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LIMIT THEOREMS FOR SOME STOCHASTIC
EVOLUTION MODELS!

By HArRrY A. GUESs
University of Rochester

Limit theorems are proved for two stochastic models of molecular evo-
lution in finite populations of fixed size. An additive fitness model is shown
to be asymptotically neutral in the sense that the relative fitnesses converge
in probability to one and the gene frequency distribution converges to the
same limiting distribution as when all mutations are selectively neutral.
A multiplicative fitness model is studied and weak convergence theorems
are proved for the vector whose components are the fitnesses of individuals
in the population.

1. Introduction and summary. We present a mathematical description and
analysis of models incorporating the combined effects of genetic drift and natural
selection, acting on a finite population of constant size undergoing repeated
mutations. The mutations alter the relative reproductive capacities (fitnesses)
of the individuals in which they occur. The main genetical motivation is the
work of W. F. Bodmer and L. L. Cavalli-Sforza (1972) on mathematical models
of molecular evolution in finite populations of fixed size and I. Eshel (1972) on
evolution in infinite populations.

Two models are considered. In the additive fitness model, each mutant is
assigned a fitness equal to the sum of its parent’s fitness and a random fitness
change, the sum being suitably truncated so that the resultant fitness remains
positive. Thisisthe form of the model introduced by Cavalli-Sforza and Bodmer,
who took the fitness changes to be independent identically distributed (i.i.d.)
normal random variables and studied the model using computer simulation.
When the fitness changes are i.i.d. random variables with nonnegative expected
value and finite second moment, this model is shown to be asymptotically neutral
in the sense that the relative fitnesses converge in probability to 1, and the gene
frequency distribution converges to the same limiting distribution as one gets
when all mutations are selectively neutral. The explicit form of the limiting
gene frequency distribution for the diffusion approximation to the additive model
in the neutral case was first deduced heuristically by W. J. Ewens (1972) and
was rigorously established by Karlin and McGregor (1972).

In the multiplicative fitness model, the fitness of each mutant is the product
of its parent’s fitness and a random fitness multiplier. The fitness multipliers are
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STOCHASTIC EVOLUTION MODELS 15

assumed to be independent identically distributed positive random variables,
whose logarithms have finite positive second moments. The change in the fitness
distribution from one generation to the next is determined by natural selection,
mutation, and random sampling of gametes. By exploiting a regenerative process
embedded in the distribution of fitnesses of individuals relative to the population
sample average fitness for each generation (the relative fitness process), limit
theorems for the behavior over time of the population fitness vector and the
vector of log fitnesses are obtained.

2. Description of the evolution models. It is assumed that at a certain locus
in a monoecious haploid population of fixed size N, alleles from the infinite se-
quence A;, 4,, --- can occur. In any generation, a gene will mutate with prob-
ability ¢ (0 < ¢ < 1) to form an entirely new allelic type not currently or
previously existing in the population.

Let W, = (W,,, - -+, Wy,) be the random vector whose components are the
fitnesses of the N genes in the nth generation, relative to those in the —Ist
generation. We call {W,},._, the fitness process. Let W,, = (1/N) 3%, W,, be
the sample average fitness in the nth generation, and let X, = (1/W,,)W, be the
random vector of relative fitnesses in the nth generation. We call {X,},._, the
relative fitness process.

The (n 4- 1)st generation is produced from the nth generation in two stages
as follows. Given W,, we choose, with replacement, N independent samples
W oms +++» Wawa according to the distribution

PWozn in n
(o = Wonl LW N

Each individual W, ,,, mutates independently with probability x to form an
entirely new allelic type not currently or previously existing in the population.
An individual which does not mutate retains the type and fitness of its parent.
A mutant is assigned a new fitness stochastically as described below.

For each realization w of the additive fitness process, we set

th+1(w) = WO(i)n(w) + Ain-!—l(w) lf Wo(i)n(w) + Atn+l(w) > O ’
=7r>0 otherwise ,

where the random variables A,, are all independent identically distributed i.i.d.
random variables and where 7 is a fixed positive constant. The constant y is
needed to avoid zero or negative fitnesses which could cause the relative fitnesses
to be undefined. In all cases discussed in this paper, the value of y > 0 plays
no important role in the asymptotic behavior of the process. Cavalli-Sforza
and Bodmer took y = .0001. '

In the multiplicative fitness process, we set

W, v

in+l — o(i)nVin+1 9

where the random variables v,, are all i.i.d. positive random variables.
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Note that in the additive fitness model, a value of A = 0 is assigned to a
nonmutant, and in the multiplicative fitness model, a value of v = 1 is assigned
toa nonmutant. We let W, , = (1/N) ¥7_, W,,,, be the sample average fitness
in the (n + 1)st generation after reproduction but prior to mutation. Recall that
W, ... designates the sample average fitness in the (n 4 1)st generation after
mutation.

