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PRIOR INDUCTION IN LOG-LINEAR MODELS FOR
GENERAL CONTINGENCY TABLE ANALYSIS1

By R. King and S. P. Brooks

University of Cambridge

Log-linear modelling plays an important role in many statistical
applications, particularly in the analysis of contingency table data. With
the advent of powerful new computational techniques such as reversible
jump MCMC, Bayesian analyses of these models, and in particular model
selection and averaging, have become feasible. Coupled with this is the
desire to construct and use suitably flexible prior structures which allow
efficient computation while facilitating prior elicitation. The latter is
greatly improved in the case where priors can be specified on interpretable
parameters about which relevant experts can express their beliefs.

In this paper, we show how the specification of a general multivari-
ate normal prior on the log-linear parameters induces a multivariate log-
normal prior on the corresponding cell counts of a contingency table. We
derive the parameters of this distribution in an explicit practical form and
state the corresponding mean and covariances of the cell counts. We discuss
the importance of these results in terms of applying both uninformative and
informative priors to the model parameters and provide an illustration in
the context of the analysis of a 23 contingency table.

1. Introduction. The analysis of general k-way contingency table data
is of interest in a wide variety of areas of statistical application. Model selec-
tion is notoriously difficult in such situations, since the number of models
rises doubly exponentially with dimension. Obviously, exhaustive comparisons
are impossible, but various computational techniques have been proposed for
obtaining posterior model probabilities for problems of this sort, depending
upon the parameters upon which the analyst wishes to express prior opin-
ions. With the introduction of powerful new computational techniques these
forms of analysis have been greatly simplified and are becoming increasingly
common in the applied literature.
In undertaking a Bayesian analysis of contingency table data, it is neces-

sary to specify priors either for the cell counts (which could alternatively be
expressed in terms of the cell probabilities and total cell count) or, equivalently,
the log-linear parameters. Madigan and York (1997) choose to choose to place
hyper-Dirichlet priors [Dawid and Lauritzen (1993)] on the cell probabilities
which has the advantage that priors of this form allow a factorization of the
likelihood through the identification of cliques within the corresponding model
graph. Giudici, Green and Tarantola (1999) illustrate how this decomposition
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leads to local computations for the cell probabilities, improving the computa-
tional efficiency of individual parameter updates.
However, there are also several disadvantages. The first is that by adopting

a prior of this form, we restrict ourselves to decomposable models, which may
or may not be appropriate for any particular problem. For example, Dellapor-
tas and Forster (1999) provide a simple 26 contingency table example where
the posterior model probabilities of hierarchical log-linear models, graphical
models and decomposable models are compared. The corresponding results
show that the most probable log-linear model is approximately 700 times more
likely than the most probable decomposable model. Second, the hyper-Dirichlet
prior requires a very large number of hyper-parameters to be specified, which
must be hyperconsistent and ideally compatible across all models. This is
often achieved by assuming that the distributions on any clique are obtained
by marginalization from a unique distribution on a complete graph, but it cer-
tainly adds an additional level of complexity to the prior specification problem.
Finally, though each parameter update involves only local computation, there
may be a large number of them, so that a large number of local updates are
required.
An alternative approach is to specify a prior distribution on the log-linear

parameters [Knuiman and Speed (1998), Evans, Gilula and Guttman (1993),
Dellaportas and Forster (1999)]. This is the approach adopted by King and
Brooks (2001) who place independent normal priors on the log-linear parame-
ters for a 2k contingency table analysis. The advantage of this form of prior is
both the conceptual and computational simplicity as well as the fact that we
are no longer restricted to decomposable models. The disadvantages are that
there is no longer a decomposition of the likelihood, and log-linear parameter
updates involve global rather than local computations. However, this draw-
back is mitigated by the fact that there are typically far fewer log-linear
parameters than there are cells, so correspondingly fewer updates are
required.
In practice, the choice of prior should have more to do with accurately

expressing prior beliefs than mathematical convenience and typically prior
information may be available on both log-linear parameters and cell counts
[King and Brooks (2001)]. For example, we may be interested in the total
cell count as well as the presence of some dependence between two or more
sources. However, the prior must be placed on either the cell probabilities or
the log-linear parameters. In practice, prior information may be available in
terms of both parameterizations and so it is vital that if a prior is placed
on one set of parameters, then the prior induced on the other must also be
sensible. To check this condition an explicit form for the induced prior must
be available. The injective nature of the log-linear modelling structure means
that this is only possible if priors are placed on the log-linear parameters and
in this paper we provide a practical form (and discuss the properties) of the
corresponding prior induced on the cell counts or probabilities. We therefore
provide the results necessary to ensure that any prior specified is consistent
with prior beliefs under both parameterizations of the model.
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Some results along these lines already exist [Knuiman and Speed (1988),
Forster (1992)]. However, these results concern the modelling of the cell prob-
abilities and impose the usual “sum to zero” constraints through the prior,
restricting the range of priors to those of a certain form. When eliciting pri-
ors, this is an additional complication which can be avoided by imposing the
constraints directly through the design matrix linking the cell counts to the
log-linear parameters. We return to the idea of modelling cell probabilities in
Section 6. In this context, our approach has the additional advantage that a
general correlation structure can be directly imposed on the log-linear param-
eters without having to limit ourselves to those prior structures that impose
the necessary constraints.
It is fairly obvious that under a general multivariate normal prior on the

log-linear parameters, the corresponding cell counts have a multivariate log-
normal distribution but in this paper we derive the associated parameter
values in a usable form. From this distribution, we are able to calculate the
induced prior mean and covariances of the cell counts, which can then be used
to check that the prior chosen for the log-linear parameters, as well as reflect-
ing our prior about those parameters, is also consistent with our prior beliefs
about the associated cell counts.
We begin, in Section 2, by introducing the notation to be used throughout

the paper. We then derive the form of the corresponding design matrix in
Section 3 and discuss some of its properties. In Section 4, we present our main
results. We derive the form of the multivariate normal distribution induced
on the log of the cell counts as well as some associated moments of the cell
counts and the total cell count which can be used to check consistency with
prior beliefs. In Section 5 we investigate the effect of both noninformative and
informative priors placed on the log-linear parameters. We begin by showing
that a diffuse prior placed on the log-linear parameters is similarly diffuse in
terms of the cell counts allowing for consistency in the presence of weak prior
information. We then discuss the use of informative priors in the context of
the analysis of an incomplete 23 contingency table. Finally, in Section 6, we
provide some general discussion of the usefulness and general context of these
results.

2. The log-linear model. We assume that data is obtained from a set
of factors or sources, S. We let �S� denote the number of sources and label
each source such that S = �Sγ:γ = 1� � � � � �S��. We denote the set of levels
for source Sγ by Kγ, for γ = 1� � � � � �S�. Further, we let the levels in source
Sγ be �1� � � � � �Kγ��, so that there are �Kγ� ≥ 1 levels for γ = 1� � � � � �S�. Then
we can produce a contingency table with each cell representing a possible
combination of responses from the sources. The cells can be expressed as the
set K =K1 × · · · ×K�S�, so that each of the �K� cells can be indexed by k ∈K
with corresponding cell probability pk. Similarly, for k ∈K, we let nk denote
the cell count for the corresponding cell. Finally we define � 	S
 to be the set
of subsets, (or power set) of S, so that � 	S
 = �s: s ⊆ S�. Then, to represent
a log-linear model, we use the index m ⊆ � 	S
, where m lists the log-linear
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terms present in the model, with �m� denoting the number of terms within
model m. We allow for a constant log-linear term, by the inclusion of the
empty set in � 	S
, that is, � ∈ � 	S
.
For element c ∈ � 	S
, we let Mc be the set of all possible combinations

of levels for the sources contained within c, that do not include the last level
(generally the highest level). Then, in general, we set Mc = �mc

1� � � � �m
c
�Mc���.

For example, suppose that S = �S1� S2�, where K1 = K2 = �1�2�3�. Then
� 	S
 = ��� �S1�� �S2�� �S1� S2��. For c = �S1� S2�, we have that Mc =
�mc

1�m
c
2�m

c
3�m

c
4� = �	1�1
� 	1�2
� 	2�1
� 	2�2
�, where 	i� j
 corresponds to

the ith level of source S1 and the jth level of source S2. The ordering of the
levels is generally unimportant so long as it is consistent, but in general a
natural ordering will nearly always be apparent. For each possible element,
c ∈ � 	S
, we denote the associated log-linear vector, by �c = 	θcm1

� � � � � θcm�Mc � 
T,
dropping the dependence on c of �m1� � � � �m�Mc��, since it is implicit from the
context. Under the usual “sum to zero” constraints the log-linear parameters
θcj , j ∈ Mc, are linearly independent. Hence, given a model, the log-linear
parameters are uniquely identifiable.
If we letm be an ordered subset of � 	S
, then we denote the associated log-

linear parameter vector for model m by �m = 		�c1
T� � � � � 	�c�m� 
T
 where �ci

denotes the parameter vector associated with the ith element. We can describe
the relationship between the expected cell counts and log-linear parameters
as

lnnk = ∑
c∈m

	Ic	k

T�c� k ∈K�(1)

where 	Ic	k

T = 	Icm1
	k
� � � � � Icm�Mc � 	k

, and Icj 	k
 = 0�±1�∀ j ∈ Mc and

c ∈ � 	S
, are functions ensuring that the usual conditions for identifiabil-
ity are observed. We define I�	k
 = 1�K� , ∀ k ∈ K, that is, the vector of
length �K�, such that each element is equal to unity. We denote by Le

l the
set �k:k	γ
 = e	γ
� ∀ γ �= l�k	l
 ∈ Kl�, where k	γ
 and e	γ
 represent the
elements corresponding to source Sγ of the vectors k and e, respectively. We
can then specify the identifiability conditions as∑

k∈Le
l

Ic	k
 = 0 ∀ l� Sl ∈ c�∀ e ∈K and ∀ c ∈ � 	S
\�(2)

with Ic0	0
 = 1 for uniqueness. We assume that each source Sγ, γ = 1� � � � � �S�
has levels denoted by �1� � � � � �Kγ��, where �Kγ� is the total number of levels
of the source. We can express this function explicitly as follows.

