may be treated more directly, since there
k(7)) is a deterministic sum. It is asymptotic to a constant multiple of vA2,
uniformly in (x, y, &, n). In the lattice case the assertion “with probability 1”
is not required when describing (4.12).

Let 7 = 7(¢, n, 0) be the line segment of length 44 defined as the diameter
of 7 = .7 (¢, m) that is aligned in direction 6, and put ¢, = €N.7. Let R(>%
denote the portion of .7;(¢, 1, 6) that is on the left-hand side of € when &k =1,
and on the right-hand side when 2 = 2. Assume for the time being that £,
is perpendicularly distant no more than A%?2 from .# at the furthest point;
we call this the “distance” assumption. When it holds, one of R/>D and R(/>2)
is of area not exceeding 4h%/?; let it be R(>*/). The other region is of area
at least 2wh? — 4152, [Recall that .7 (&, 1) is of radius 2A.] Let this region
be RU:1), The argument used to derive (4.12) may be employed to show that
for j=1,2,

(4.13) KR (vh?) T = o(1)
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uniformly in (x, y, &, 1, 6) € & for which the “distance” assumption holds,
with probability 1. Combining this result with (4.12) we conclude that

k1) k) = 1 4 o(1), where the “o(1)” term has the same interpretation
as that at (4.13). Hence,
(4.14) 3 kD (G2) (K(j))‘l = {1+ o(1)} (kA0 4 (@ R2))

j=1,2

again with the same interpretation of “o(1).”

Let / = £(¢,m,0) = RLF) U RZ k) denote the closed region within
(&, m) that is bordered by ¢, .# and the perimeter of .7 (¢, n). (Thus, /
has a vertex at any point where ¢, intersects .7.) In the case where &, is
Poisson, let A = A(&, 7, 0) equal the integral of K{|(x, y) — (v, v)||/h} over
(u,v) € Z, and in the case where &, is a lattice, let A be the average of
this kernel over all grid points (u, v) that fall within #. We claim that, with
probability 1, uniformly in values (x, y, &, 1, 0) € #; for which the “distance”
assumption holds,

(4.15) kR 4 k) = 11 4 0(1)} v A&, 1, 6) + Of(log v)?},
whence it follows from (4.14) that
4.16) Y kD02 (kD) = (14 0(1)} v A(£, m, 0) + Of(log v)?},

j=1,2

with probability 1, uniformly in the same range of values of «x, y, &, 7, 6.

To appreciate why (4.15) holds, consider first the case where &, is
Poisson. Let A; = A;(&, m, 0) equal the area of the intersection, with the
region # (¢, n, 0), of the unit disc centered at (x, y). Using the argument lead-
ing to (4.12) and (4.13) we may prove that, given C > 0, we can choose C’' > 0
so large that for j =1, 2,

P{|xV-k) — E(kR))| > C' (vA}) P logv} = O(v™°)

uniformly in (x, y, &, 1, 0) € &, for which the “distance” assumption holds and
vA; > (logv)?. To treat the case where vA; < (logv)? we note that when this
inequality holds, the set of which A; is the area is contained within a set of
which the area is A, = v~!(log v)?. Hence, given C > 0, we may choose C’ > 0
so large that

PHK(]" ki) — E(K(j’ kf))| > C'{(vA})"? +logv}logv] = O(V_C)

uniformly in (x, y, &, 1, 6) € & for which the “distance” assumption holds,
this time without regard for the sign of vA; — (logv)?. Result (4.15) follows
from this property and the fact that E(k(1*1) 4+ k(2 %2)) equals vA. The case
where &, is defined on a lattice may be treated by counting. In this context,

E(K(l’ k) 4 k@ kZ)) =vA +o(vA) + O{(logv)?}.

From (4.11), (4.12), (4.16) and the fact that (log »)?/vh® — 0 we see that with
probability 1, uniformly in values (x, y, &, 1, 0) € &, for which the “distance”
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assumption holds,
< ()2
417) S2(§,77a9)=j§22i:(5i )" K;
= {1+0(1)}»b(&, 1)* A(£, 7, 0) + o(vh?).
From (4.9) and (4.17) we conclude that with probability 1,
(4.18)  S(&m,0) =S +{1+0(1)}vb(¢, n)* A(E, m, 6) + o(vh?),

uniformly in (x, y, £, 1, 0) € 4, satisfying the “distance” assumption.

Note that while S; depends on (x, y) it does not depend on (&, 7, 0). There-
fore, (4.18) implies that if we minimize A(¢, n, 6) rather than S(¢, n, 0), with
respect to (&, i, 0), we merely neglect terms in the target function which are
of order o( A + h?), uniformly in (x, y, &, n, 6). Although these functions will
generally have multiple minimizers, the following arguments are valid for
any two respective choices, as assumption (C,,) ensures that all minimizers
are contained within a rectangle of size O(h?) x O(h), with probability 1.
For the purposes of the next paragraph we view the choice of (&g, 19, 6y) €
{argmin A(¢, n, 0)} as a function of A, and proceed to show that the choice of
(&9, mo) and 6, differs from the “correct” choices only by terms of order O(h?)
and O(h), respectively.