When there is only one allele present after the sampling process by which
generation n is produced from generation (n — 1) but prior to the mutation

process in generation n, we say that generation n is a monoallelic generation.

When generation n is monoallelic we have W, ,,,_, = «-- = W, .., = W,. As
a convenient normalization we take W, _, = 1 = X, _; so that generation 0 is a
monoallelic generation. Let T, = 0 and let T, T,, - .- denote the successive

monoallelic generations. Let N(n) = max (k: T, < n). Then T, is the time
of the last monoallelic generation up through generation n. In the multiplicative
model, but not in the additive model, {T,};., is a discrete renewal process with
renewal function N(.). The following elementary lemma applies to both the
additive and the multiplicative models.

LeEmMmA 1. P(n — Ty, > m) < (1/r)(1 — r)™** for all n,m =1, where r =
(1/N)*1.

ProOOF. P((n + 1)st generation is monoallelic | nth generation) = YV, (X, ./
N)Y = (1/N)* =r > 0. Hence P(T, < o) =1 for each n, and we have
T, —T, ., >m|T, , =)l —-—nN"foral0<j<n—1, m=0,n=1.
Thus

Pn — Ty, >m)= 35 Pn—T,>mT, =n< T,
= Z?;g’—l ZI{=0 P(Typy >n | T, = j)P(Tk =J)

é _1__(1 — r)m+l’
r

where empty summations are equal to 0.

3. Additive fitness model. We prove that when E(4,)) > 0and 0 < E(A}) < oo,
the relative fitnesses converge to one in probability and the distribution of the
number and frequencies of distinct alleles present in the population converges
to the same limiting distribution as when all mutations are selectively neutral.
Thus the additive fitness model of Cavalli-Sforza and Bodmer will be seen to
be “asymptotically neutral” in the above sense.

THEOREM 1. If E(A) = 0 and 0 < E(A}) < oo, then, as n — oo,
max, gy W .

in
min, ;v W,

in

—pl

and
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Proor. Let
Bn = {CU: [WTN(,,) - (n - TN(n))(lminléiSN,OS:'Sn—l Awl)] > 0}

_ {a): [1 —(n— Ty ( 30515005501 B >( . ﬂ > 0} ’

3
n TN(n)

On the set B,, we have

(1) < max,g;cy Win >
min,g;<y Wi,
< WTN(.,L) + (n = Tyi)(MaX gicy ogizn Bl +7)
Wi — (0= Tye)(Iming gy ogicn )

1+ (n— Tywm) (Max, g, < 05isn-1 |Aij| +7) < _"* )

= nt WTN(n)
1 —(n— Ty (Imin,g;gy,0gsn-1 Bil) < _”* )
" nt W
n)

Since the A,,’s are i.i.d. with E(A%) < oo, it follows from the Borel-Cantelli
lemma that

2 lim, ., Psisrosises Bl _ o ass.,
n

and

3) lim, lmin‘“““’f"”“ Asl =0 a.s.
n

If we let Uy =0 and U,,,, = [U, + A,]* for n = 0, then it is intuitively
clear from the definitions of U,, and W,, that for each x = 0,

(4) P(Winéx)éP(Uinéx)‘

A proof of (4) is given below in Lemma 2. From standard theorems on
random walks [Feller (1966) page 197], we know that U,, has the same distri-
bution as max (S,, S,, - - -, S,), where S, = 0and S, = }7_,4,,. Hence when

E(A,) = 0 and 0 < E(A}) < oo, we have [Billingsley (1968) page 72]
lim,_o+ lim sup, .., P (gnl*l < e) =0,
which, together with (4), implies
(5) lim,_, lim sup, .. P <7”;1_ < e> =0.
Now
Win £ Wry + (1 — Tya)(MaXigigy 05501 [Bis] +7) 5

and, by (2) and Lemma 1,

(n — Tywm) (MaX,gignosign-18iil +7)

5 ——)PO;
n

so, by (5),

W
lim,_+ lim sup, ., P <_Ti‘”"_’ < s) =0
n
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and

3
lim,,__. lim sup, ... P< IS M) —0.

TN(n)

Hence

(n — Ty (Iminy gy o sa1 Bijl) < _”& >“*1>0 .

3
n TN(n)

This implies that P(B,) — 1, and the theorem now follows from (1).
It remains to establish (4). If X and Y are two random variables we write
X C Y whenever P[X > 1] < P[Y > ¢] for all ¢.

Lemma 2. (U,) C k(W) for every non-decreasing Borel measurableh: R ¥ — R'.

Proor. Since U; = (0, ---, 0)and W,, > Oa.s., the assertion holds for n = 0.
Suppose it holds for n. Let any such 4 be given, and let g(y) = P(&(U,,,) <
x| U, =y). Then g is Borel measurable, and —g is non-decreasing in y; so by
the induction hypothesis, —g(U,) c —g(W,). Hence

P(h(U,.,) = x) = E[g9(U,)] = E[9(W,)] -
But W,, > 0 a.s. for each i, and, as is easily seen,
90) = P(i(U,11) = x| U, = y) = P((W,0) < x| W, =)
for y = 0. Hence
E[g(W.)] = E[P(R(W,1,) = x| W,)] = P(h(W, 1) = %) .