Lemma 2.1. Denote by Icj 	k
, the element of Ic	k
 corresponding to j ∈ Mc,

for c ∈ � 	S
\� and k ∈K. Then a solution to (2) which satisfies the constraint
that Ic1	1
 = 1∀ c is given by

Icj 	k
 =
∏

γ�Sγ∈c
�� 	k	γ
 = j	γ

 −� 	k	γ
 = �Kγ�
��(3)
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where � 	·
 is the indicator function and j	γ
 is the γth element of j, that is,
the element corresponding to source Sγ.

The proof is given in the Appendix.
Having established a notation for the models and their associated parame-

ters, we now consider how we might place priors on the parameters in the two
distinct cases where we first have little or no prior information and, second,
where prior information is available and we wish to incorporate this within
the analysis.
The most convenient manner to express the relationship between the

expected cell counts and log-linear parameters, under any modelm, is in terms
of a design matrix, so that

lnn = ∑
c∈m
Xc�c�(4)

where lnn is the vector consisting of elements lnnk�k ∈ K and Xc denotes
the design matrix associated with parameter c ∈ � 	S
. We can then denote
the complete design matrix by Xm, where,

Xm = 	Xc1 �Xc2 � · · · �Xc�m� 
�
so that, ∑

c∈m
Xc�c =Xm�m�

From this representation it is clear that if we place a multivariate normal
prior on �m, then we induce a multivariate normal prior on log n. Consider
the model m ⊆ � 	S
, with corresponding design matrix Xm. If we take a
multivariate normal N	�m��m
 for the log-linear parameters, then the log
cell counts have a N	�� �
 distribution where

� =Xm�m
and

� =Xm�mXTm�
In this paper, we are concerned with deriving the exact form of �. In order
to do this, we must first establish an ordering for the rows and columns of
the design matrix Xm and this we do in Section 3.1. Once an order has been
constructed, it is easy to show that if we let xci and xdj be the columns of the
design matrixXm corresponding to level i ∈ Mc and j ∈ Md, respectively, then,

� =Xm�mXTm
= ∑
d∈m

∑
j∈Md

∑
c∈m

∑
i∈Mc

xdj σ
dc
ji 	xci 
T by definitions of Xm and �m

= ∑
d∈m

∑
j∈Md

∑
c∈m

∑
i∈Mc

σcdij x
d
j 	xci 
T since σdcji = σcdij �(5)
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where σcdij denotes the element of �m corresponding to the covariance between
sources c and d at levels i and j.
Thus, the elements of � can be expressed as a sum over products of elements

of the design matrix and the corresponding prior covariance. In Section 3 we
first derive a form for the elements of the design matrices Xc� c ∈m and then
a form for the product term in (5).

3. The design matrix. In this section, we provide an explicit expres-
sion for the design matrices and for the products of columns with transposed
columns of the design matrix, for all possible parameters. However, we first
begin by establishing an ordering for the log-linear parameters and the cell
counts which will be used to relate specific entries in the design matrix to the
corresponding cell count and log-linear parameter.

3.1. Ordering the parameters. For any parameter vector �c� c ∈m ⊆ � 	S
,
we define a corresponding matrix Xc of dimension( �S�∏

γ=1
�Kγ� ×

∏
γ�Sγ∈c

	�Kγ� − 1

)
�

This is then the design matrix corresponding to parameter c ∈m with the null
product (occurring when m = � in which case �γ: Sγ ∈ c� = � ) being defined
to be 1. Then, within each �c we adopt the natural lexicographic ordering for
the log-linear parameters in �c. Now, the log-linear parameter vector �c con-
tains the log-linear parameters θcj such that j ∈ Mc with element C	c� j
 of �c
corresponding to parameter θcj . This ordering function C is defined as follows.
If we have sources S = �S1� S2� � � �� where source Sγ has levels �1� � � � � �Kγ��,
for γ = 1� � � � � �S�, then

C	c� j
 = 1+ ∑
γ�Sγ∈c

(
j	γ
 − 1
�Kγ� − 1

∏
l≤γ

	�Kl� − 1

)
�

where j	γ
 is the element of j, corresponding to source Sγ.
For example, suppose that c = �S1� S2� S3�, with �K1� = 2, �K2� = 3 and

�K3� = 4. We then order the corresponding log-linear parameter vector,

�c = 	θc	111
� θc	121
� θc	112
� θc	122
� θc	113
� θc	123

T�

Intuitively, we order the parameters by translating j into a decimal inte-
ger by treating its elements as if they represented a number in base b =
maxγ�Sγ∈c �Kγ�. Here element j	i
 corresponds to coefficient corresponding to
bi−1. The parameters are then ordered from smallest to largest in decimal
value and renumbered so that no gaps in the numbering occur.
We order the cell counts similarly, so that for the vector n, we allocate

element R	k
 to be the value corresponding to cell k ∈ K, by ordering the
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sources in an analogous way. We set

R	k
 = 1+
�S�∑
γ=1

(
k	γ
 − 1
�Kγ�

∏
l≤γ

�Kl�
)
�

where k	γ
 is the element of k corresponding to source Sγ.
These orderings thus provide a structure for the design matrix Xc, so that

row R	k
 corresponds to cell nk (and remains unchanged for all c ∈ m) and
column C	c� j
 corresponds to parameter θcj . We next provide an explicit form
for the elements of the design matrix.

3.2. Elements of the design matrix. The following lemma provides the def-
inition of a general design matrix Xc in terms of a Kronecker product of
indicator functions.

Lemma 3.1. For c ∈ � 	S
 then,

Xc =
�S�⊗
γ=1

[
� 	Sγ ∈ c
L�Kγ � +� 	Sγ /∈ c
1�Kγ �

]
�(6)

where � 	·
 is the indicator function, 1�Kγ � is the vector of length �Kγ� with each

element equal to unity and

L�Kγ � =

 I�Kγ �−1

−1T�Kγ �−1


 �

where I�Kγ �−1 is the identity matrix of dimension �Kγ� − 1.
Here, for a matrix function f, the multiple Kronecker product is defined so

that

�S�⊗
γ=1
f	Sγ
 = f	S�S�
 ⊗ f	S�S�−1
 ⊗ · · · ⊗ f	S1
�

The proof is given in the Appendix.
Thus, we obtain an explicit form for the design matrix. We now derive a

natural form for the product of any column of the design matrix with any
transposed column so that we may calculate the value of � in (5). This will be
used in the next section to derive our main result relating the priors induced
upon the expected cell counts by a multivariate normal prior placed on the
log-linear parameters.
We begin by introducing some additional notation. We first define the matrix

G
γ
i whose 	m�n
th element is given by

g
γ
i 	m�n
 =

{ 1� if 	m�n
 = 	i	γ
� i	γ

; or 	�Kγ�� �Kγ�
,
−1� if 	m�n
 = 	i	γ
� �Kγ�
; or 	�Kγ�� i	γ

,
0� otherwise.
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We also define a matrix Acdij 	γ
 whose 	m�n
th element can be defined under
three separate cases as follows.

Case I. Sγ ∈ c; Sγ ∈ d,

acdij 	m�n
 =
{
1� if 	m�n
 = 	i	γ
� j	γ

� 	j	γ
� i	γ

; or 	�Kγ�� �Kγ�
,
0� otherwise.

Case II. Sγ ∈ c� Sγ /∈ d,

acdij 	m�n
 =
{ 1� if 	m�n
 = 	r� i	γ

, for r = 1� � � � � �Kγ� − 1,
−1� if 	m�n
 = 	�Kγ�� �Kγ�
,
0� otherwise.

Case III. Sγ /∈ c� Sγ ∈ d,

acdij 	m�n
 =
{ 1� if 	m�n
 = 	j	γ
� j	γ

,
−1� if 	m�n
 = 	�Kγ�� �Kγ�
,
0� otherwise.

The matrix is left undefined if c� d �∈ Sγ.
Finally, we define two Kronecker product matrices,

Wcd
ij =

�S�⊗
γ=1

[
� 	Sγ ∈ c ∪ d
Acdij 	γ
 + 	1−� 	Sγ ∈ c ∪ d

I�Kγ �

]
(7)

and

Vci =
�S�⊗
γ=1

[
� 	Sγ ∈ c
Gγi + 	1−� 	Sγ ∈ c

J�Kγ �

]
�(8)

where I�Kγ � denotes the identity matrix of dimension �Kγ� and J�Kγ � denotes
the �Kγ� × �Kγ� matrix with each entry set to 1.
The following result states that the product of any column of the design

matrix with any transposed column is equal to the product of the correspond-
ing W and V matrices.

