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ASYMPTOTIC DISTRIBUTIONS FOR OCCUPANCY AND WAITING
TIME PROBLEMS WITH POSITIVE PROBABILITY
OF FALLING THROUGH THE CELLS

By ESTER SAMUEL-CAHN

Hebrew University

Consider N cells into which balls are being dropped independently, in
such a way that the cells are equiprobable, and each ball has probability
pn > Oof staying in the cell. Let Wa(pn, kn) denote the waiting time until
kn + 1 cells are occupied, and let Sn(pw, jn) denote the number of distinct
cells occupied after jy balls have been dropped. The full characterization
of the limiting distributions of these two random variables is obtained,
depending upon the joint behaviour of py, kn and pw, jn respectively, as
N — co. The limit distributions obtained are the negative binomial, bino-
mial, Poisson, chi-square and normal distributions.

1. Introduction and Summary. Consider N cells into which balls are being
dropped independently, in such a way that the cells are equiprobable, but each
ball has probability p, > 0 of staying in, and probability 1 — p, of falling
through the cell. Let Wy(py, k) denote the minimal number of balls needed in
order that k + 1 cells be occupied, and let Sy(py, j) denote the number of dis-
tinct cells occupied after j balls have been dropped. The above mentioned model
has been considered in a recent paper by Park (1972), who proves that for fixed
p and under certain conditions on the behavior of j;, Sy(py, jy) has an asymptotic
normal distribution, as N — co. In the present paper we give a complete charac-
terization of the limiting behavior of Wy(py, ky) and Sy(py, jx), Which depends
upon the joint behavior of p,, ky and py, jy, respectively as functions of N,
when N — co.

To abbreviate, we use the following notations: NB(k, p), B(j, p), Po(2); Xtk
N(0, 1) denote the negative binomial, binomial, Poisson, chi-square and Normal
distributions, with corresponding parameters. In particular, Po(0) is the de-
generate distribution with unit mass at 0. — . denotes convergence in law. Let
N — oco. We have

THEOREM 1. (i) If ky =k fixed, and py,—p >0 then Wy(py, k) —.
NB(k + 1, p). :

(ii) If py — O then 2py Wy(pys k) = o Ytaesn-

Theorems 2 to 4 are under the assumption k,; — oco. Set limky(1 — py) = ¢,
limk,*/N = 4.

THEOREM 2. If 0 < g1+ 4 < oo then {Wy(py, ky) — (ky +1)} — . Po(zt + 2/2).
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THEOREM 3. If pt + 2= oo and N — ky — oo then {Wy(py, ky) — EWy(py,
ky){Var Wy(py, ky)}~ — . N(0, 1).

THEOREM 4. If ky, = N — b, b > 0 constant, then

exp {—Wy(Py> ky)py/N + 10g 2N)} — o Xy, -

REMARK TO THEOREMs. It is easily checked that the various conditions on k
and p, in Theorems 1 to 4, essentially take care of all possible relationships
between k, and p,, and hence, in each case, the conditions stated are not only
sufficient, but also necessary, for the corresponding result to obtain. (This state-
ment is accurate only if one is willing to look at the corresponding subsequences
of k, and p,, as one can, without loss of generality.)

Clearly, for py, = 1, one is back in the classical coupon collector’s problem,
and for this particular case our Theorems 2 to 4 are identical with Theorems 1
to 4 of Baum and Billingsley (1965). Our proof of Theorem 2 is similar to the
proofs of the corresponding theorems in Baum and Billingsley (1965). Since
our proofs of Theorems 3 and 4 are different, and presumably simpler than those
of Baum and Billingsley, they may be of interest even in the simple case p, = 1.