So a(U,,,) C K(W,,,), and the proof is complete.

Taking A(x,, - - -, x) = x, yields U,, c W,,, so P(W,, < x) < P(U,, < x) for
all x = 0. This establishes (4).

To prove that the distribution of the number and frequencies of alleles present
converges to the same limiting distribution as one gets under selective neutrality,
we introduce some additional notation.

For the additive fitness process, let Z, = (k; n;, - - -, n,) be the vector giving
the number k of distinct alleles present in the population in the nth generation,
together with their frequencies n,, - - -, n,, which satisfy n, + ... 4 n, = N.
Let Y, be the corresponding vector for a process in which all mutations are
selectively neutral (A, = 0), and let S be the finite state space of the processes
Z, and Y,. Since Y, is an aperiodic irreducible recurrent finite state space
Markov chain, it has a limiting distribution. Let Y be a random vector with
this limiting distribution. For s, s,€ S let P{, = P(Y,,, = 5|Y, = 5) and
= P(Y =ys)=Ilm,, P; . Foreachd> 0, we define

T

8 n—oo

A, = {xeR+N: MaXisusv X < 1 4 5; min, ;v X, >1 -8 %> L} ,
x - X - 0

=

where ¥ = (1/N) 30, x,.
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LeEmMA 3. Foreach sy, s, S, each k = 1,2, ..., and each ¢ > 0, 39 > 0 such

that
|P(Z, = 81| Zy = 55 Wo) — Pfosll <e
for all W,e 4,.

Proor. The proof is by induction on k. When k =1, and s, s, are fixed
states in S, P(Z, = s,|Z, = s,;; W,) is a polynomial in the relative fitnesses
Xy = Wi/Wy. When X, = ... X, = 1, the value of the polynomial is P}, .
Hence the assertion holds for k = 1, since polynomials are continuous.

The remainder of the proof is carried out using the Chapman-Kolmogorov
equations for the homogeneous Markov processes (Z,; W,) and Y,, together
with the easily established fact that, given 4, e > 0, there exists a d, with
0 < 0, < o such that P(W, ¢ A;| Z, = 53 W) < e for all W, e 4, .

THEOREM 2.
lim PlZ, =5 |Zy= sy Wy} = T,

n—o0

for all s, s, € S and all W,

Proor. Let ¢ > 0 be given, and choose k, such that for k = k,, |P, — 7, | <
¢/4 for all se S. By Lemma 3, 36 > 0 such that

13
|P(Zy, = 51| Zy = 53 Wo) — P':21| < 4
for all W, e A,. Since the process (Z,; W,) has a stationary transition function,
we have

&
|P(Zn+k0 = sllZn =95 Wn) - ﬂsll < 7
for all W, e A,, all n = 0. Hence

€
\P(Zysy = 512y = s Wo) — m, | < 5 + P(W, ¢ 4,1 Z, = s Wy).

By Theorem 1, lim, ., P(W, ¢ 4,|Z, = 5,; W) = 0; hence for all n sufficiently
large,
|P(Ziy = 811 Zo = 803 Wo) — 7, | < e,

and Theorem 2 follows.

Although, as has just been shown, (Y,, X,) —_ (Y, [), this limiting distribution
is not a stationary distribution for the additive process, and in fact the process
has no stationary distribution. Neutrality is approached but is never actually
attained.

In the additive fitness model, changes in relative fitness become progressively
smaller as the population average fitness increases over that of the original type.
The foregoing discussion shows that this assumption leads to a degenerate relative
fitness distribution as long as W, increases rapidly enough to take care of stoch-
astic fluctuations in the A’s. If we assume that the fitness changes act multiplic-
atively rather than additively, then changes in relative fitness are not diminished
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with increasing population average fitness. In what follows we investigate the
multiplicative fitness model more fully.

4. Multiplicative fitness process. Let (Q, <%, P) be a fixed probability triple
on which is defined a multiplicative fitness process as described above with
0 < E(log*v) < co. It follows from the proof of Lemma 1 that P(T,_, — T, >
m) < (I — r)™ where r = (1/N)”-1. Hence

(6) E[(T,.,;, — T)"] < o0 forall n=1,2, ..., and all k.