Lemma 3.2. If we let xdj be the column of the design matrix, Xd, corre-

sponding to level j ∈ Md, with the analogous definition for xci , for c� d ∈ � 	S
,
then

xdj 	xci 
T =Wcd
ij V

c
i �(9)

where Wcd
ij and Vci are given in (7) and (8).

The proof is given in the Appendix.
We now have a form for the matrix product in (5) that can be used to obtain

the matrix �. In the next section we provide our main results, deriving an
analytic form for the mean vector and covariance matrix of the induced prior
on logn and examining some of the properties of this induced distribution.
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4. The induced prior on the cell counts. As discussed earlier, it is
simple to demonstrate that when we place a multivariate normal prior dis-
tribution on the log-linear parameters the corresponding prior for the log of
the expected cell count is also multivariate normal. The following theorem
provides an exact analytic form for the mean vector and covariance matrix of
the induced prior on logn.

Theorem 4.1. Suppose that for model m ⊆ � 	S
, we take a multivariate
normal prior for the model parameters,

�m ∼ � 	�m��m
�

where the elements of �m are given by µci representing the mean of θci , and the

elements of �m are given by σcdij , representing the covariance between log-linear

parameters θci and θ
d
j , such that c� d ∈m and i ∈ Mc, j ∈ Md.

Then, under the model described in (1), the mean vector � of lnn has
elements

µk = ∑
c∈m

∑
i∈Mc

µciI
c
i 	k
�

and the corresponding covariance matrix of the log of the cell counts can be
expressed as

� = ∑
c∈m

∑
i∈Mc

Bci 	m
Vci �

where Vci is given in (8) and

Bci 	m
 = ∑
d∈m

∑
j∈Md

σcdij W
cd
ij �

with Wcd
ij given in (7).

Proof. Clearly, comparing (1) and (4), the row of Xc corresponding to cell
k ∈K is equal to Ic	k
T. Therefore if xcj 	k
 denotes the element of the matrix
Xc, corresponding to cell k ∈K and sources c at level j ∈ Mc, we have,

xcj 	k
 = Icj 	k
�(10)

Then, by definition we have that � =Xm�m, therefore,

µk = ∑
c∈m

∑
i∈Mc

µcix
c
i 	k
 =

∑
c∈m

∑
i∈Mc

µciI
c
i 	k
�

by (10).
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Similarly,

� = ∑
d∈m

∑
j∈Md

∑
c∈m

∑
i∈Mc

σcdij x
d
j 	xci 
T by (5)

= ∑
d∈m

∑
j∈Md

∑
c∈m

∑
i∈Mc

σcdij W
cd
ij V

c
i using Lemma 3.2

= ∑
c∈m

∑
i∈Mc

Vci
∑
d∈m

∑
j∈Md

σcdij W
cd
ij

= ∑
c∈m

∑
i∈Mc

VciB
c
i 	m
 by definition of Bci 	m
�

(11)

✷

As a corollary to this theorem, we also obtain a form for the density of the
corresponding cell counts.

Corollary 4.1. With a multivariate normal prior placed on the log-linear
parameters, the corresponding density induced on the cell counts, n, is given
by the multivariate log-normal distribution with density function

fn	n
 =
1

���1/2	2π
�K�/2
∏
k∈K

(
1
nk

)
exp

(
−1
2
	lnn− �
T	�
−1	lnn− �


)
�(12)

The proof of this result follows directly from Theorem 4.1 using a simple
transformation of variables.
Next we obtain some useful distributional results for the cell counts, and in

particular the mean vector and covariance matrix associated with the density
for the cell counts given in Corollary 4.1.

Lemma 4.1. Given that n has a multivariate log-normal 	�� �
 distribution,
then for k1�k2 ∈K,

Ɛ	nk1
 = exp
(
µk1 +

σ2k1
2

)
�(13)

Var 	nk1
 = exp
(
2µk1 + σ2k1
	exp	σ2k1
 − 1

)
� and(14)

Cov	nk1� nk2
 = exp
(
µk1 + µk2 + 1

2	σ2k1 + σ2k2

)	exp	σk1k2
 − 1
�(15)

where µk1 and σ
2
k1

are the mean and variance of lnnk1 , respectively, and σk1k2
is the covariance between lnnk1 and lnnk2 .

Proof. The expectation in (13) can be derived as a simple extension of the
properties of the univariate log-normal distribution. See Aitchison and Brown
(1957), for example. Clearly the variance in (14) will be obtained as a simple
corollary of the covariance result of (15). To prove the final result, suppose
that we let the �K�-vector lnZ have a multivariate normal distribution with
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mean �, and covariance matrix �. Then, for any �K�-vector a, say, we have
the standard property

aT lnZ ∼N	aT��aT�a
�

But, by definition and using the general properties of logarithms,

aT lnZ =
�K�∑
i=1
ai lnZi = ln

( �K�∏
i=1
Z
ai
i

)
�

so that

ln

( �K�∏
i=1
Z
ai
i

)
∼N	aT��aT�a
�(16)

[cf. Aitchison and Brown (1957), Theorem 2.4]
We can now easily calculate the covariances of the expected cell counts using

(16). Suppose that we want to calculate the covariance between the expected
cell counts nk1 and nk2 . Then, in (16), we consider using the vector a, such
that the elements corresponding to cells k1 and k2 are set to unity, with all
other entries equal zero. We then obtain

ln	nk1nk2
 ∼N	µk1 + µk2� σ2k1 + σ2k2 + 2σk1k2
�

So that the product nk1nk2 has a log-normal distribution, and from (13) we
have

Ɛ	nk1nk2
 = exp

(
	µk1 + µk2
 +

	σ2k1 + σ2k2 + 2σk1k2

2

)
�(17)

Then, we can calculate the covariance of nk1 and nk2 to be

Cov	nk1� nk2
 = Ɛ	nk1nk2
 − Ɛ	nk1
Ɛ	nk2


= exp

(
	µk1 + µk2
 +

	σ2k1 + σ2k2 + 2σk1k2

2

)

− exp
(
µk1 +

σ2k1
2

)
exp

(
µk2 +

σ2k2
2

)

= exp
(
µk1 + µk2 +

1
2
	σ2k1 + σ2k2


)
	exp	σk1k2
 − 1
� ✷

A corollary to Lemma 4.1 provides the prior mean and variance of the total
cell count induced by the multivariate normal prior placed on the log-linear
parameters.
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Corollary 4.2. With a multivariate normal prior placed on the log-linear
parameters, the corresponding mean and variance of the total cell count,
denoted by N, are given by

Ɛ	N
 =∑
k

Ɛ	nk
� and Var	N
 = ∑
k1�k2

Cov 	nk1� nk2
�

The proof follows immediately from standard formulae for the mean and
variance for the sum of dependent random variables.
These results (in particular, Corollary 4.2 and Lemma 4.1) provide us with

a usable form for the prior induced on the cell counts by the corresponding
multivariate normal prior on the log-linear parameters. These can be used for
the purposes of prior elicitation as discussed in the next section.

5. Prior specification—examples. In practice, there are two distinct
forms of prior that one might want to use: an informative prior based upon
expert opinion, or a vague prior which reflects broad a priori uncertainty with
regard to the model parameters. We shall illustrate how our results can be
of use in either context, beginning with the use of vague priors placed on the
log-linear parameters.

5.1. Placing vague priors on the log-linear parameters. It is common prac-
tice to want to be able to place so-called vague or diffuse priors on model
parameters. However, it is important to check that the prior is vague in terms
of all important parameterizations, that is, both the log-linear parameters
and the corresponding cell counts. This consistency property is not appar-
ent in all modelling structures and so it is important to check that a vague
prior placed on the log-linear parameters induces a similarly vague prior on
all interpretable parameters. As an illustration of when this is not the case,
suppose that we had a probability p about which we wished to be vague a
priori, we might consider placing a standard uniform prior on p. However, if
we were to set logit p = µ, say, then in order to be vague, we might place a
normal prior on µ with zero mean and a large variance. However, it is well
known that this induces a prior on p which, asymptotically as the variance
for µ increases, has point masses at the values of zero and one. The following
lemma provides reassurance that the same problem does not arise in the con-
text of our modelling of a general k-way contingency table by illustrating that
by placing a vague prior on the log-linear parameters we induce a similarly
vague prior on the cell counts.

Lemma 5.1. Suppose that for model m ⊆ � 	S
, (m �= �), we place a
multivariate normal prior on the log-linear parameters, with finite mean and
covariances. Then, as the prior variances on the log-linear parameters tend to
infinity, the corresponding prior for the cell counts becomes flat over the posi-
tive real line and has correlation matrix asymptotically equal to the identity;
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that is,

Corr	nk1� nk2
 =
{
1� k1 = k2�
0� k1 �= k2.

