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LIMIT THEOREMS FOR REVERSIBLE MARKOV PROCESSES

By MiIcHAEL L. LEVITAN AND LAWRENCE H. SMoLOWITZ
Villanova University and Hobart College

Consider a reversible (self-adjoint) Markov process with a discrete time
parameter and stationary transition probability functions satisfying the
Harris recurrence condition. P®)(x, S) denotes the n-step transition prob-
ability function from x to the measurable set S and = is the sigma-finite
stationary measure induced by the above hypotheses. Using both a func-
tional analytic representation for reversible probabilities and probabilistic
identities, various limits are considered for both general and discrete spaces.
The principle result gives necessary and sufficient conditions for sets 4 and
B so that a reversible, aperiodic Markov process satisfies the strong ratio
limit property limm e P +¥)(p, A)/P®(v, B)=n(A)/z(B) where ¢ and v are
arbitrary probability distributions defined on the space and & is any integer.

1. Introduction. Let us consider a discrete time parameter Markov process
{X,, k = 0} with stationary transition probability functions defined on a general
measurable state space (X, &%) where <7 is a separable (countably generated)
Borel field of subsets of X containing single point sets. Furthermore, assume
the Harris recurrence condition

ConpitioN (C). There exists a sigma-finite measure p defined on X with
#(X) > 0 such that for every S e < with x(S) > 0, we have P[X, € S infinitely
often| X, = x] = 1 for all xe X.

This then implies via [1] the existence of a sigma-finite measure = defined on
(X, &), unique up to a constant factor, such that g is absolutely continuous
with respect to 7. Furthermore,

(i) =(S) > 0 implies that P[X, € S infinitely often| X, = x] = 1 forall xe X
(ii) #(S) = §x P™(x, S)n(dx) for all Se <&, n = 0 (Invariance).

P™(x, S) denotes the n-step transition probability from xe X to Se <% for
n = 1, and P®(x, S) is the indicator function of S, denoted y4(x).

The above conditions will be assumed to hold throughout this paper and will
not be mentioned explicitly. In addition, we require in Sections 2 and 3 that
the process be reversible (self-adjoint),.i.e., for all 4, B e &7,

{5 PV(x, A)yn(dx) = §, PV(x, B)r(dx) .
This implies (see [9]) that
§5 P™(x, A)yn(dx) = §, P™(x, B)r(dx) , n=1,2,....
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Reversibility also implies that the number d of “cyclic sets” (see [7]) is either
one or two. After Theorem 2.1, we shall always require the additional hy-
pothesis of aperiodicity (d = 1). .

Our principal result (Section 2) is to obtain a necessary and sufficient con-
dition on sets 4 and B so that a reversible, aperiodic Markov process satisfies
the strong ratio limit property (SRLP)

P“‘”"(‘u, A) _ 7'L'(A)
P™(v, By  w(B)

lim

n—oo

for all probability distributions x and v, all integers & and sets 4 and B satisfy-
ing 0 < n(A4) < o0, 0 < 7(B) < co. In the method of obtaining this result, we
also show that

L P (x, A)n(dy) _ |

lim =
§ 4P (x, A)m(dx)

n—r00

for a reversible (not necessarily aperiodic) Markov process for all 4 € &% satis-
fying 0 < n(A4) < oo.

In Section 3 we consider processes for which the state space X has at least
one atom (see [5]) with respect to z. Certain weaker forms of the SRLP are
shown to hold for reversible, aperiodic processes without assuming the stronger
condition of Section 2. In Section 4 we drop the reversibility hypothesis.