Let &, denote the sub-g-field of <2 generated by W,,, W,,, and v,; for
1<i<N, 0<k=<n—1,0<Zj<n—1. Then each T, is optional with
respect to the increasing sequence of g¢-fields &,, n > 1. At each generation
Ty, wehave W, = - =W,y 1 = ers and so X, has the same dis-
tribution as X,. Since the fitness of each mutant is a multiple of its parent’s
fitness, with the fitness multipliers being i.i.d. positive random variables, the
relative fitness process starts over at each generation T,. In other words, the
random vectors

7, = (T, — T,y XTk_l’ Tt XTk—i) ’ k=1,

are i.i.d. Similarly, the random vectors

%k:<Tk —T,c_l;W__Tk_—lL, ceey fVTk ),
WTk_l WTk—l
are i.i.d.
Proofs of these results are analogous to those given in Chung [(1968) Chapter

8] and Iglehart (1971a).

LemMA 4. The process {X,} converges weakly to a probability distribution on R_~.
The limiting distribution is non-degenerate as long as the distribution of the fitness
multiplier v is non-degenerate.

Proor. This is a direct consequence of the discrete renewal theorem [Feller
(1957) page 291]. We have for each Borel set 4 in R, 7,

PX,e ) =P(X,e 5T, >n) + 27, P(X, e A|T, = )P(T, =),
and, for1 <j<n,
P(XneA|T1 :]) — P(XT1+(n—j)eA|T1 :]) .
The event [T, = j] is in the o-field Z#(7/)) generated by 7/, and the event

[X7 4 n-j € A] is in the o-field Z5(Z/,) generated by 7/,. Since these o-fields are
independent, we have that, for 1 < j < n,
P(XT1+(n—j) eA I T, = ]) = P(XT1+(n~j) €A = P(Xn—j €A).
Hence
PX,e A) = P(X,e 45T, >n)+ 27, P(X,_;€ A)P(T, =),
and so by the discrete renewal theorem, since P(T; = j) > 0 for each j,

1

lim,_., P(X, € 4) = )
1

dmo P(X,, € 4, T, > m).
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It is clear that lim,_,,, P(X, € 4) defines a probability measure on R, ¥ and that the
distribution is non-degenerate as long as the distribution of v is non-degenerate.
We now define the stationary relative fitness process {¢",},-, and the limiting
fitness process {777}, =, as follows.
By enlarging the given probability triple (Q, <5, P) if necessary, we may let
{7 ,}.=0 De a multiplicative fitness process defined on (Q, £, P), with repro-
duction as specified in Section 2 and with initial distribution

P(7, e A) = lim,_,, P(X, € A)
for each Borel set A C R.Y. We define {7,},., to be the relative fitness process
associated with { 777,},..,. Since (1/N) 1%, X, (») = 1, wehave P(77,, = 1) = 1
so P(:¢, = 277y) = 1, and the distribution of 227 is also given by

P(:0 e A) = lim,_, P(X, € A) .
It will be shown below that the process {-77,},., is strictly stationary.

LemMMA 5. Iff: R, — R'is nonnegative or bounded and is Borel measurable, then

o> 1 :
(7) E(fiet) = F(T—l) E{ 254 (X))} -
Proor. If fis an indicator function of a Borel set 4 C R, %, then by Lemma
4 and the definition of .27,

E(fL09) = P(2ye A) = RIT—) S P(X e A, Ty > k)
— 1 oo
= E(T) 2ii=o Sirysi f(X,) dP
1 1

— ——-~E(T1) Ssz Zféglf(Xk) dP = BTy E{Z,Z‘ilf(xk—l)} .

By linearity, the result applies to any nonnegative Borel measurable simple
function. If fis any nonnegative Borel measurable function, then there is a
sequence of nonnegative Borel measurable simple functions {f,} such that
fu(x) T f(x) Vxe R, V. Applying the preceding result to each f, and using the
monotone convergence theorem on both sides yields (7).

CoroLLARY 1. Jf f: RV — R' is bounded and Borel measurable, then
lim, . U St f(Xe) = E(f(C6) s

LeEMMA 6. The process {27} is strictly stationary.

Proor. Since {X,} is a Markov process with stationary transition function,

P(Xm+'n+k € Ak’ Tt Xm+ne AOle = ') :/(°)
is a nonnegative Borel measurable function 7,V not dependent on m, for each
fixed n and fixed Borel sets 4,, ---, 4, in R, V. So by Corollary 1,

. 1
(8) llmr—»oo _7 Z:n:l P(Xm+n+k € Ak’ X

m+mn

€ A,| X,,)

= E(f(-:2%) = P(Z e Ay, -+, 0, e 4) as.
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Hence
limr—wo % Z:n=1 P(Xm+n+k € Ak’ Tt Xm+'n € AO)
=E {limr—'m “‘1“‘ Z:n=1 P(Xm+n+k € Ak’ T Xm+‘n € AOIXm)}
r

=P €A, -, € A).
But
limr—»oo ‘;‘ Zrm=1 P(Xm+n+k € Ak’ Tt Xm+n € AO)

. 1
= hmrﬂoo 7’ Z:n=1 E{P(Xm+n+k € Ak’ ] Xm+n € AO | X1n+'n)}

- E{lim"'”L P P(Xpy €4y, -0, X € AolXj)}
r

. r 1
—E {hmw [(” ﬂ: >FT7 S P(Xy, € Ay -0 X, € Ay] X))

1
—72321 P(X,,; € Ay "‘szer|Xj)]}
=P, €Ay, -, Z5€ Ay

by the same argument as was used to obtain (8).