The random variables W, (py, k) and S,(py, j) are related through the obvious
relationship

(1.1) Wy(pys k) > j = Sy(pyJ) <k + 1,

which yields a relationship between the asymptotic distributions of the two ran-
dom variables. We have

THEOREM 1*. (i) If j, =] fixed, and p,, — p then Sy(py,j) — . B(j, p).
(ii) If jy—> o0 and 0 < limj,py, = v < oo then Sy(py, jy) — ., Po(v).
Theorems 2* to 4* are under the assumption j, — oo. Setlimj (1 — p,) = p*,
limj,*/N = 2*.
THEOREM 2*. If 0 < p* + 2* < oo then jy — Sy(Pysjy) — o Po(p* + 2%]2).
THEOREM 3*. If
(1.2) Vi'(jy) = Nem?NiN/{1 — e=oNiNY(1 4 pYjy[N)} — oo .
then {Sy(Pws jx) — ESy(Py> J))HVar Sy(py, jy)}t — .. N(O, 1).

THEOREM 4*. If pyjy/N —1logN — p, —co < p < oo, then {N—Sy(py,jx)} — o
Po(e~*). ‘

REMARK TO THEOREM 3*. Condition (1.2) can (without loss of generality) be.
split into the following three possibilities.

() pyjw/N—0 and pyj{l — py + (py — $)Pwin/N} = oo (i.e. pyjy— o
and also j, (1 — py) — oo or j,2/N — o).

(i) puju/N—¢, 0 < ¢ < co.
(iii) pyjy/N — oo and pyjy/N — logN — — co.
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REMARK To THEOREMS*. Again it is easily checked that the various conditions
on j, and p, in Theorems 1* to 4* essentially take care of all possible relation-
ships between j, and p,, and hence, in each case the conditions stated are es-
sentially necessary and sufficient for the corresponding results to obtain.

For the case p, = 1 Theorems 2* to 4* are well-known theorems for the clas-
sical occupancy problem. See e.g. Rényi (1962). In his recent paper, Park (1972)
proves Theorem 3* under more restrictive conditions than our (1.2). His proof
essentially uses the method of moments, and is entirely different from the proof
given here.

Results related to the results obtained here are obtained in a recent paper,
Samuel (1973), which considers a different version of the occupancy problem.
In Samuel (1973) the underlying model is, that a cell, once occupied, becomes
magnetized, and at each subsequent drop of a ball is y > 0 times as likely to
receive the ball, than each empty cell.

2. Proof of Theorems 1 and 1*. It is easily seen that
(2.1) Wy(pys k) = Xy(N) 4+ - -+ 4+ X(N)

where X, (N) are independent random variables and X (N) denotes the waiting
time from the time exactly r cells are occupied until and including the time the
r + 1Ist cell becomes occupied. Thus X, (N) is a geometric random variable, i.e.,

(2.2) P(X,(N) = u) = p,(N)g,*"(N) p=1,...,
where p (N) = (N — r)py/N and ¢,(N) = 1 — p,(N).

Now under the conditions of Theorem 1, if p, — p > O thenalsop (N) - p > 0
and the result follows trivially. Similarly, for fixed j the result in Theorem 1*

is trivial, (with the obvious interpretations for p,, — 0 and p, — 1). The charac-
teristic function of X (N) is

2.3) (e ™) = p (N)e*)(1 — g,(N)e") .
To obtain the second part of Theorem 1, notice that
(2.4) E(eit2pNWN(pN,k)) — eit2(k+lpy H’::oPT(N)/(l _ q,(N)em”N) .

Now expanding the denominator of each term in the product, it is easily seen
that each term tendsto (1 — 2ir)~*as p, — 0, and thus (2.4) tends to (1 — 2ir)=%+D
and the theorem follows. ‘

Let Fp,;)(x) and F;2 (x) denote the cumulative Poisson and chi-square distribu-
tions with corresponding parameters. Then it is well known and easily established
through integration by parts, that

2.5) Fra(s—1)=1—Fg (22).

Notice that j, — oo and p,j, — v < co imply py, — 0. The second part of
Theorem 1* thus follows from Theorem 1, (1.1) and (2.5).