We conclude this section by presenting additional notation and remarks.
Forn>1,

sP™(x, A) = P[X, ¢ B for 1 <k <n, X,eAd|X,=x], A, Becs.
Let & = {C|Ce <%, n(C) > 0 and inf, ., ., p™(x, y) > O for some n} where
p'™(x, ) is the component of P™(x, ) which is absolutely continuous with
respect to 7. It has been shown by Orey [7] that -~/ =+ ¢. Levitan [5] has proven

that there exist sets S; € & such that 7(X — (=, S,) = 0. Furthermore, he has
shown that if the Markov process is aperiodic, then for any T, e &/, U™, T, € &

2. SRLP for a general state space.
NotATION. 7,(A4) = §, P™(x, A)yx(dx), n =0,1,2, ....

THEOREM 2.1. If {X,} is a reversible Markov process, then for Ae <2 with
0 < (A4) < o0 ‘
lim Tamti(A4) =1
T 72n(A)

for all integers k.

Proor. Under the above hypotheses, Sidak [9] has the following represen-
tation:

§4 P™(x, B)yr(dx) = {5 P™(x, A)n(dx) = §1, 1" ,5(dt)

where ¢ is a real function of bounded variation on [—1, 1]. We show that
$44(2) = v(z) is monotonically increasing using the family of projections {E,}
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(via the spectral theorem) as follows: —1 <1, < 1, < | implies that

() — v(t) = ((E,, — E, )24 x4) = ((E, — E, )xa (Eyy — E )x.)=0.
Thus '
T2(A4) — Tanpa(A4) = (L 21 — P)o(dr) = 0
and, furthermore,
2(7ans (A7 3n-o(A) — 72.(4))
= L, {1, 772238 — Y u(ds)v(dr) = 0.
Since 7(A4) > 0, there exists Ce.&” with C C A4 (see Theorem 2.1 of [7]).
Therefore d = 1 or d = 2 implies the existence of an N such that forall2n > N
T(A) = §o P(x, C)n(dx) > 0.

Hence 7,,,4(4)/7..(A) exists for all sufficiently large n and by the above inequali-
ties 1im,,_,,, 75,,4(4)/72.(A) exists. By the Borel-Cantelli Lemma, d = 1 or d = 2
implies that 7, 7,,(4) = oo, and so

oo Tanta(A) = lim, Dik=0 Taks2(A) = lim,_,., [1 + Tansa(4) — To(A)] =1.
72a(4) Dik=0 Tu(A) k=0 Tu(A)

lim, ... 734 5(A)/72.(4) = 1 now follows in the usual manner.
We present the following example to illustrate the fact that ¢ ,,(7) of the above
theorem need not be monotonic if 4 = B with the measure of 4 A B not zero.

lim

ExAMPLE. We define a family of projections {E,} on () with Lebesgue
measure A where X = [0, 1]. We then construct P™(x, A)as in Sidak [9]. Con-
sider a fixed sequence {z,} satisfying 1l = ¢ > ¢ > 1> ... > 0and 3, <4
and also the orthonormal family of functions in (1) given by

fu(x)=1, fi(x) = 2% sin 27jx j=12,...
Then for each fe & (4) define
Ef(x) =0 —1<t<0
=fx) = Ziweifi(*) tau=t<t,m=012,...
= f(x) t=t,=1
where {c;} are the Fourier coefficients of f(x), i.e.,
¢; = B dx, j=0,1,2, ...

Thus we define
P (x, A) = §L " d(E, y4(X)) = Z5=01;"(§a f5(3) dY)fi(x) -
Note that for all x € X, P™(x, X) = 1. Furthermore for 1(4) > 0,
P, A) =2 (41 =22 X, 65 fi(0]dy = §,[1 — 2 5. 1,]dy > 0.
Since §3f;(y)dy = 0 for j = land §, f(y)dy = —§x_.fi(y)dy
Px, A) < §qdx + §x_42 35, t;dx < §ydx=1.



REVERSIBLE MARKOV PROCESSES 1017

Thus P"™(x, A) defined by this family {E,} is a probability function and it is
clearly aperiodic, reversible and recurrent.