Thus for all n, (2,,,, ---, &Z,) has the same distribution as (%, - - -, %),
so the process is strictly stationary.

The following theorem provides a method by which the limiting relative fitness
distribution can be computed in terms of the distribution of the fitness multiplier

v. Let v, ---, v, be N independent samples with the distribution v and let
v = (1/N) 2 X, v,. Letx, yand z denote projection on R, ¥~* of points in the
unit simplex in R,¥. Thus x = (x;, -+, xy_;) where 0 < x, < 1, x, + -+ +

xya=l,andx, =1 —(x;, + -+ + xy_,). Weset
Fx) = P(ZWN< x;,i=1, .-, N—1)
K(x) = PWJNT < x,,i=1, .-, N— 1)
K (% p) = Zo APl Yo/ 31V Yoy S X 8 =1, oo, N = 1[I0 yos}
and
K" (x, y) = § K (x, 2)Ki(dz, y)

where the summation of the definition of K,! extends over all NY — N possible N-
tuples {a(1), - - -, 6(N)} formed by sampling without replacement from {1, - . ., N}
such that not all ¢(j)’s are equal.

THEOREM 3. .
Flo) = K + B2 § Ki pKi(dy)
K1) + X2, § K1, y)Ki(dy)
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Proor. By Lemma 6,

F(x) = P(Z,N<x,i=1,---,N—1)
= P(#ZYN<xpi=1,---,N—1 and o(1) = --- = a(N))
%) + P2 N x,i=1,...,N—1 and not all ¢(j)’s are equal)
= Ki(x) § Z5p, F(dy) + § Ki'(x, y)F(dy)
= cK,(x) + § KMx, y)F(dy) where ¢ = NE[(:Z7,/N)"] .
Also, Ky(x,y) <1 — 3%, p¥ <1 — r where r = (1/N)"~!, and by induction

K,*(x,y) < (1 — r)*. Hence §{ K,"(x, y)F(dy) < (1 — r)*. It follows that upon
iterating (9) and taking a limit we get

F(x) = [K(x) + X% K'(x, y)Ki(dy)] -

Since F(1) = 1, 1/c = K,(1) + X, § Kii(1, y)K,(dy) and the theorem follows.
We next establish several elementary results which will be used in proving
convergence theorems for the fitness process.

Lemma 7. E(|log W, ') < co.

PRrOOF.
- min, oy v, < W, <[5 maX, g,y v

n =

15—1
for each k, and hence for each realization of the process
llog W,| < X%, max,g,cy |log v, .
Let
(10) Vi = max, gy [logv,; |,
and let §; =V, , — E(V,), S, = 2%, ;. The random variables {£;} are i.i.d.
with E(§)) = 0, E(§*) < . We have
E(|log W, [') < E(X74, Vi)
(11) = E((Sy, + T E((V,))")
< E(S7) + 2E(V)EXT)EY(ST,) + EX(V)E(TY) .
By a well-known martingale argument, E(S7) = E(T,)E(&,?) so the right-hand
side of (11) is finite.
COROLLARY 2. E(3 71, V,_)* < oo where V;_, is defined by (10).

COROLLARY 3.

W;

E(Z?AI log
j-1

)<=

Proor.
E(Xiy [log W) < E(Liy Dho Vin) < E(NFL 271, Vs
=ET, X4 V) = ETHEN(ZL V)] < oo

We prove below that the time average of the changes in log average fitness from
one generation to the next converges a.s. to the expected change per generation
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in log average fitness for a population whose relative fitness vector has the
stationary distribution .Z7%. This limiting expected change in log average fitness
will be seen to be the sum of E(log v) and an entropy-like term representing the
fitness increase produced by natural selection acting on the stationary relative
fitness distribution. A functional central limit theorem is proved for the log
fitness process. Additional functional limit theorems follow readily.

The functional central limit theorem is similar to those obtained for waiting
times in queueing processes [cf. Iglehart (1971a)], partial sums or functionals of
a positive recurrent Markov chain [cf. Chung (1960) and Freedman (1967)], and
renewal processes [cf. Billingsley (1968)]. The Markov chain results and the
results below depend crucially on the Doeblin (1938) decomposition. The
functional limit theorems are for processes such as log W,,,;, which are random
functions in the space D¥ of all right continuous R¥-valued functions on [0, 1]
having left limits. Ordinary central limit theorems in R¥ for processes such as
log W, can be obtained from Smith (1955).

THEOREM 4.

7 1 _
1o< k+1>]= E(log W 0nk=>1.
Blog () | = s Hlog o) forall k2
Proor. For any M > 0.