Proof. From (11) in the proof of Theorem 4.1 we have that

� = ∑
c∈m

∑
i∈Mc

∑
d∈m

∑
j∈Md

σcdij x
d
j 	xci 
T�

So that the covariance between nk1 and nk2 can be expressed as

σk1k2 =
∑
c∈m

∑
i∈Mc

∑
d∈m

∑
j∈Md

σcdij x
c
i 	k2
xdj 	k1


= ∑
c∈m

∑
i∈Mc

∑
d∈m

∑
j∈Md

σcdij I
c
i 	k2
Idj 	k1
 by equation 	10


= ∑
c∈m

∑
i∈Mc

σccii I
c
i 	k2
Ici 	k1
 +

∑
c∈m

∑
i∈Mc

∑
j∈Mc\�i�

σccij I
c
i 	k2
Icj 	k1


+ ∑
c∈m

∑
i∈Mc

∑
d∈m\c

∑
j∈Md

σcdij I
c
i 	k2
Idj 	k1
�(18)

However, since we have a finite covariance between each of the log-linear
parameters, the last two terms in (18) are equal to a finite constant, which we
denote by D	k1�k2
. So that for cell k ∈ K, we can write the variance of the
expected cell count as,

σ2k = ∑
c∈m

∑
i∈Mc

σccii 	Ici 	k

2 +D	k�k
�

Clearly, as σccii tends to infinity for each log-linear parameter within the model,
then σk also tends to infinity [since I

c
i 	k
 takes at least one nonzero value for

c ∈m and i ∈ Mc].
Then, from (13) and (14) of Lemma 4.1, it is clear that as the prior variance

on the log-linear parameter tends to infinity, then both the mean and variance
also tend towards infinity. However, by considering the ratio of the mean and
standard deviation for each possible cell k ∈K, it is clear that the mean tends
to infinity more slowly, since,

Ɛ	nk

SD	nk


=
exp

(
µk + σ2k

2

)
√
exp	2µk + σ2k
	exp	σ2k
 − 1


= 1√
exp	σ2k
 − 1

→ 0�

as σccii → ∞ for all c ∈ m and i ∈ Mc, and this implies that σ2k → ∞, by the
above argument. This means that regardless of the model imposed, the corre-
sponding prior on the expected cell counts is flat over the positive real line.
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We now consider the correlation structure of the prior for the expected cell
counts. We have that for the general cells k1�k2 ∈K,

Corr	nk1�nk2
 = Cov	nk1�nk2
√
Var	nk1
Var	nk2


= exp	µk1+µk2+ 1
2	σ2k1+σ2k2

	exp	σk1k2
−1
√

exp	2µk1+σ2k1
	exp	σ2k1−1

exp	2µk2+σ2k2
	exp	σ2k2−1


from (15)

= exp	σk1k2
−1√
	exp	σ2k1
−1
	exp	σ2k2
−1


→ exp	σk1k2

exp	 12 �σ2k1+σ2k2�


(19)

= exp
(
σk1k2−

1
2

[
σ2k1+σ2k2

])
�(20)

The limit here is taken as σccii → ∞ for all c ∈ m and i ∈ Mc, which implies
that σ2k → ∞. We can use the expression for the elements of �, given in (18),
to compute this asymptotic correlation.
The numerator in (19) can be expressed as

exp	σk1k2
 = exp

(∑
c∈m

∑
i∈Mc

σccii I
c
i 	k1
Ici 	k2
 +D	k1�k2


)

and the denominator as

exp
( 1
2 �σ2k1 + σ2k2�

) = exp
(
1
2

∑
c∈m

∑
i∈Mc

σccii
[	Ici 	k1

2 + 	Ici 	k2

2

]

+ 1
2

[
D	k1�k1
 +D	k2�k2


])
�

Substituting these expressions into (20), and noting that as the variances of
the log-linear parameters tend to infinity, the contribution of the constant
finite terms D	k�k
 become negligible for all k = k1�k2 ∈K, and we obtain

Corr	nk1�nk2


→exp
(∑
c∈m

∑
i∈Mc

σccii

{
Ici 	k1
Ici 	k2
− 1

2

[	Ici 	k1

2+	Ici 	k2

2
]})
�

(21)
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Using trivial algebra, expanding the equation 	a + b
2 ≥ 0 and setting a =
Ici 	k1
 and b = Ici 	k2
, we obtain

Ici 	k1
Ici 	k2
 ≤ 1
2

[
	Ici 	k1

2 + 	Ici 	k2

2

]
�(22)

Clearly, the equality is true if and only if Ici 	k1
 = Ici 	k2
 (= ±1�0). So that,
for k1 �= k2 and m �= �,

Corr	nk1� nk2


→ exp

(∑
c∈m

∑
i∈Mc�

Ici 	k1
�=Ici 	k2


σccii

{
Ici 	k1
Ici 	k2
 − 1

2

[
	Ici 	k1

2 + 	Ici 	k2

2

]})
�

However, by (22),

Ici 	k1
Ici 	k2
 − 1
2

[(
Ici 	k1


)2 + (Ici 	k2
)2] < 0�

for all c ∈ m and i ∈ Mc such that Ici 	k1
 �= Ici 	k2
. So that as σccii → ∞, if
k1 �= k2, then

Corr	nk1� nk2
 → exp	−∞
 = 0�

Similarly, when k1 = k2, we get equality in (22) and Corr	nk1� nk2
 →
exp	0
 = 1.
Hence, the correlation matrix tends to the identity as the variances on the

log-linear parameters tend to infinity. ✷

A simple corollary to this result, based also upon Corollary 4.2, is that the
distribution induced on the total cell count is also diffuse so that asymptoti-
cally, we obtain similarly vague priors on all interpretable parameters. This is
an extremely useful result that ensures consistency across parameterizations
in the absence of strong prior information.
Of course, we may also place more informative priors on the log-linear

parameters and we discuss the application of our results in the context of
a particular example.

5.2. Placing informative priors on the log-linear parameters. In practice,
informative prior information often consists of knowledge about the magnitude
or at least the direction of different effects within the model, together with
some idea of the total cell count. Since priors may only be placed on either the
log-linear parameters (expressing knowledge about interactions and effects)
or the cell counts (reflecting knowledge about the total cell count) it may be
difficult to find a prior which properly reflects all of the prior information
available. However, using the results from Section 4 we can place a sensible
prior on the log-linear parameters and check that this is consistent with the
prior information available on the cell counts. In order to illustrate how the
results from the previous section may be usefully applied in this context, we
will consider a practical example.
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We consider the data presented by Hook, Albright and Cross (1980) [see also
Hook and Regal (1995)] concerning the number of black babies born with spina
bifida in upstate New York between 1969 and 1974. There are three distinct
sources of data, namely birth certificates (BC), death certificates (DC) and
medical records (MR), respectively. The data are summarized by an incomplete
23 contingency table which records the number of individuals identified by any
combination of sources. The total population size is unknown and so there is
no data on the cell corresponding to the number of individuals not observed by
any source. This missing cell, and thus the total population size, is of primary
interest in this analysis.
A previous study of the white population in New York during the same years

provides us with a good deal of prior information, as the relationship between
the two populations is well understood. Consultation with experts in the area
suggests that a priori we might expect a negative interaction between the
death certificates and medical records. However, a positive interaction (though
unlikely) could not be discounted. In particular, it was believed that with prob-
ability 0.9, the effect of this interaction would decrease the corresponding cell
counts by a proportion in the interval �0�1�0�9�. There was little information
on the magnitude and sign of the remaining main effects and interactions. In
addition to the information on the log-linear parameters, it was expected that
the number of black babies born with spina bifida during the study period
would lie somewhere in the interval �9�56� with probability 0.95 and a prior
with mean somewhere in the interval �29�35� seemed sensible.
Since we have prior knowledge on only a single interaction term, we con-

sider the corresponding prior on the cell counts, given the model that contains
the constant term, the main effects terms and the corresponding interaction
term, that is, model 	��BC�DC�MR�DC–MR
. For illustrative purposes,
we shall restrict our attention to this single model. We consider independent
normal priors for the log-linear parameters, as these are consistent with the
information available a priori and we have no prior information to the con-
trary. We construct a prior for the interaction term from the information above
and consider a normal prior with mean −1�2 and variance 4

9 , which provides a
90% credible interval for the proportional effect on the expected cell counts of
�0�10�0�91�. We have no other prior information concerning the remaining log-
linear parameters. Thus, we place independent and identical normal priors on
these parameters with mean zero and a variance of 0�5. This corresponds to
the assumption that with probability 0.95, each of these effects will increase
or decrease the corresponding cell counts by a factor of no more than four.
These priors appeared to be a fair summary of the information available on
the log-linear parameters.
In order to check that these priors are also consistent with the information

available on the cell counts, we can use the results of Section 4 to summarize
the priors induced on these parameters. However, from Corollary 4.2 alone we
can see that the prior specified above produces an expected total population
of 59, with a variance of 7183 (or standard deviation of 85). This is well outside
the 95% interval given for the population size above, with approximately twice
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the expected number in the population and too large a standard deviation.
However, the general correlation structure of the cell counts did not seem
unreasonable under this prior:

Corr	n
 =




1�000 0�308 0�071 −0�034 0�071 −0�034 0�053 −0�041
1�000 −0�034 0�071 −0�034 0�071 −0�041 0�053