§5 PV(x, A) dx = §L 17, 5(dt) = T 70 1;"(§.4f5(x) dx)(§5 f5() dy) -
We see that ¢ ,,(df) = 0 except at t = 0, and ¢ = ¢; where

Pas(dt) = (§.4f5(x) dx)(§5 () dy)

and clearly this quantity may be negative for some values of j. We now ex-
plicitly demonstrate the possible non-monotonic character of ¢,,(¢) for B C A4,
A(A — B) > 0 using the above example with 4 = [1, 1] and B = [}, 1]. Then

P™(x, Ay = 2 — 4 sin 27x — "2 sin 4nx + .-
T T
and
n . t'lb tzn
§5 PW(x, A)dx = g — 510 + 22

+...

and thus
¢A3(dt) = ¢5(t + 0) — ¢5(t — 0) = 1% t=1

=0 L<t<l1
1
:—-2_71'2 l‘:l‘1
=0 L<I< Yy
1
“am Th

We now wish to consider how Theorem 2.1 may be employed in order to
yield information concerning the existence of lim,_,,, P*"+¥(x, A)/P*™(y, B). We
note that the requirement of having 0 < 7(A4) < oo and 0 < 7(B) < co is not
sufficient by considering Example 3.1 of Krengel [4]. In this example, he showed
that lim sup,_,, P(0, 4)/P™(0, 0) = oo although 7(0) = n(A4) = 1 and the dis-
crete space is both aperiodic and reversible.

For the remainder of this paper we assume aperiodicity (d = 1). We now
consider the following condition:

*) Either (1) there exist constants M and N such that for all x e X and all
n= N,

PV, A) oy
Tan(A)

or (2) there exist constants M and N such that for all xe X and all n > N

P(Zn +1)(x, A)

<M
r2n(A)
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REMARK 1. We observe that (1) and (2) are actually equivalent, i.e., (1)
implies (2) using ‘
PeY(x, A) = \, P(x, dw)P*™(w, A)

and (2) implies (1) when reversibility holds by a similar argument.

REMARK 2. (*) is a slight variation of -one of the hypotheses in Jain’s Theo-
rem 3 [2], and we use a similar method to show that in the reversible case, the
conclusion of the theorem is obtained without the requirement of his condition
(F). Furthermore, we somewhat strengthen Jain’s result in the reversible case
by obtaining it for all sets 4 and B satisfying 0 < 7(4) < o0, 0 < 7(B) < o
and (*). Finally, we show that if there exists one set E ¢ & satisfying (*) then
all 4 e & satisfy it.

REMARK 3. We note that the state 0 of Krengel’s Example 3.1 does not satisfy
(*). If it did,

. P™(0, A) _ . P™(0, x)
1 —_— = 1 00 € T v
im sup, ... (0. 0) imsup, .. 2.e4 (0. 0)
= limsup,_.. 2, m(x) P™(x, 0) =M =(A) _ m
ne S 2 0) PM(0,0) T 7(0)

LEMMA 2.1. If n(A) > 0, A€ & then there exists some m such that
r({xe A| ,P*™+V(x, A) > 0}) > 0.

Proor. Let T, = {xe A| P™(x, A) > 0} and assume that 7(7,,,,) = 0 for
all n > 0. Since n(Js_o Tsns1) = 0, invariance implies that 7(C;) = 0 where
Ci = {xe X[ PO(x, Uiz Tonsa) > 0}, i = 0. Thus (U, C)=0.

Due to aperiodicity, for all x € X there exists some odd integer v, such that
P¥o(x, A) > 0. Let A,,,, = {xe 4| P®"*(x, A) > 0}. A = U7~ 4,41, hence,
n(A) > 0 implies that 7(A,,,,) > 0 for at least one n. Let n, be the smallest
value for n such that n(4,, ,,) > 0. For every x e 4, ,, there must be at least
one section of the entire path where x eventually moves from 4 to 4 in 2k + 1
steps without visiting 4 in between, k = k(x). This implies that 4,, ., € U, C;
and thus 7(4,,,,) = 0 which is a contradiction, i.e., there is some m such that
T(Tymi1) > 0.