E<[10g+ <%>J AM|X,, = > = £u(*)

is a bounded nonnegative Borel measurable function on R," to R,!, which is
independent of k.

Hence, by Corollary 1,

oo (o ()] )
(12) — lim,__ % N E{E([long( - )} AM|X,. 2>}

= E {limn_,m % ZZ:lfm(Xk—z)}
= B = £ ([tog" (Z22) ] M) .

1
But we can also see that

s (o ()] ) = 525 21 o[ ()] )

k— j-1

+ Z?=TN<M+1<[1°§+< g )] m).

-1

By the discussion at the beginning of this section, the random variables

0= S i ()]

j-1
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are i.i.d. Since
1

e B (o ()] )

-1

. 1
< lim, <7> [max,gcp (Ths — T)] - M =0,

lim

it follows in the usual way that

(13) limn_,m% s ([log W, :|/\M> E(Tl) EQ);

k—l

thus, taking expectations in (13)

(14) limn_,w% >, ([log ( ”Z : >:| A M>

E(Tl) EQ) =L E(Tl) (Zﬁ&og*(_jjl)AM).

Comparing (12) and (14) gives

e (o (52)] 1 ) = gy £ (e (e (72) ] )

1

for each M > 0, and hence

(1oe (7)) = gy £(Zmiee (7))

The same argument implies

<l°g <~Z>>: E(lTl) (Z’”log (PZI»

and, by Corollary 3, all of these quantities are finite. Hence

£ (1og(22)) - sy (2 e () = ey s

J

It is easy to see that E(log W,/W,_,| <,_)) is a function of X,_,alone. So since
the process {-77,} is stationary,

£(os(572) = £(ex(22)

n

foralln = 1.

COROLLARY 4.

lim,_ _'11. logW, =, lim,_ — E(log w,) = E(log( ?Z )) .

1

Proor. The process log W, is a cumulative process in the sense of Smith (1955)
and E|log W, | < oo by Lemma 7. So by Smith (1955) lim,_., n~log W, =, ,.
lim, ., nE(log W,) = (1/E(T,))E(log W) and the result now follows from
Theorem 4.
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COROLLARY 5.

£ (tog Z)) = E(log v) + § ¢(x)F(dx)
where 1

P(x) = 2y x; log x; — "IN" 2 logx;,
and where F is given by Theorem 3. For any x = (x,, -+, Xy) with 0 < x; and
X+ --- + xy = 1, ¢(x) = O with equality only if x = (1/N, - .-, 1/N).

Proor. Let W, denote the fitness of a randomly-chosen individual in the nth
generation. (For each n, a has the distribution P(a(i) = j| X,» «++» Xy,) = 1/N,
independently for all i,j =1, ..., N.) We have

E{lOg Wn(l)n+l - log Wa(l)nl gﬂ}
W, 1
(15) =1y, NW]'n log W;, + E(log v) — N >, logW,,

na

= E(logv) + X% N"V/-V log ( NTT,) - % L log (NLYW*)

na

= E(logv) + ¢v<)](\;‘>

Upon replacing X by 227 and W by 777, we get
8 25
E|:10 AA)] = E(logv) + E‘:{-‘ <__°>] .
g ( Wa(llo N
It is easy to see that ¢(x) = O for all x as in the statement of the Corollary,
with equality only if x = (1/N, --., 1/N).
It follows as in Corollary 4 that

lim",,wi E(log W,,,) = lim,__, r E(log W,) = E(log 7 ,| 7) .
n n

Equation (15) implies

X,

1 1 1
N E(log W,u,,) = E(logv) + . E[ T=1 S/’( N )] + - E(log W ,y) -

By Fatou’s lemma,

E(log 973] %) — E(log v)
e (51 (%)

o 1 X,
(16) > E{llm 1nf"_,w7 j=1¢'< ;\{1)}
. . 1 n X._
2 £fimint, . & 220 B2, 0 ()]
1 X.
_ e (5 20
E(T)) Lt ¢ N =
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Since E(log 77,/ 77;) and E(log v) are finite, (16) implies that the i.i.d. random
variables Q' = YTk, _ ., ¢(X;_,/N) have finite expected value. Hence

o B (82) = ey om0 (5) - £(6(5)

The sequence {1/n 3}%_, ¢(X;_,/N)} is uniformly integrable because

1

n
So

lim, E(% Ay <X]{/‘1 )) = limm—:l— = ¢ (X]Q'I) = E(‘/’ <%>>

and hence

2

n X'- 1 n 1 n
0= - Wi ¢ (T) 2 2 0 4+ L maxg,, 00 S 2 T 0
N n n n

E(log 97, 7) = E(log v) + § $(x)F(dx) .

This completes the proof.

The entropy-like quantity E(¢(:27/N)) is strictly positive and represents the
effect of natural selection acting on the stationary relative fitness distribution.

In preparation for proving functional limit theorems for the W,,,-process, we
introduce some additional definitions.