3. Proof of Theorems 2 and 2*. Notice that the assumption ¢ < oo and
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ky — oo implies py, — 1. By (2.1) and (2.3) the characteristic function M, (7)
of Wiy(pys ky) — (ky + 1) is

@3.1) M, (0) = II2p.(N)/(1 — q(N)e) _
= it Hl;g(,(l — %)/{1 — (1 — py)e*t — %sze"} )
Now
(3.2) 1 4+ z =exp(z + 62 if |71 4%, where [0 <1

and z and 6 are real or complex numbers. We shall use the same notation 6 for
possibly different numbers satisfying |§| < 1. Since p, — 1 and k,/N — 0 then
for ¢ fixed and N sufficiently large we can use (3.2) for each term in the numerator
and denominator in the product of the right hand side of (3.1), to obtain

(3:3) Mey() = parttexp{(ky + D1 = pilet + (pre — 1) Tite L+ e}

where ey = 0 310, r*[N? 4 0e** 3158, (1 — py) + (r/N)py)®. It is easy to verify
that the assumptions of the Theorems imply limey = 0, %%, r/N — 2/2 (k, +
1)(1 — py) — ¢ and p v+t — e=#. Thus M, (1) > exp{(¢ + 4/2)(e** — 1)}, and
Theorem 2 follows.

Fork = 0,1, ... fixed, (1.1) implies P(j, — Sy(pPy,Jy) < k) = P(Wy(Px>Jy —
k — 1) — (jy — k) < k). Since under Theorem 2* (j, — k — 1)(1 — py) — p*
and (j, — kK — 1)}/ N — 2* Theorem 2* follows from Theorem 2.

4. Proof of Theorems 3 and 3*. We shall use representation (2.1) to show
that under the conditions of Theorem 3 the summands in (2. 1)satisfy the Lyapunov

condition of the central limit theorem. Notice that EX (N)=1/p,(N), Var X (N)=
9,(N)/p,2(N). To abbreviate notation set ky/N = ay, 1 — a, = By. Then

4.1 a*(ky) = Var W(py, ky) = (N*[py*) Din=N—ky u= — (N/pxy) DI
= {1 — By + pu By 10g BxHN/(Bxps™)} + 60/(Bypy)*

where the right-hand side is obtained by simple approximations of the sums.
The conditions of Theorem 3 imply o?(k,) — oo.

To verify the Lyapunov condition, notice that if X is geometrically distributed
with parameter p, then

EX —p7P < Boapr (P77 = 1)pq"" + Zpzpma (r — 1)pg™
< EIp* + 9EX < Tq/p’,
since EX® = (1 + 4¢ + ¢*)/p*. Ifq > },7¢/p* < 10(Var X)tandif ¢ < 1, 7¢/p* <
10 Var X. Thus E|X — p~']* < 10(Var X 4 (Var X)?), and hence
(42) T EX(N) — pAN)T o (ky) < 10{o(ky)™" + (Var X, (N))}/o(ky)} -

Since a(ky) — oo if follows from (4.2) that in order to verify Lyapunov’s condi-
tion it suffices to show that {p, (N)o*(ky)}~! = {py’By'd*(ky)}"* — 0, and this
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follows directly from (4.1). (We would like to remark that the idea of the present
proof is similar to a proof of a related theorem given by Farm (1971).)

To prove Theorem 3*, let Z,(N) = 0 or 1 according as the ith cell is empty
or occupied, after j balls have been distributed. Then Z(N), i=1, ..., N are
exchangeable, and Sy(p,j) = X, Z,(N). Using this representation it is easy
to obtain ES,(p,j) = N{l — (1 — p/N)?}, and VarS,(p,j) = N{(1 — p/N)/ —
(1 — 2p/N)?} — N*(1 — p/N)* — (1 — 2p/N)?}. (SeealsoPark(1972).) Consider
Vy*(jy) defined in (1.2). If ¥,*jy) — oo then one obtains, using (1 — #) =
exp — (f 4 /2 4 - -.) and some detailed analysis

(4.3) var Sy(pysjx) = Vi'(jy) + o(Ne ?Nin/vy

Similarly, some analysis yields ES,(py, jy) = N(1 — e~?nin/¥y 4 0O(1).
Thus
(4.4) lim p( Sw(Pw>Jw) — ESx(PwsJn) < x>
(VarSy(py, jn))*
= lim P( Su(Pa>Jw) — N(1 — e7?uin) _ > )