THEOREM 2.2. A necessary and sufficient condition for an aperiodic, reversible
Markov process to satisfy the strong ratio limit property
Peri(p, 4) _ w(A)

lim,_,,, =
P™(v, B) n(B)

for all integers k, all sets A, Be & with 0 < n(A) < oo, 0 < n(B) < oo and all
probability distributions y and v on X is that A and B satisfy (*).

Proor. Necessity follows exactly as in Jain’s Theorem 3 [2]. To show
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sufficiency, we first show that for all probability distributions . and all integers m

POm=m (11 4) _ lim inf, . 12"_-’& .

r2n(A) ﬂ'-(A) T2n(A)
Note that both sides of the above equation are finite by (*) and Theorem 2.1.
Without loss of generality assume

P(z"_"')([l, A) _ 1 lim infn_.m Bl‘_ﬂ(_ﬁ). g 0.
r2n(A) TZ'(A) Tzn(A)

Denoting the probability measure o(+) = n(+ N A4)/x(A4), we have

P(Zn—m)(#, A) - P(2n—m)(0.’ A)
r2n(A)

§x [PTO(pt, dx) — P0(a, dx)]

1) liminf,

A = liminf,_,

0 <A < limsup, ..,

(2n—m—mny) [
= lim SUp, e _}i_OL&_AZ‘

T2n(A)

< 2M §y [PR0(p, dx) — P00, dx)] .

The Jamison-Orey Theorem [3] thus implies that A = 0.
Next denote a; = liminf, ., 7,,_;(A4)/r.,(A) forj =0, =1, +2,... and observe
that a,,, = a; for all j by Theorem 2.1. Also

P(2n—j—v)(y, A)

a; = liminf,_.. §, 2239 §, ,P?(x, dy) =T m(dx)
> §, N5 §4 Pk, dy) liminf, L, P00 A) 7y
Taa(A)
. 1. ()
= bl PY(x,dy) —lim inf,_,_, Tam-i=\ 1) r(q
§40 200 V4 4P (x, dy) =(A) Tl A) m(dx)
by (1). Thus
a; = Qi &, Ay
where

24

v

1 (v) T
= m‘) §4 4P (x, A)m(dx) .

By Lemma 2.1, there exists m such that a,, ., > 0. Let a, = min (a,, a,); setting
j=i
a; = 20510, 8; + Qo 1(Aiiomir — 45) = @5 + Qo (Aiiamer — Q;)
since )7, «, = 1. Therefore
A = Aipamp = i

implying that a, = a,,,, so a; = a, = 1 for all j, i.e.,
liminf, ., Twn(D) _ 1
TZn(A)

From 7,(4) = {%,t"v(dt) we have 7,,.,(4) — 7,.(4) <0 for all n, so
lim, o, 7ans1(A)72a(A) = 1. lim,_, 7,,:(A)/7.(4) = 1 now follows from Theorem
2.1.
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We now observe that the proof that A = 0 works equally well to show that
P m(p, A) 1

lim sup, _,.. lim sup, .. Tan—m(A4)
Tan(A) (A) T2a(A) .
SO
lim P“‘"”"(y, A) . 1
T r(A) x(A)
Thus
lim, .. P, A) lim, ., PR (p, A)[r.(A) lim,__ 7oA
P™(v, B) P™(v, B)[7.(B) 7a(B)
Writing
7a(4) _ 7a(A) {4 P™(x, B)n(dx)
7w(B)  §2PM(x, An(dx)  7.(B)

by reversibility and denoting r(+) = n(- n B)/n(B),
lim. 7oA _ i (AP0, B)[r(B) _ m(A)/x(B)

—

" 1u(B) T 2(B) P (T, A)fr(A)  m(B)[x(A)

Therefore
lim,_, 200 A) _ x(A)
P™(y, B) n(B)

COROLLARY. A necessary and sufficient condition for an aperiodic, reversible
Markov process to satisfy the SRLP for all sets A, B e .5 is that there exists a set
E € &7 satisfying (*).