Asin Billingsley (1968) let C be the space of all continuous real-valued functions
on [0, 1], let D be the space of all real-valued functions on {0, 1] that are right con-
tinuous and have left limits, and let d, be the Skorohod metric on D. We denote
by D¥ the product of N copies of D and set d,"(x, y) = max, ., {dy(x;, y,)} and
px(x, y) = max,, .y {p(x;, y;)} for x, ye D¥. If X is any random function in
D[0, 1], then 1X = (X, ..., X) is a random function in D”, all of whose values
lie on the diagonal A = {(x;, ---, x,)eD": x;, = x, = - -+ = x3}.

We let &(+) denote a random function in D whose distribution in Wiener
measure. Then 1£(.) is a random function in D and the stochastic process
{1£(r): 0 £ + < 1} is standard one-dimensional Brownian motion along the
diagonal in R¥. For the construction and properties of Wiener measure on D,
the reader is referred to Billingsley (1968).

THEOREM 5.

log Wy,., — 1E(log 97,/ 97 )n-
(na*)t

in D, where o* = (1/E(T))o*(log W, — E(log %7, 27 )T)).

—5 16(+)

Proor. Evidently, log Wi, is a random function in DY and
1E(log 977,/ %7 )n+ € DV,

where [n¢] denotes the greatest integer less than or equal to nz. Using Theorem
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4, we have, forall0 < r < 1,

- - _ log W.
log Wy — 1E(log 73/ % )nt = 1 <log A [ E(Tg(TTTﬂ TN([M])>
1

+1 ([E<IO§(ZT1 >:| (Tyitnery — "t)>

+ log W,y — 1log W
The random variables Y, defined for k = 1 by
Y, = 10g< fVTk > — <E<-—~log WTI >> (Tk —T,)
W E(T))

are i.i.d. with E(Y;) = 0 and E(Y;?) < oo by (6) and Lemma 7. As long as v is
non-degenerate, Y, is also non-degenerate, so ¢*(Y;) > 0. Since

TN([nt]) *

3/ 1 3 97, 1
W 152y (MIMigisy Vi) = Wi = WTN(n) 32T iy (MAXy gy Vij4)
for1 < i< N, we have

(nt]+1
N([m])I = I=TN([ntD+1 Vi

< MaXigign1 £y s

[log W, (..; — log e = Zywnh

-1 =

where V;_, is defined by (10) and

— T
Z, = Zjﬁr,,_lﬂ Vj—l .

Hence
Al py(log Wip,.y), 1 log WTN([n.])) = MaXigycnir £y -
S0,
[nt — Tyquep| = 1+ maxyg;q, (Ti —T;),
SO

on(I(Tyqnyy — 1), 0) < 1 + maX,g <, (Tj+1 —Ty.
It follows that

<log Wi, — 1E(log 57, 27 )n. 1 Nin) y )
o (no*(Y,)[E(T,))? " (na*(Y)[E(Ty) <t
|E(log WTI)E(T1)| 1 + maxyg <, (T, — T))
() < oy e )
E(T)\* ( maX,g <, Z;
+ <02(Yl)> ( i >

Since {Z,}, are i.i.d., and {T,, — T,}%, are i.i.d. with E(T, — T;)*) < co and
E(Z?) < oo by (6) and Corollary 2, respectively, the right-hand side of (17)
converges to 0 a.s. By Billingsley [(1968) pages 144-145],

(na*(Y)JE(Ty))~ TV Y, —, £(¢)

in D, so, by Billingsley [(1968) Theorem 5.1] together with the fact that the
mapping x — (x, - - -, x) from D to D is continuous.

(na*(Y)[E(Ty))~F T Y, —, 16()
in DV,
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Since d,*(x, y) < px(x, y) the theorem now follows from (17) and Billingsley
[(1968) Theorem 4.1].

Limit theorems for functionals of the W,,,, process can be obtained from the
above theorem by the methods of Billingsley [(1968) Sections 10 and 11]. We
state two of the more interesting ones below.

COROLLARY 6.

(18) (W) exp{— (mE(log 57| 7)]0)+} ., 1¢5,

(19)  lim, . P {m [o <s<n: %—f(s) > E(log 972/7/71)] < nx}

2 P
= Z arcsin xt
T

where f(+) is any of the functions
max, . log W, ., min, ., log W, ., or log W,
and m is Lebesgue measure on R

Using a result of Strassen (1964), Iglehart (1971a) proved a functional law of
the iterated logarithm in D for random sums of i.i.d. random variables. As
Iglehart observed, the ordinary law of the iterated logarithm in R! follows
readily from the version in D. The arguments used to prove Theorem 5 imply
that the analogous results hold for the process log W,.;. We will state these as
Corollary 7 after first introducing some additional terminology.