Va(jw)
Now by (1.1)
P({Sy(pwsJn) — N(1 — e NNV 7(fy) < x)
4.5) = P({(Wy(pys ky) — EWy(pys ky)}o7 (ky)

= {Jy — EWy(pws ky)lo~'(ky)) ,

where we have put ([y] denoting largest integer contained in y),
(4.6) ky = [xVy(jy) + N(1 — e7rnin/ty —17.

It is easy to establish that under the conditions of Theorem 3*, k, of (4.6) satisfies
the assumption of Theorem 3. Let ®(x) denote the cumulative standard normal
distribution function. Then the right-hand side of (4.5) tends to ®(x) if and
only if

4.7 {iv — EWy(py, ko7 (ky) — —x.

We shall show that (4.7) is correct. Theorem 3* then follows.

Set k,* = N(1 — e~?nin/¥) and consider the value of ¢*(ky) given in the right-
hand side of (4.1), when we allow also noninteger k. Since V,(jy) =
O([N(1 — e?nin/M)Th), it is easily established that for k,* as defined and k,
given in (4.6), o(ky)/o(ky*) — 1, and thus (4.7) follows if we show that {j, —
EW y(Py> ky)}o 7 (ky*) — —x. Now EW (py, ky) = (N/py) 2iu=n—ky 4~ and sim-
ple integral estimation of the sum yields : |

(4.8) —(Npy) log By < EWy(py, ky) < —(Nfpy) log(By — N7,

and hence we shall use the left-hand side of (4.8) as an approximation of
EW y(pys> ky)- Thus, using (1.2) and (4.1), and omitting the square brackets
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in (4.6),
lim Jy — EWy(pw> ky)
a(ky™*)
— lim Jv + (Nlpy) log {e=»vin™ — xV(j,)/N}

o(ky*)
(N[py) 10g {1 — erxin/®x{1 — e=swin/(1 4 p, %, [NPN-H} _
(N fpy)ers a1 — e min (Ut p N

= lim

X .

5. Proof of Theorems 4* and 4. So far we have not used the exact distribu-
tion of Sy(p,j), which may be of interest in its own right. By using the usual
combinatorial formulas for the realization of exactly m among N events (see e.g.
Feller (1957) page 96) it is easily found that

G- PN = Sy(p.j) = m) = Dia (1) QT
= @z (- (V) (1= LY

m=20, 1, oo, N,
where
(5:2) 7, = Tp.joN) = (M) (1= 27).

r N
(See also Park (1972)). Our proof now follows the idea of the proof for p = 1,
given by Feller (1957) page 93. Since(N —r)y < NN —1)--- (N—r+ 1)< N"
we have '
(5.3) N(1- Ly (1= 2 =T =N (1- By
N N N

Using exp(—?/(1 — 7)) < 1 — ¢ on the left-hand side, and 1 — # < exp(—7) on
the right-hand side of (5.3) yields (1 — r/N)"{Ne-?i/®¥=2m}r < p| T < {Ne~-?i/V}r,
Now let j = j, and p = p, and suppose Ne ?NiN/N¥ _, ¢e=¢ — v > 0. Then for
every fixed r both sides of the inequality tend to y7, i.e. lim(r! T,) = y". Thus by
(5.1) and the bounded convergence theorem we have lim P(N — Sy(py,jy) = m) =
A/mYy e, (=)™ [(r — m)! = e~7y™/m!, and Theorem 4* follows.

To obtain Theorem 4, let y > 0 be arbitrary. From (1.1) P(exp{— W (py,
N — b)py/N + 10g (2N)} > 2) = P(N — Sy(py, [(Nfpy) log (N[))]) < b — 1). Set
Jx = [(N/py)log(N/y)]. Then j, satisfies the assumption of Theorem 4* with
p = —logy and Theorem 4 now follows from (2.5).
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