1�000 0�308 0�053 −0�041 0�071 −0�034
1�000 −0�041 −0�053 −0�034 0�071

1�000 0�308 0�071 −0�034
1�000 −0�034 0�071

1�000 0�308
1�000



�

In this case, what appear to be reasonable priors on the log-linear param-
eters produces a corresponding prior on the cell counts which is at odds with
prior knowledge. Taking this into consideration, we can alter our priors, in
order to obtain a distribution that better reflects our beliefs. We can only rea-
sonably consider altering the priors on the parameters for which we do not
have strong prior information, that is, the constant and main-effect terms.
We have no preference as to the negative or positive effect that these terms
have, so we need to maintain a prior mean of zero. However, we may recon-
sider the variance associated with each of these terms, in order to obtain a
compromise prior consistent with the information available both upon the log-
linear parameters and the total population size. By placing a prior variance
of 0�25 on each of these terms, we assume that with probability 0.95 each of
these effects will increase or decrease the corresponding cell counts by a factor
of no more than two, which still appears consistent with prior beliefs about
these parameters, though slightly less vague than the previous prior. Further
consultation with experts confirmed this to be reasonable.
With this new prior, we use Theorem 4.1 and the associated results from

Section 4 to calculate the mean and correlation of the expected cell counts. We
obtain

Ɛ	n
 =




0�62
0�62
6�84
6�84
6�84
6�84
0�62
0�62



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and

Corr	n
 =




1�000 0�485 0�018 −0�111 0�118 −0�111 0�173 −0�017
1�000 −0�111 0�018 −0�111 0�188 −0�017 0�173

1�000 0�485 0�173 −0�017 0�188 −0�111
1�000 −0�017 0�173 −0�111 0�188

1�000 0�485 0�018 −0�111
1�000 −0�111 0�018

1�000 0�485
1�000



�

The prior mean structure for the cell counts here is unsurprising since this
simply reflects the influence of the negative interaction between sources DC
and MR, so that more individuals are expected to be observed on combinations
of sources containing only one of sources DC and MR. The symmetry between
the different combinations of sources results from the same priors being placed
on all the main-effect terms in the model.
The patterns within the correlation matrix are similarly understandable.

Here, the interaction term is once again partitioning the cells into groups
according to either the level of BC source or the level of the DC and MR
sources combined. The fact that each value appears several times is a result
of the fact that we took identical priors for all of the log-linear parameters
except the interaction term. We also note that the correlations between cells
for the second prior are larger than those for the first prior considered. This is
an illustration of the effect of decreasing the prior variance and is consistent
with Lemma 5.1 which describes the effect of taking increasingly diffuse priors
on parameters about which we have little knowledge a priori.
From these priors for the expected cell counts, we can derive the mean

and variance for the total population and we find that Ɛ	N
 = 29�8 and
SD	N
 = 31�31. This prior is now consistent with the prior information avail-
able on this parameter with a mean well within the range specified but with
a slightly larger standard deviation. If we are willing to further compromise
on the variances associated with some of the log-linear parameters we may
iterate this procedure once again. However, in this example this latest prior
is considered adequate to describe our expert opinion and the analysis of the
data can proceed with these values.

6. Discussion. In this paper we have focused upon the estimation of cell
counts rather than cell probabilities. If the cell probabilities are themselves
of interest, it is possible to derive the form of the induced prior directly from
Theorem 4.1 using a change of variables argument.
If we let

pi =
ni∑�K�
i=1 ni

for i = 1� � � � � �K� − 1�

N =
�K�∑
i=1
ni
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and, for notational convenience, set p�K� = 1 − ∑�K�−1
i=1 pi then the determi-

nant of the Jacobian for this transformation can be shown to be N�K�−1. The
corresponding joint density induced on 	p1� � � � � p�K�−1�N
 is given by

fp	p1� � � � � p�K�−1�N
 = 1
���1/2	2π
�K�/2

�K�∏
i=1

1
pi
N−	h	N
/2+1


× exp
(
−1
2
	lnp− �
T�−1	lnp− �


)
�

where

h	N
 = lnN1T�−11+ 2	lnp− �
T�−11�

and p denotes the complete vector of cell probabilities, 	p1� � � � � p�K�
. The
marginal distribution of the cell probabilities can then be easily shown to be

fp	p1� � � � � p�K�−1
 =
√
2π√

1T�−11
exp

( 		lnp− �
T�−11
2
21T�−11

)

× 1
���1/2	2π
�K�/2

�K�∏
i=1

1
pi

× exp
(
−1
2
	lnp− �
T�−1	lnp− �


)
�

(23)

Thus it is possible, using the results in this paper, to obtain the form of the
joint distribution of the cell probabilities induced by a multivariate normal
prior placed on the log-linear parameters. Unfortunately, as with previous
approaches [Knuiman and Speed (1988), Dellaportas and Forster (1999)], the
moments for this distribution are not analytically tractable. However, since we
have already derived an explicit expression for both the mean and covariance
matrix of the expected cell counts these will generally be sufficient for the
purpose of prior elicitation. Thus, this problem is largely overcome through
the results presented in this paper.
Another advantage of our approach is that the density given in (23) corre-

sponds to a general multivariate normal prior placed on the log-linear param-
eters. Previous approaches have been limited to special forms of multivariate
normality in order to impose the necessary “sum to one” constraints on the
cell probabilities. Thus, our approach permits a more general family of prior
distributions to be used.
We would argue that knowledge of the distribution of the cell counts is suffi-

cient for the purposes of prior elicitation and this is certainly borne out by our
experience in this area. This paper provides the results required to actually
undertake that process. We derive the form of the prior distribution induced
on the cell counts by placing a general multivariate normal distribution on the
log-linear parameters. We further derive the means and covariances of that
distribution, together with the mean and variance of the prior induced on the
total cell count. In the case of some degree of prior knowledge this latter result
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will often be extremely valuable, as demonstrated in Section 5. We have also
shown that diffuse multivariate normal priors placed on the log-linear param-
eters are consistently diffuse across parameterizations in that they are simi-
larly vague in terms of the induced distributions on the individual cell counts
and on the total cell count. We have discussed how this property is vital in
any realistic application but cannot automatically be assumed. Finally, we
provide an illustration of how our results may be used to aid the process of
prior specification. It is clear that naive placement of priors on the log-linear
parameters can induce implausible priors on the cell counts. In practice this
may have a substantial effect on the results of the analysis. Of course such
an influence should be detected in a routine sensitivity analysis, but without
these results it is extremely difficult to find a prior which truly reflects our
prior beliefs across both parameterizations.

APPENDIX

Proof of Lemma 2.1. From (3) it is clear that Ic1	1
 = 1 since in this case,
k	γ
 = j	γ
 = 1 for all γ, and �Kγ� > 1. Thus, the identifiability constraint
is satisfied by the definition of Icj 	k
 in (3). Now all that remains is the proof
that the definition of Icj 	k
 in (3) satisfies the sum to zero condition in (2).
For c ∈ � 	S
\� and l ∈ �1� � � � � �S�� we have, for some e ∈K,∑
k∈Le

l

Icj 	k
 =
∑
k∈Le

l

∏
γ�Sγ∈c

�� 	k	γ
 = j	γ

 −� 	k	γ
 = �Kγ�
�

from the definition in (3).

= ∑
k∈Le

l

{ ∏
γ�Sγ∈c
γ �=l

�� 	e	γ
 = j	γ

 −� 	e	γ
 = �Kγ�
�

× �� 	k	l
 = j	l

 −� 	k	l
 = �Kl�
�
}

since k	γ
 = e	γ
 ∀ γ �= l
= ∏
γ�Sγ∈c
γ �=l

�� 	e	γ
 = j	γ

 −� 	e	γ
 = �Kγ�
�

× ∑
k∈Le

l

�� 	k	l
 = j	l

 −� 	k	l
 = �Kl�
� by definition of Le
l

= ∏
γ�Sγ∈c
γ �=l

�� 	e	γ
 = j	γ

 −� 	e	γ
 = �Kγ�
�

×
( ∑
k∈Le

l

� 	k	l
 = j	l

 − ∑
k∈Le

l

� 	k	l
 = �Kl�

)
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= ∏
γ�Sγ∈c
γ �=l

�� 	e	γ
 = j	γ

 −� 	e	γ
 = �Kγ�
�

×
( �Kl�∑
k	l
=1

� 	k	l
 = j	l

 −
�Kl�∑
k	l
=1

� 	k	l
 = �Kl�

)

by definition of Le
l

= ∏
γ�Sγ∈c
γ �=l

�� 	e	γ
 = j	γ

 −� 	e	γ
 = �Kγ�
� × 	1− 1


since j	l
 ∈ �1� � � � � �Kl� − 1�
= 0�

Hence both the sum to zero constraint and the identifiability constraint are
satisfied by Icj 	k
 as defined in (3). ✷

Proof of Lemma 3.1. Using the method of induction, we begin with the
case when S = �S1� that is, there is only one source with levels K1 =
�1� � � � � �K1��. Then � 	S
 = ��� �S1��, and we have only the matrices X�

and XS1 to consider. First, we consider the design matrix corresponding to
the constant term X� which is of dimension 	�K1� × 1
. We let x�	k
 be the
element of X� corresponding to cell k, for k ∈ K1, dropping the subscript j
since there are no levels for this term. Then, comparing equations (1) and (4),

x�	k
 = I�	k
 by (10)

= 1 by definition of I�	k
.
We therefore have that

X� = 1�K1� =
�S�⊗
γ=1

� 	Sγ /∈ c
1�Kγ ��

Hence, this matrix has the desired form.
Similarly, XS1 is of dimension 	�K1� × �K1� − 1
, and we denote by xS1j 	k


the element of the matrix corresponding to cell k ∈K1 and source S1 at level
j ∈MS1 . Then,

x
S1
j 	k
 = IS1j 	k
 by (10)

= � 	k = j
 −� 	k = �K1�
 by (3).