For each 0 >0, let K(9) denote the set of absolutely continuous functions x ¢ &,
such that x(0) = 0 and

d 2
53 (5 ey ) dr < .
Let 1K(9) = {(x, x, - -+, x) € D¥: x € K(9)}. We callasequence {x,}inacomplete

separable metric space S relatively compact in S if every subsequence contains a
convergent subsequence or, equivalently, if {x,},., is compact.

CoROLLARY 7. (a) With probability one, the sequence

{log Wi,., — 1nE(log “7_/2/0/}“1).}
(20°n log log n)t 23
is relatively compact in D", and its set of limit points is 1K(1).
(b) With probability one, the sequence
{log W, — 1nE(log 97,/ 9%)}
(20°n log log n)* 23

is relatively compact in R¥, and its set of limit points is the set {(s, s, -- -, s) € R¥:
—1<s5s<1)

5. Concluding remarks. The above results continue to hold when the gener-
ation times are random, occurring in accordance with a renewal process
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independent of the fitness process, and having inter-event times with finite second
moments. Similar theorems can be proved for a Moran model with non-overlap-
ping generations by conditioning on when the population becomes monoallelic.
By introducing two kinds of fitnesses, viability and fecundity, the fitness of each
individual becomes a two-dimensional vector. Using results in Iglehart (1968),
one can prove weak convergence theorems for these fitness vectors.

All of these results can be viewed collectively as a corollary to the various
existing forms of exponential growth laws [cf. (18)]. Namely, when the size of
a population is constrained to be constant, or even to stay in a bounded range
0 < N, £ N £ N, < oo, while natural selection and mutation act stochastically
to cause repeated multiplicative changes in fitness, the N-dimensional log fitness
process behaves asymptotically like a one-dimensional random walk. This be-
havior is illustrated quantitatively by (19), which says that the population mini-
mum fitness and the population maximum fitness both spend the same amount of
time above the line whose slope is the asymptotic mean rate of change in fitness.

Although from one generation to the next there is a large amount of inde-
pendence inherent in the reproduction process, this independence is entirely
eliminated in the normalized asymptotic distribution of the log fitness process,
whose mass is concentrated on the diagonal. This pronounced tendency for
individuals in the population to evolve together as a unit rather than individually
is a concomitant of the strong recurrence of monoallelic generations. These
occur frequently enough that accumulated differences in fitness among indi-
viduals within the population remain small, but not so small as to disappear
entirely as in the additive model.

Acknowledgment. I would like to thank Professor James L. McGregor, my
thesisadviser, for suggesting the area of investigation and providing continual help
and encouragement; Professor Donald L. Iglehart for introducing me to weak
convergence theory; and Professor L. L. Cavalli-Sforza for numerous stimulat-
ing discussions concerning the evolutionary behavior of natural populations.

REFERENCES

BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

BopMeRr, W. F. and Cavalli-Sforza, L. L. (1972). Variation in fitness and molecular evolution.
Proc. Sixth Berkeley Symp. Math. Statist. Prob. Univ. of California Press, Berkeley.

CHUNG, K. L. (1960). Markov Chains with Stationary Transition Probabilities. Springer, Berlin.

CHUNG, K. L. (1968). A Course in Probability Theory. Harcourt, Brace and World, New York.

DoEeBLIN, W. (1938). Sur deux problemes de M. Kolmogorov concernant les chains denombr-
ables. Bull. Soc. Math. France 66 210-220.

EsHEL, I. (1972). Evolution processes with continuity of types. Adv. Appl. Probability 4475-507.

Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theor. Pop. Bio. 3 87~
112.

FELLER, W. (1957). An Introduction to Probability Theory and its Applications 1 2nd ed. Wiley,
New York.

FELLER, W. (1966). An Introduction to Probability Theory and its Applications 2 1st ed. Wiley,
New York.



STOCHASTIC EVOLUTION MODELS 31

FREEDMAN, D. (1967). Some invariance principles for functionals of a Markov chain. Ann. Math.
Statist. 38 1-7.
IGLEHART, D. (1968). Weak convergence of probability measures on product spaces with appli-
cation to sums of random vectors. Stanford Univ. OR Tech. Report 109.
IGLEHART, D. (1971a). Functional limit theorems for the queue GI/G/I in light traffic. Adv.
Appl. Prob. 3 269-281.

IGLEHART, D. (1971b). Multiple channel queues in heavy traffic, IV: Law of the iterated
logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 17 168-180.

KARLIN, S. and MCGREGOR, J. L. (1972). Addendum to a paper of Ewens. Theor. Pop. Bio. 3
113-116.

SmiTH, W. (1955). Regenerative stochastic processes. Proc. Roy. Soc. London, Ser. A. 232 6-31.

STRASSEN, V. (1964). An invariance principle for the law of the iterated logarithm. Z. Wabhrs-
cheinlichkeitstheorie und Verw. Gebiete 3 211-226.

DEPARTMENT OF MATHEMATICS
MATHEMATICAL SCIENCES BUILDING
THE UNIVERSITY OF ROCHESTER
ROCHESTER, NEW YORK 14627