Proor. By Jain’s Lemma 2.1 [2], there exist constants j and M, such that
P™(x, Ey £ M, P*+9)(x, A) for all xe X and all n. Thus

ra(E) < My § 5 PH(x, A)(dx) = M, §, P9(x, E)n(dx) < My7ppai(A) -
Since E satisfies (*), lim,_., 7,.1(E)/7.(E) = 1, so it follows that for some M and
all sufficiently large n, P™(x, E)/r,(E) < M for all xe X. Then P™(x, A) <
M, P+ (x, E)y < MM,y, ., (E), for some constant M,. lim,_. 7, (E)/r.(E) =1
implies that for all sufficiently large n

P(x, A) <2MM, 7, oi(E) < 2MMM,7,(A) -
Thus all sets in .&” satisfy (*) and the SRLP follows.
The following results are obtained without assuming (*).

LEMMA 2.2. Let Ae B with0 < n(A) < oo and v be some finite measure defined

on X. Then if there exist a set B e <& with n(B) > 0 and integersr, sand t such that
2n—2r n—2s

liminf, 2777004 > L diming, P00 A) S 1

Tan(A) () Tau(A) ()

for all y e B and

PerO(z, A) _ o(X)

)
TSP Ty = ()
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then for all integers k
P(z"_t—zk)(‘l', A) _ T(X)
) A
Proor. Leta(x) = liminf, . P®~9(x, A)[r,,(A) for j =0, +1, +2, ... and
observe that a;, ,(x) = a,(x) for all j by Theorem 2.1.

e P(v)(x dv)P(Z'n i— v)(y’ A) P(2n J)(x A)
a,(x) = lim inf,_,, [Zz i1, B + 2
’ TZn(A) r2n(A)

lim

n—00

= 2o Ve 2 PY(x, dy)ag, (1)
2— 1 1; 1 BP“))( B) 1
7(A) m(A)

for all xe X and all j. We get the desired result by applying Theorem 2.1 and
Fatou’s Lemma to P*"~‘~%)(z, A)/r,,(A).

COROLLARY. If A satisfies the hypothesis of Lemma 2.2 along with © and o, two
finite measures on X with respective integers t and t', then for all integers k

Per—t=m(r, 4) _ 7(X)

lim .
Pt (g, A)  o(X)

n—00

THEOREM 2.3. Let Ac <5 with 0 < n(A) < oo. If there exist a set B € <5 with
n(B) > 0 and integers r and s such that

Pon(y, ) o1 and  liminf,_, P00 A) 5 ]
T2n(A) 7(A) T2n(A) (A)
for all y € B, then for all integers k
lim, ., Tn+k(A)
74(4)
ProoF. As in Theorem 2.2, for n sufficiently large 7,,,,(A4)/7,,(4) < 1. Letting

7(+) = a(- N A) in Lemma 2.2, we have lim,_ 7,,,,(4)/r:.(4) = 1. This, to-
gether with Theorem 2.1 yields lim, ., 7,,4(A4)/r.(4) = 1.

lim inf,

3. A space with one or more atoms.

THEOREM 3.1. Let {g} be an atom (see ([S]) of X. Then for all A, Be .~ and
all integers k

(i) lim,_, P**%(x, A)/P™(y, B) = n(A)/x(B) in measure m, x m, on (X x X,
B w £7), where w and n, are any finite measures on X withn, & ©, m, & «.