We consider three different cases (since j �= �K1� by definition of XS1 ). For
k = j,

x
S1
j 	k
 = 1�
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Similarly, for k �= j and k �= �K1�,

x
S1
j 	k
 = 0�

Finally, when k = �K1�,

x
S1
j 	k
 = −1 ∀ j ∈MS1 �

These first two conditions describe the first �K1�−1 rows ofXS1 with the only
nonzero entries lying along the diagonal. The final condition describes the
final row which consists only of the element −1 across all columns (j-values).
Thus,

XS1 =

 I�K1�−1

−1T�K1�−1


 = L�K1��

This matrix is clearly of the desired form and so the lemma holds for the case
where we have just a single source. To continue our inductive proof, we now
consider the case where we have a general number of sources and examine
what happens when we add an additional source.
Suppose that the lemma holds when there are �S� sources and consider

adding a new source, �Sη� with �Kη� levels to obtain a new set of sources
S′ = S ∪ �Sη�. Note that we shall also express Sη as S�S�+1, with �K�S�+1�
levels, for notational convenience, at times. The set of cells is then denoted by
K′ =K× �k	η
:η = 1� � � � � �Kη�� and we define k′ = �k� k′	η
�. Similarly, for
j′ ∈ Mc, we define j′ = �j� j′	η
�. We let X′c and Xc be the design matrices of
parameter c for the set of sources S′ and S, respectively. The design matrix
X′c is then of dimension(�S�+1∏

γ=1
�Kγ� ×

∏
γ�Sγ∈c

	�Kγ� − 1

)
�

Note that the second dimension of X′c is �Kη� − 1 times larger than that for
Xc if Sη ∈ c and the same size if Sη /∈ c. Similarly the first dimension of X′c

is always �Kη� times larger than that of Xc.
We denote the element of X′c corresponding to cell k′ ∈ K′ and at source

levels j′ ∈ Mc by x′cj′ 	k′
. Then we have that

x′cj′ 	k′
 = Icj′ 	k′
 by (10) which holds for any set of sources

= ∏
γ�Sγ∈c

�� 	k′	γ
 = j′	γ

 −� 	k′	γ
 = �Kγ�
� by Lemma 2.1,

where k′	γ
 and j′	γ
 are the elements of k′ and j′, respectively, corresponding
to source Sγ.
We now consider the two separate cases, depending upon whether or not

Sη ∈ c.
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Case I. Sη /∈ c� If j′ ∈ Mc and k′	η
 ∈Kη, then
x′cj′ 	k′
 = x′cj′ 	�k� k′	η
�
 = Icj′ 	�k� k′	η
�
 by (10)

= ∏
γ�Sγ∈c

�� 	k′	γ
 = j′	γ

 −� 	k′	γ
 = �Kγ�
�

= ∏
γ�Sγ∈c

�� 	k	γ
 = j	γ

 −� 	k	γ
 = �Kγ�
�

since Sη /∈ c and k′	γ
 = k	γ
 and j′	γ
 = j	γ
, ∀ γ �= η
= Icj 	k
 = xcj 	k
� by (10).

Thus,

x′cj 	�k� k′	η
�
 = xcj 	k
 ∀ j ∈ Mc and k′	η
 = 1� � � � � �Kη��
which implies that

X′c =

X

c

���
Xc


 = 1�Kη� ⊗Xc

= 1�Kη� ⊗
�S�⊗
γ=1

[
� 	Sγ ∈ c
L�Kγ � +� 	Sγ �∈ c
1�Kγ �

]
since the result holds for �S� sources

= (� 	Sη ∈ c
L�Kη� +� 	Sη �∈ c
1�Kη�
)

⊗
�S�⊗
γ=1

[
� 	Sγ ∈ c
L�Kγ � +� 	Sγ /∈ c
1�Kγ �

]

=
�S�+1⊗
γ=1

[
� 	Sγ ∈ c
L�Kγ � +� 	Sγ /∈ c
1�Kγ �

]
�

and therefore X′c is also of the correct form if Sη /∈ c.

Case II. Sη ∈ c. For j′ = 	j� j′	η

, then k′	η
 = 1� � � � � �Kη� − 1,

x′cj′ 	k′
 = Icj′ 	k′

= ∏
γ�Sγ∈c

�� 	k′	γ
 = j′	γ

 −� 	k′	γ
 = �Kγ�
� by Lemma 2.1

= � 	k′	η
 = j′	η

 ∏
γ�Sγ∈c\Sη

�� 	k′	γ
 = j′	γ

 −� 	k	γ
 = �Kγ�
�

= � 	k′	η
 = j′	η

Ic\Sηj 	k


= � 	k′	η
 = j′	η

xc\Sηj 	k
�(24)
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Also, for k′	η
 = �Kη�
x′cj′ 	k′
 = Icj′ 	k′


= − ∏
γ�Sγ∈c\Sη

�� 	k	γ
 = j	γ

 −� 	k	γ
 = �Kγ�
�

since � 	k	η
 = �Kη�
 = 1 and j	η
 �= �Kη� by definition
= −Ic\Sηj 	k

= −xc\Sηj 	k
�(25)

Combining the results for these two cases, we obtain:

x′cj′ 	k′
 =



x
c\Sη
j 	k
� if k′	η
 = j′	η
 by (24),

−xc\Sηj 	k
� if k′	η
 = �Kη� by (25),
0� if k′	η
 �= �Kη� and k′	η
 �= j′	η
 by (24).

(26)

The design matrix corresponding to source c is therefore given by

X′c =



x′c	j�1
	�k�1�
 · · · x′c	j��Kη�
	�k�1�

x′c	j�1
	�k�2�
 · · · x′c	j��Kη�
	�k�2�


���
���

x′c	j�1
	�k� �Kη��
 · · · x′c	j��Kη�
	�k� �Kη��





=



Xc\Sη 0 · · · 0
0 Xc\Sη · · · 0
���

���
���

0 0 · · · Xc\Sη
−Xc\Sη −Xc\Sη · · · −Xc\Sη


 by (26)

=

diag	Xc\Sη · · ·Xc\Sη


−Xc\Sη · · · −Xc\Sη


 =


 I�Kη�−1

−1T�Kη�−1


⊗Xc\Sη

=

 I�Kη�−1

−1T�Kη�−1


⊗

�S�⊗
γ=1

[
� 	Sγ ∈ c
L�Kγ � +� 	Sγ /∈ c
1�Kγ �

]

since the result holds for �S� sources

= (� 	Sη ∈ c
L�Kη� +� 	Sη /∈ c
1�Kη�
)⊗ �S�⊗

γ=1

[
� 	Sγ ∈ c
L�Kγ � +� 	Sγ �∈ c
1�Kγ �

]
by definition of L�Kη�

=
�S�+1⊗
γ=1

[
� 	Sγ ∈ c
L�Kγ � +� 	Sγ /∈ c
1�Kγ �

]
�
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Thus we have shown that if the lemma holds for a set of sources S, then it
also holds if we add an extra source, Sη. Since we have already demonstrated
that the result holds when we have just a single source it therefore holds for
any number of sources greater than one, by induction. ✷

In order to prove Lemma 3.2 we first introduce some notation and state
and prove two further lemmas. The first lemma establishes a result which
provides a usable form for the elements of the matrix formed as the product
ofWcd

ij withV
c
i . We then derive the form for the elements of the matrix formed

as the product of xdj with 	xci 
T. Finally, we use these results to show that these
two product matrices are in fact equal, which is the result given in Lemma 3.2.
We begin by establishing a notation for the elements of the product matrices.
For k1�k2 ∈ K, we denote the 	k1�k2
th element of Wcd

ij by wcdij 	k1�k2
,
for c� d ∈ � 	S
 and i ∈ Mc, j ∈ Md. Similarly, we denote by vcdij 	k1�k2
 the
	k1�k2
 element of the matrix Vci . Finally, we let ycdij 	k1�k2
 be the 	k1�k2

element of the product Wcd

ij V
c
i . For notational convenience, when c = �, or

d = �, we will remove the subscript referring to the respective levels of that
parameter. We will also use the convention that if Sη �∈ c, then c\Sη = c, and
similarly for Sη �∈ d.
The first of our two new results establishes the form of the element

ycdij 	k1�k2
. We let S be the set of sources �S1 � � � � S�S�� and let S′ = S∪�Sη�.
We also define Sη = S�S�+1 for notational convenience at times. For c ∈ � 	S′

and d ∈ � 	S′
 we let i′ ∈ Mc and j′ ∈ Md. We use the convention that all
matrices and vectors corresponding to the set of sources S′ are indexed by a
“prime” that is, ′, while all other terms correspond to S.