We start with noticing that assumption (C,,) implies that ¢ is locally
quadratic. For greater ease of exposition we first consider the case when the
area is not given kernel weights, although we continue to use the notation
A(¢, m, ) for this modified target function. Geometric arguments may then
be employed to show that if (£, n) is distant further than O(A?) from ¢, with
0 arbitrary, then A(¢, 7, 6) is strictly larger than A(&,, 1y, 0,), for sufficiently
small 4. Similarly it can be shown that if the sequence (&, ) is within O(A?)
of the true curve but the slope component 0 is such that there exists C > 0
with |6 — 6y|| = Ch, then for & small enough there exists a grid point (¢, n')
between the line and the parabola with the property A(¢, v/, 0y) < A(&, 7, 0).
(All foregoing statements hold with probability 1.) The previous arguments
may be transferred to the case of kernel-weighting, if we too observe that as
K is assumed to be Lipschitz continuous, the function K{|(x,y)— (-, -)|/h}
converges uniformly to K{||(&, 1) — (-, )|I/k} as (x, ¥) = (&, ). In summary,
we thus have established that up to terms of sufficiently small order, the algo-
rithm minimizes A(¢, n, 0) with probability 1, and we claim that the theorem
follows from this property.

To explain why, we note the following four properties. In points (a), (b) below
we refer to the location component of the minimizer of A(¢&, n, 0), while (a),
(b’) refer to its slope. All of these four properties may be derived by somewhat
cumbersome, although not exceedingly complicated, geometric considerations
in the spirit of the previous paragraph. (a) There exist constants 0 < C; < Cy
such that, if the point P with coordinates (x, y) at which we are situated at a
given step is further than Cyh? from ¢, then the grid point (&, n) that results
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from minimizing A(&, 7, 0) is less than C;A? from ¢. (b) If C5 > 0 is given then
there exists C, = C4(C3) > 0 such that, provided (x, y) is distant no more
than C3h? from ¢, the value of (£, ) that results from minimizing A(¢, 1, 6)
is distant no more than C,A? from ¢. In (a) and (b), distance of a point to ¢
denotes shortest distance. The slope component # which minimizes A(¢, 7, ),
has the following properties (a’), (b’) which, respectively, correspond to (a), (b).
(a’) There exist constants 0 < C5 < Cg such that, if the slope estimate w
from the previous step is further than CsA from the true slope of the curve
at the point of ¢ that is closest to (£, 1), then the grid point 6 that results
from minimizing A(&, 1, 0) is less than Czh from that slope. Here and in in
(b'), we represent the true slope of the point on ¢ to which we refer, by a
unit vector such that the dot product with 0 is nonnegative. (b’) If C; > 0 is
given then there exists Cg = C5(C;) > 0 such that, provided o is distant no
more than C;h from the true slope on the corresponding point on ¢ as given
in (a’), the value of 6 that results from minimizing A(¢, 7, 6) is distant no
more than Cgh from that slope. [The constants C;, C,, C4(Cs), Cs, Cg, C5(C7)
depend on the maximum curvature of ¢ and on the constants By, B, in the
definition of the grid of points (¢, n) and 6, but for A sufficiently small they
do not depend on A.]

Properties (a), (a’) and result (4.18) imply that (c) if the grid vertex (x, y)
is further than C,A? from ¢ then at the next step we move to a grid vertex
(¢, m) that is less than C; A%+ o(h?) from ¢. Properties (b), (b') imply that (d) if
at the n’th step we are at a point (x, y) which is distant no more than C3h?
from ¢, then (&, ) will be distant no more than C,(C3)h2? + o(h?) from €.
Furthermore, in view of the uniformity of the remainder at (4.18), the o(A?)

remainders here are uniformly small. Now, (:j and @, and the corresponding
slopes, are distant O(h?) and O(h) apart, respectively. (The last assertion
would have to be qualified “with probability 1” if @ and the slope at @ were
estimated by a procedure such as described in Remark 3.4, but the conclusions,
being subject to the same restriction, would not be affected thereby.) These
initial conditions, and properties (c) and (d), imply that at each step the point
estimate must uniformly lie within O(A2) of the curve. Also, due to the same
initial conditions, the initial triplet (£, n, 0) (be it deterministic, or the result
of an estimation procedure such as described in Remark 3.4) satisfies the
“distance” assumption with probability 1. Then the fact that subsequent points
are uniformly distant O(%?) from ¢ implies that this is valid throughout, with
probability 1.

Similarly, using (a’) and (b’) from two paragraphs earlier, it may be proved
that the estimate of the slope of ¢, provided by the value of 0 obtained from
minimizing with respect to (¢, 1, 6), is uniformly within O(%) of the true slope
of the curve at the point of ¢ that is closest to (&, ). Therefore, the sign
convention for passing from a slope estimate w (a unit vector) at (x, y) to the
slope estimate 6 at (¢, ) [see the paragraph containing (2.1)] ensures that
successive point estimates progress steadily along the curve, on the grid &
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with edge width equal to a constant multiple of 42, so that only O(2~2) steps
are required until termination within A of the opposite side of .#.
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