(i) lim,_ ., P (u, A)|P™(v, B) = n(A)/m(B) for any probability measures p
and v on X with p L wn, v L =, du/dr and dv|dr bounded with supports in &

Proor. We first observe that lim,_, P*""®(q, q)/P"™(q, q) = 1 (denoting {g}
by ¢). This follows by using the method of Theorem 2.2 and letting g play the
role of 4. (That is, a; = liminf,__ P*~4(q, 9)/P*"(q, q) = 215 P9, 9)a;,,
and with Lemma 2.1 we have a; = 1 for all j). (i) now follows from Corollary
3.4 of Levitan [5] and (ii) from Corollary 3.3 of Lin [6].
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CoroLLARY 1. Let {q} be an atom of X. Then for all A, B, C, De .5 and for
all integers k
{4 P(x, Byr(dx) _ n(A)n(B)

lim,_,, .
§¢ P™(x, D)r(dx) 7(C)n(D)

ProoF. Define the probability measures p(.) = n(- n A)/x(A) and v(+) =
m(+ N C)/x(C) and apply (ii) of Theorem 3.1.

REMARK. Krengel’s set A of Example 3.1 [4] is not in .&”. This is shown by
noting that for any fixed m, there exist points (r, a,), (s, a,) € A with z((s, a,)) > 0
such that P™((r, a,), (s, a,)) = 0 implying that p'™((r, a,), (s, a,)) = 0.

From [5], we know that there exist sets 4, ¢ & such that lim,_,, 7(4 — 4,) = 0.
Thus, although 0 € .&” implying that lim, ., P"+¥(0, 4,)/P™(0, 0) = z(A,)/=(0)
for all i and for all k, lim,_., P™(0, 4)/P™(0, 0) does not exist.

CoROLLARY 2. Let {g} be an atom of X. Then for all A e " and for all integers k

lim, . Taes(A) _
74(A4)

CoROLLARY 3. If X is a discrete space then for all A, B e.&” and for all integers k
P('n+k)(x, A) n(A)

lim,_,,, .
P™(y, B)  =(B)

REMARK. This result has been obtained in Corollary 3.5 of Levitan [5] under
weaker hypotheses.

In the discrete case, we may strengthen Lemma 2.2.

LEMMA 3.1. Let Ae B with0 < n(A) < oo and t be some finite measure defined
on the discrete space X. Then if there exist x € X and integers r and s such that

2n—r 2n—s
Poo(x, A4) o and  limsup,_, PEo(e, A) o o(X)

Ta(A) T w(A) ra(4) T 7(4)

then for all integers k

lim inf,_,

Pt 4) (X))
rw(d) O a(d)
Proor. Let a;(x) = liminf,_, P*"~9(x, A)/r,,(A). Following the proof of
Lemma 2.2 with B = {y} we have
) a,(x) Z L, PU(X, 1)8544(0)
for any x, y e X.

lim

N—00

Letting y = x, for some odd v, ,P®(x,x) > 0 by Lemma 2.1. For a,(x) =
min (a,(x), a,(x)) we have

am(x) g am(x) + [am+l(x) - am(x)] :cPW)(x’ X)

implying that a,,,,(x) = a,(x) = a,(x) for all xe X. From (2) we therefore have
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a,(x) = a,(y). Interchanging the roles of x and y yields a)(x) = a,(y) for all
x,ye X. Hence for all xe X, ayx) = 1/x(4). The result now follows as in
Lemma 2.2.

COROLLARY. If A satisfies the hypothesis of Lemma 3.1 along with = and ¢, two
finite measures on X with respective integers t and ', then for all integers k
P(2n—t—2k)(z-’ A) _ T(X)

PG, 4)  o(X)

THEOREM 3.2. Let Ae <% with 0 < n(A) < oo and the space X be discrete.
Then if there exist x € X and an integer t such that
PenO(x, 4) o 1

Tu(A)  — w(4)

lim

n—00

lim inf,__,

then for all integers k

lim, . Toee(A) 1
7a(A)
Proor. This follows the proof of Theorem 2.3.

