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A REMARK ON THE STRONG LAW!

By DAvipD FREEDMAN

University of California, Berkeley

Let Xi, Xz, - - - be a sequence of random variables, each having condi-
tional mean zero given the past. Let ¥V, be the conditional variance of X,
given the past. Les Su=Xi+ -+ +Xnand T =V1+ -+ + V. For
simplicity, suppose 3] V; = oo a.e. For which non-decreasing function ¢
does S»/$(T») necessarily lead to 0 a.e. as n increases? It is necessary and
sufficient that S“’ 1/¢(t)2dt < co. That is, if the integral is finite, conver-
gence to zero a.e. is guaranteed for all X; and V; satisfying the stated con-
dition. If the integral is infinite, there is a sequence of independent, sym-
metric random variables X;, each having variance 1, such that S,/¢(n)
oscillates between +co. The sufficiency is known, but a new proof is given.

Let (Q, %7, P) be a probability triple, and let &, € #, C - - - be sub g-fields
of 5. Let X, X,, .- be finite functions on Q, such that

)] X, is §,-measurable

() E{X, 1B} =0 a.e.

This does not require X, ,, to be L? or even L'. It does require that a.e., given
., the conditional distribution of X, ,, be integrable with mean 0. Let

(3) Vn = E{Xfﬁ-ll%n} ’
the conditional variance of X, ., given % ,. Let

(4) Sn:X1+"'+X,, and T”=V1+...+V~.

n

The main result of this note, to be proved later, is

(5) THEOREM. Suppose (1)—(4). Let A= 0, and let ¢ be a positive, non-
decreasing function on [A, co), such that

(6) §2 1/g(n*dt < oo .

Then
m,_.S,/¢(T,) =0 ae. on {ZV,= o}.

This is known for L? variables; see [3] page 150. This result includes the usual
strong law of large numbers for independent identically distributed L* variables:
take ¢(f) = ¢. In a sense, (5) is sharp. Proved later will be
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@) THEOREM. Let ¢ be a positive non-decreasing function on [A, co), with
{2 1/¢(f)*dt = co. Then there is a sequence of independent, symmetric random
variables, each having variance 1, such that

®) P{lim sup,_,, S,/¢(n) = oo} = 1.

The asymptotic behavior of S,/¢(T,) may well depend on the underlying pro-
cess, when {~ 1/¢(r)*dt = co. For instance, suppose ¢(x) = (x log x), for large
x. If the X, are uniformly bounded, the law of the iterated logarithm shows
S./¢(T,) — 0 a.e. With this observation and (7), it is possible to construct a
process satisfying (1)—(4), such that all ¥, are 1, and '

P{S,/(nlogn)t —» 0} = % .

The proof of (5) follows the pattern of [1]. Here is the main step. Fix one
positive, measurable function ¢ on [4, o), satisfying (6). Let

fw) = §31/g(0)* dt
O(x, v) = [x*/$(v)'] + f(v)
for v = A and —oo <—x < co.

%) LEMMA. Suppose X is a random variable, with E(X) = 0 and E(X*) = V.
Then
E{Q(x + X, v + V)} = Q(x, v) ,

forv=Aand —oo < x < oo.
Proor. Clearly,
E(Q(x + X, v + V)} = X¢(v + V)' + V[p(v + V)" + f(v + V),
and xX*/¢(v + V)* < x*/(v)’. Next,
f) = fv + V) = §3*7 1/g(r)* dt
= Vig(v + V)*;

SO B
Vg + V) + flv + V) < f(v) .- 0

(10) PROPOSITION. Suppose (1)—(4) and (6). Let t be a stopping time: {r =
nye 7, foralln. Forv= Aand —co < x < o0,

E{(x + S)p(v + T} < O(x, v) .
Proor. This follows from (9), using Theorem (22) of [1]. [I
(1) COROLLARY. Suppose (1)—(4) and (6). Let a > 0. Then
P{|S,| > a¢p(v + T,) for some n} < Q(0, v)/a*.
Proor. This follows from (10), using Chebychev and Lemma (30) of [1]. []
(12) COROLLARY. Suppose (1)—(4)and (6). Letk=1,2,... anda > 0. Then
P{| Xy + -+ + Xipal > ag(T,) for some n| 5} < Q(0, T))/a*.
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Proor. Condition on &, and use (11). [J
I believe estimates (9)—(12) are new.
Proor oF (5). Fixa > 0. Let D = {ZV, = oo}. Let
Dya) = {[Xysr + « - + Xopal < ag(T,) forall n}.
Since ¢(c0) = oo,
(13) limsup |S,|/#(T,) < a on Dn Dya).

Fix ¢ > 0. Choose v = 4 so large that Q(0, v)/a* < e. Then choose a positive
integer k so large that

P(D and T, > v} > (1 — ¢)P{D}.

But
P(D,(a)| 5} = 1 — Q(0, T,)/a*
=1—¢ on (T, =v}.
So
P(Dy(a) and T, = v} 2 (1 — )P[T, = v}.
Now

P{D but not D a)} < eP{D}+ ¢P(T, = v} < 2¢.

This, together with (13), shows lim sup |S,|/#(T,) < a on all of D apart from a
set of measure 2e. Since ¢ was arbitrary, limsup, ., |S,|/#(T,) < a a.e. on D.
Now let a tend to zero through a sequence. []

The next argument follows[2].
ProoF oF (7). Choose ¢, > 0 with ¢, — 0 so slowly that
el lo(n)* < 1 forall n=1,2,... and 3}, ¢}%/¢(n) = co.

Make X, take the values + ¢(n)/e, with chance ¢,*/¢(n)* each, and the value 0
with remaining chance 1 — ¢,’¢(n)*; make the X, independent. So E(X,) = 0and
Var X, = 1. By way of contradiction, suppose

P{limsup S, /¢(n) < o0} > 0.
By the Kolmogorov 0-1 Law,
P{limsup §,/¢(n) < o} = 1.
By symmetry, '
P{lim inf S, /¢(n) > —oo} = 1.
So
P{lim inf S,_,/¢(n — 1) > —oo} = 1.
Since ¢ is non-decreasing,
P{lim inf S, _,/¢(n) > —oc0} =1.
So
P{lim sup X, /¢(n) < oo} =1.
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But 3 ¢, ?/d(n)’ = oo, so X, = ¢(n)/e, for infinitely many n, and X,/¢(n) =
/e, — oo for these n.
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