Lemma A.1. For k′
1�k

′
2 ∈K′, so that k′

1 = 	k1� k′1	η

 and k′
2 = 	k2� k′2	η

,

y
′cd
i′j′ 	k′

1�k
′
2


=




y
	c\Sη
	d\Sη

ij 	k1�k2

× ∑
k′	η
∈Kη

[
acdi′j′ 	k′1	η
� k′	η

gηi′ 	k′	η
� k′2	η



]
� if Sη ∈ c,

y
c	d\Sη

ij 	k1�k2

× ∑
k′	η
∈Kη

acdi′j′ 	k′1	η
� k′	η

� if Sη /∈ c�Sη ∈ d,

ycdij 	k1�k2
� if Sη /∈ c�Sη �∈ d,
where i′ = i if Sη /∈ c and i′ is of the form 	i� i′	η

 when Sη ∈ c, with the anal-

ogous definition for j′. The terms acdi′j′ 	k′1	η
� k′	η

 refer to the 	k′1	η
� k′	η


element of the matrix Acdi′j′ 	η
 and similarly for g.

Proof. We initially consider the matrices W
′cd
i′j′ and V

′c
i′ , and their corre-

sponding elements. We then combine the results to calculate the individual
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elements of the product of the matrices. Let us first consider the matrixW
′cd
i′j′ .

From (7), we have that,

W
′cd
i′j′ =

�S′ �⊗
γ=1

[
� 	Sγ ∈ c ∪ d
Acdi′j′ 	γ
 + 	1−� 	Sγ ∈ c ∪ d

I�Kγ �

]
= [� 	Sη ∈ c ∪ d
Acdi′j′ 	η
 + 	1−� 	Sη ∈ c ∪ d

I�Kη�

]
⊗

�S�⊗
γ=1

[
� 	Sγ ∈ c ∪ d
Acdi′j′ 	γ
 + 	1− I	Sγ ∈ c ∪ d

I�Kγ �

]

= [� 	Sη ∈ c ∪ d
Acdi′j′ 	η
 + 	1−� 	Sη ∈ c ∪ d

I�Kη�
]⊗W	c\Sη
	d\Sη


ij �(27)

since i′ = 	i� i′	η

 and j′ = 	j� j′	η

 by definition.
We now consider the individual elements ofW

′cd
i′j′ for the two different cases,

depending upon whether Sη ∈ c ∪ d.

Case I. Sη ∈ c ∪ d. From (27) we have that,

W
′cd
i′j′ =

([
� 	Sη ∈ c ∪ d
Acdi′j′ 	η
 + 	1−� 	Sη ∈ c ∪ d

I�Kη�

]⊗W	c\Sη
	d\Sη

ij

)

= Acdi′j′ 	η
 ⊗W
	c\Sη
	d\Sη

ij since Sη ∈ c ∪ d

=



acdi′j′ 	1�1
W

	c\Sη
	d\Sη

ij · · · acdi′j′ 	1� �Kη�
W

	c\Sη
	d\Sη

ij

���
���

acdi′j′ 	�Kη��1
W
	c\Sη
	d\Sη

ij · · · acdi′j′ 	�Kη�� �Kη�
W

	c\Sη
	d\Sη

ij


 �

So that the W
′cd
i′j′ can be expressed as a matrix of submatrices acdi′j′ 	m�n
 ×

W
	c\Sη
	d\Sη

ij for m = 1� � � � � �Kη� and n = 1� � � � � �Kη�. For submatrix 	m�n
,

the 	k1�k2
 element, for k1�k2 ∈ K, is just the corresponding element in

W
	c\Sη
	d\Sη

ij multiplied by the given scalar, acdi′j′ 	m�n
. So that we have

w
′cd
i′j′ 	k′

1�k
′
2
 = w

′cd
i′j′ 	�k1� k′1	η
�� �k2� k′2	η
�


= acdi′j′ 	k′1	η
� k′2	η

w
	c\Sη
	d\Sη

ij 	k1�k2
�

(28)

with obvious notational changes if Sη /∈ c so that c\Sη = c, or if Sη /∈ d, so
that d\Sη = d.

Case II. Sη /∈ c ∪ d. From (7), we have that

W
′cd
i′j′ = I�Kη� ⊗Wcd

ij �

and therefore,

w
′cd
i′j′ 	k′

1�k
′
2
 = wcdij 	k1�k2
� 	k′1	η
 = k′2	η

�(29)
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We next consider the matrix V′c
i′ and from (8), we have

V′c
i′ =

�S′ �⊗
γ=1

[
� 	Sγ ∈ c
Gγi′ + 	1−� 	Sγ ∈ c

J�Kγ �

]
by definition

=
[
� 	Sη ∈ c
Gηi′ + 	1−� 	Sη ∈ c

J�Kη�

]

⊗
�S�⊗
γ=1

[
� 	Sγ ∈ c
Gγi′ + 	1−� 	Sγ ∈ c

J�Kγ �

]

= [� 	Sη ∈ c
Gηi′ + 	1−� 	Sη ∈ c

J�Kη�
]⊗Vc\Sηi �(30)

As before, there are two separate cases, this time depending upon whether
or not Sη ∈ c.

Case I. Sη ∈ c. From (30) we have that,

V′c
i′ = Gηi′ ⊗V

c\Sη
i since Sη ∈ c

=



g
η
i′ 	1�1
V

c\Sη
i · · · g

η
i′ 	1� �Kη�
V

c\Sη
i

���
���

g
η
i′ 	�Kη��1
V

c\Sη
i · · · g

η
i′ 	�Kη�� �Kη�
V

c\Sη
i


 �

Thus, V′c
i′ is a matrix of submatrices gηi′ 	m�n
V

c\Sη
i for m = 1� � � � � �Kη�

and n = 1� � � � � �Kη�. For k1�k2 ∈ K, the element 	k1�k2
 of the submatrix

indexed by 	m�n
, is the 	k1�k2
 element of the matrix V
c\Sη
i multiplied by

the corresponding scalar gηi′ 	m�n
. Hence, using k′
1 = 	k1� k′1	η

 and k′

2 =
	k2� k′2	η

, we can write,

v
′cd
i′ 	k′

1�k
′
2
 = gηi′

(
k′1	η
� k′2	η


)
v
c\Sη
i

(
k1�k2

)
�(31)

Case II: Sη /∈ c. Again, using (30),

V′c
i′ = J�Kη� ⊗Vci �

where J�Kη� is the matrix of dimension 	�Kη� × �Kη�
 with each element equal
to unity. Trivially, the 	k′

1�k
′
2
 element of V′c

i′ is therefore given by,

v′ci′ 	k′
1�k

′
2
 = vci

(
k1�k2

)
�(32)

These two separate results providing the elements of the two matricesW
′cd
i′j′

and V′c
i′ can then be combined to find the elements of their product as follows.
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Clearly, the 	k′
1�k

′
2
 element of the product is given by

y
′cd
i′j′ 	k′

1�k
′
2
 =

∑
k′∈K′

w
′cd
i′j′ 	k′

1�k
′
v′ci′ 	k′�k′

2


= ∑
k∈K

∑
k′	η
∈Kη

w
′cd
i′j′ 	k′

1�k
′
v′ci 	k′�k′

2
�
(33)

with obvious notation for k′ = (k� k′	η
).
There are clearly three separate cases, depending upon the sets c and d

and whether or not they contain Sη. Considering first the case where Sη ∈ c,
then substituting equations (28) and (31) into equation (33) gives,

y
′cd
i′j′ 	k′

1�k
′
2
 =

∑
k∈K

∑
k′	η
∈Kη

acdi′j′ 	k′1	η
� k′	η

w
	c\Sη
	d\Sη

ij 	k1�k


× gηi′ 	k′	η
� k′2	η

v
c\Sη
i 	k�k2


= ∑
k∈K

w
	c\Sη
	d\Sη

ij 	k1�k
v

c\Sη
i 	k�k2


× ∑
k′	η
∈Kη

acdi′j′ 	k′1	η
� k′	η

gηi′ 	k′	η
� k′2	η



= y	c\Sη
	d\Sη
ij 	k1�k2

∑

k′	η
∈Kη
acdi′j′ 	k′1	η
� k′	η

gηi′ 	k′	η
� k′2	η

�(34)

by definition of y
	c\Sη
	d\Sη

ij 	k1�k2
.

The remaining two cases (for Sη /∈ c�Sη ∈ d and Sη /∈ c�Sη /∈ d) can be
shown similarly, using equations (28), (29) and (32). ✷

The next lemma provides a similar result, identifying the elements of the
product matrix of xdj with 	xci 
T.