Remark. A sufficient conditon for lim,_,, 7,,.(4)/7.(4) = 1 in Theorem 3.2
is that either

(i) there exist x € X and an integer ¢ such that for infinitely many n,

B Po(g 4) ) < P, a)
w(4)

where 4 = {¢q,,i = 1,2, ...}, or
(ii) there exist x € X and an integer ¢ such that for infinitely many n,

Pav(q,, A) < P=9(x, A) for all g,e 4.

Note that for each fixed n, there obviously exists a point x(n) € X satisfying the
inequality in (i) with ¢+ = 0.

4. Space without the reversibility hypothesis.
NOTATION. 0,(A4, B) = §, P™(x, B)n(dx),n=10,1,2, . ...
THEOREM 4.1. The existence of G € & satisfying both (*) and

lim Tn1(G) =1

T 1dG)
is a necessary and sufficient condition for
(n+k)
lim, .., P, A)
P"’”(p, A)

to hold for all probability distributions y and v on X, all A€ & and all integers k.
Proor. Necessity follows as in Jain’s Theorem 3 [2]. Writing

P(n+k)(x’ A) P(n+k)(x’ A) P(n+j+k)(x’ G) 7,”+j+k(£;2 Tn—j(G)
0,(G, A) Pr+ito(x, G) 1,y i06(G) Tu-i(G) 0,(G, A)
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for any integer k and fixed integer j to be determined later, we are able to show
that there exists M such that for sufficiently large n, P+ (x, 4)/6,(G, A) < M.
The first and fourth terms on the right side of the above equation are uniformly
bounded for all xe X via Jain’s Lemma 2.1 [2] (thus determihing J). The
second term is uniformly bounded by (*) and the third term is bounded since
lim, ., 7,,1(G)/7.(G) = 1. Proceeding as in Theorem 2.2, we may write without
loss of generality

0<A=liminf,_, 204 1 [ 0(GA)
3G, 4)  (G) 3,(G, A)
. P(n—no)(x, A)
< limsup,_. P™otD(y, dx) — P™)(g, dx
= p'n SXI (# X) (0 )l an(G, A)

where g(+) = n(+ N G)/=(G). Since P*"~"(x, A4)[d,(G, A) is uniformly bounded
on X, we may apply the Jamison-Orey Theorem to show that A = 0. Cor-
responding results hold for lim sup, .., P""*V(u, 4)/0,(G, A) and we have

P("'H')(ﬂ, A) . 1

lim = .
0,(G, A) 7(G)

n—00

Similarly,
P™(p, A) 1

f(—n+k)(ﬂ’ A) 1
" 6,(G, A n(G) )

and so lim, _, —— ¥ —
P™(y, A)

lim

in order to extend Theorem 4.1 to obtain the SRLP, we have the following:

DeriniTION. A Markov process will be called weakly reversible if there exists
a set C e .57 such that for all 4e¢.&”

3,(C, A) _

lim =
0,(4, €)

n—oo

THEOREM 4.2. If there exists a set G € &7 satisfying both (*) and

lim,_ 7=x1(Q) _ g
74(G)

and in addition the Markov process is weakly reversible, then for all probability
distributions # and v on X, all 4, Be.%, and all integers k
PO, A) _ w(A)

lim,_,, = .
P™(, B)  (B)

Proor. For any A4de.S, let o, = n(. n A)/n(A). Then 4,4, C)=
z(A)P™ (o ,, C).

Pobi(u, A)  3,,u(C A) 3,.(A4, ) 3,,(G, C) 3,,4(C. G)  714:a(G)
P™(v, B) P™(v, B) 4,(C, B) 6,(B, C) 6,(G, C) 3,(C, G)r )
3,(C, B) 3,(B, C) 0,(G, C) ,(C,G) 1,(G) "

P, 4) 3,,4(C, 4) 0,44, €) 3,4, €) 3,.(C.6)
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The result now follows using Theorem 4.1, the weak reversibility condition and
the hypothesis on G.
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