Lemma A.2. We can express the product of element k′
1 of x

′d
j′ , with element

k′
2 of x′c

i′ as follows:

x
′d
j′ 	k′

1
x′ci′ 	k′
2


=




x
	d\Sη

j 	k1
x

	c\Sη

i 	k2


×�� 	k′1	η
 = j′	η

 −� 	k′1	η
 = �Kη�
�

×�� 	k′2	η
 = j′	η

 −� 	k′2	η
 = �Kη�
�� if Sη ∈ c, Sη ∈ d,
xdj 	k1
x

	c\Sη

i 	k2


×�� 	k′2	η
 = j′	η

 −� 	k′2	η
 = �Kη�
�� if Sη ∈ c, Sη /∈ d,
x
	d\Sη

j 	k1
xci 	k2


×�� 	k′1	η
 = j′	η

 −� 	k′1	η
 = �Kη�
�� if Sη /∈ c, Sη ∈ d,
xdj 	k1
xci 	k2
� if Sη /∈ c, Sη /∈ d.
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Proof. Let us examine the case where Sη ∈ c, Sη ∈ d. From (10), we have
that

x
′d
j′ 	k′

1
x′ci′ 	k′
2
 = I

′d
j′ 	k′

1
I′ci′ 	k′
2
(35)

= ∏
γ�Sγ∈d

�� 	k′1	γ
 = j′	γ

 −� 	k′1	γ
 = �Kγ�
�

× ∏
γ�Sγ∈c

�� 	k′2	γ
 = i′	γ

 −� 	k′2	γ
 = �Kγ�
� by (3)

= ∏
γ�Sγ∈d\Sη

�� 	k′1	γ
 = j′	γ

 −� 	k′1	γ
 = �Kγ�
�

× ∏
γ�Sγ∈c\Sη

�� 	k′2	γ
 = i′	γ

 −� 	k′2	γ
 = �Kγ�
�

× �� 	k′1	η
 = j′	η

 −� 	k′1	η
 = �Kη�
�
× �� 	k′2	η
 = i′	η

 −� 	k′2	η
 = �Kη�
�

= xd\Sηj 	k1
x
c\Sη
i 	k2


× �� 	k′1	η
 = j′	η

 −� 	k′1	η
 = �Kη�
�(36)

×�� 	k′2	η
 = i′	η

 −� 	k′2	η
 = �Kη�
��

Thus, the lemma holds for the case Sη ∈ c, Sη ∈ d and the remaining cases
follow similarly. ✷

Proof of Lemma 3.2. We use the method of induction. We assume that
the lemma is true for the set of sources S, and consider the set of sources
S′ = S∪�Sη�. As usual, we use the notation that all the matrices and vectors
corresponding to the set of sources S′ be indexed by a “prime,” that is, ′, while
all other terms correspond to the set of sources S. We establish the result by
considering the individual elements of both product matrices in (9) and show
them to be the same for any combination of cases for Sη being in only c or d,
neither or both. If each of the elements are the same, then clearly so are the
corresponding matrices that they comprise.
We begin with the case where Sη ∈ c and Sη ∈ d. From Lemma A.1, we

have that for k′
1 = 	k1� k′1	η

 and k′

2 = 	k2� k′2	η

, the 	k′
1�k

′
2
 element of

the product W
′cd
i′j′V

′c
i′ , for sources S

′ is given by

y
′cd
i′j′ 	k′

1�k
′
2
 = y

	c\Sη
	d\Sη

ij 	k1�k2


∑
k′	η
∈Kη

acdi′j′ 	k′1	η
� k′	η

gηi′ 	k′	η
� k′2	η



= xd\Sηj 	k1
x
c\Sη
i 	k2


∑
k′	η
∈Kη

acdi′j′ 	k′1	η
� k′	η

gηi′ 	k′	η
� k′2	η

�
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since the result is assumed to hold for the set of sources S. Then, from Lemma
A.2, it is clear that x

′d
j′ 	k′

1
x′ci′ 	k′
2
 = y

′cd
i′j′ 	k′

1�k
′
2
 if∑

k′	η
∈Kη
acdi′j′ 	k′1	η
� k′	η

gηi′ 	k′	η
� k′2	η



= �� 	k′1	η
 = j′	η

 −� 	k′1	η
 = �Kη�
�(37)

×�� 	k′2	η
 = i′	η

 −� 	k′2	η
 = �Kη�
��
Since Sη ∈ c and Sη ∈ d, then

acdi′j′ 	m�n
 =
{
1� if 	m�n
 = 	i′	η
� j′	η

� 	j′	η
� i′	η

� or 	�Kη�� �Kη�
,
0� otherwise,

and

g
η
i′ 	m�n
 =




1� if 	m�n
 = 	i′	η
� i′	η

� or 	�Kη�� �Kη�
,
−1� if 	m�n
 = 	i′	η
� �Kη�
� or 	�Kη�� i′	η

,
0� otherwise,

from their definitions given at the beginning of this section.
To show that (37) is true, we must consider all of the different possible

combinations of the indicator functions on the right-hand side of the equation.
For convenience we set

I1	j′	η

 = I	k′1	η
 = j′	η

� I1	�Kη�
 = � 	k′1	η
 = �Kη�
�
and

I2	j′	η

 = � 	k′2	η
 = j′	η

� I2	�Kη�
 = � 	k′2	η
 = �Kη�
�
The full proof considers all possible combinations of the values of these indi-
cator functions and the corresponding value of the product on the right-hand
side of (37). For clarity, we list all possible values in Table 1 and for brevity
we shall consider only the first case, where k′1	η
 = j′	η
 and k′2	η
 = i′	η
.

Table 1

All possible combinations of the values of the indicator functions of interest and the corresponding
product of �I1	j′	η

 − I1	�Kη�
� × �I2	j′	η

 − I2	�Kη�
�

Case I1	j	η

 I1	�Kη�
 I2	j	η

 I2	�Kη�
 Product

1 1 0 1 0 1
2 1 0 0 1 −1
3 0 1 1 0 −1
4 0 1 0 1 1
5 0 0 0 or 1 0 or 1 0
6 0 or 1 0 or 1 0 0 0

The terms “0” and “1” in the table indicate the value taken by the corresponding indicator function.
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If k′1	η
 = j′	η
 and k′2	η
 = i′	η
, then

acdi′j′ 	k′1	η
� k′	η

 =
{
1� if k′	η
 = i′	η
�
0� otherwise,

and

g
η
i′ 	k′	η
� k′2	η

 =




1� if k′	η
 = i′	η
,
−1� if k′	η
 = �Kη�,
0� otherwise�

This implies that

acdi′j′ 	k′1	η
� k′	η

gηi′ 	k′	η
� k′2	η

 =
{
1� if k′	η
 = i′	η
,
0� if k′	η
 �= i′	η
.

So that ∑
k′	η
∈Kη

acdi′j′ 	k′1	η
� k′	η

gηi′ 	k′	η
� k′2	η

 = 1�

since k′	η
 = i′	η
 exactly once in the sum, and which corresponds to the
value of the indicator function product given in Table 1. Therefore, the result
holds in this case. The remaining five cases in Table 1 follow similarly and
hence for the case Sη ∈ c and Sη /∈ d, (37) is satisfied.
There remain three other cases which work somewhat similarly. In the case

that Sη ∈ c� Sη �∈ d, we need only show that∑
k′	η
∈Kη

acdi′j′ 	k′1	η
� k′	η

gηi′ 	k′	η
� k′2	η



= �� 	k′2	η
 = i′	η

 −� 	k′2	η
 = �Kη�
��
(38)

which can be proved using similar arguments to the previous case. For the
case where Sη /∈ c� Sη ∈ d, we need only show that∑

k′	η
∈Kη
acdi′j′ 	k′1	η
� k′	η

 = �� 	k′1	η
 = j′	η

 −� 	k′1	η
 = �Kη�
��(39)

Both these proofs follow similar lines to the first case described above and the
details are omitted for brevity.
The final case in which Sη �∈ c� d follows directly from the final case of

Lemma A.1, so that

y
′cd
i′j′ 	k′

1�k
′
2
 = ycdij 	k1�k2


= xdj 	k1
xci 	k2
 since the lemma is true for S

= x′d
j′ 	k1
x′ci′ 	k2
 since i = i′ and j = j′ with Sη �∈ c and Sη �∈ d.
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Hence, we have shown that if the result holds for a set of sources S, then
it will also hold if we add a new source Sη, that is,

W
′cd
ij V

′c
i = x

′d
j 	x′c

i 
T�

All that remains of our inductive proof is to show that the result holds when
we have just one source and the general result will follow.
Consider the simple case where S = �Sη�. For k1� k2 ∈ Kη, we have

ycdij 	k1� k2
 is the 	k1� k2
th element of Wcd
ij V

c
i , where c� d ∈ � 	S
 = ��� Sη�,

and i and j represent the level of sources c and d, respectively.
In the case where c = d = Sη, we have,

ycdij 	k1� k2
 =
∑
k∈Kη

wcdij 	k1� k
vci	k� k2


= ∑
k∈Kη

acdij 	k1� k
gηi 	k� k2
 since �S� = 1 and using equation (34)

=




1� if 	k1� k2
 = 	i� j
 or 	�Kη�� �Kη�
,
−1� if 	k1� k2
 = 	�Kη�� j
; or 	i� �Kη�
,
0� otherwise

using the definitions of acdij 	k1� k
 and gηi 	k� k2

= 	� 	k1 = i
 −� 	k1 = �Kη�

 × 	� 	k2 = j
 −� 	k2 = �Kη�


= Ici	k1
Idj	k2
 by (3)

= xci	k1
xdj	k2
 by (10).

The remaining cases (where c = Sη�d = �; c = �� d = Sη; c = �� d = �)
follow similarly. Hence,

xdj	xci
T =Wcd
ij V

c
i�

and the lemma holds for the case in which we have just a single source and,
by induction, for any collection of sources. ✷
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