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FUNCTIONALS OF MARKOV PROCESSES
AND SUPERPROCESSES

By TALMA LEVIATAN
Tel-Aviv University

It is well known that a contraction multiplicative functional a;, t = 0
on some Markov process with transition P;, ¢ = 0, yields another Markov
process whose semigroup Q:(x, 4) = E(a:, X; € A) is subordinate to P,
t =2 0. The second process results from the original one by adding a killing
operation at a rate of —dai/a;. This paper deals with expansion multi-
plicative functionals (satisfying a; = 1 and E(a:) < o). It is proved that
such functionals yield a Markov process with creation and annihilation of
mass. Relations to the original process are established. Finally the results
are generalized to, so-called, conditionally monotone functionals.

1. Introduction. Let X = (Q, F, F,, X,, 6,, P,) be a Markov process with
transition function P,, t > 0. Then it is well known that for every multiplicative
functional (MF), a,, t = 0, of X satisfying 0 < @, < 1 there exists another
Markov process subordinated to X, in the sense that its transition function Q,,
t = 0, satisfies Q, < P,. Q, is given in terms of a, by the equation

(1.1) Q,(x, 4) = E(a,, X,c A).

The relation between the two processes is that the later process is generated
from the original one by adding a killing operator. In other words what a, does,
is that for every path w e Q it assigns a time 0 < r(w) < oo after which the
particle does not continue its motion in the state space E but is killed. Or in a
different terminology, it is transferred to a new state added to E—the annihila-
tion state.

A natural question arises. What if @, is a MF which is not a contraction.
Then the relation (1.1) yields a semigroup of kernels which are not sub Markov
but rather super Markov. The question then arises—can we still find a process
having Q,, ¢t = 0, as its quasi-transition function? The fact that a, < 1 yields
a killing operator suggests that the opposite should happen for @, > 1. Namely
we can expect processes with creation of particles. Such processes were already
defined and treated in recent years by several authors under the name “Markov
processes with creation and annihilation” (MPCA).

In this paper we prove the relation between MF a, = 1 and MPCA (Section
3). We will also prove in Section 4 that for an existence of an MPCA having
quasi transition function Q,, ¢ > 0, satisfying (1.1) one actually does not need
the condition of multiplicativity of a, but rather a weaker condition of conditional
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monotonicity. InSection 5 we will consider some examples of functionals a, > 1
and the resulting MPCA. A well-known special case is where the original process
is Brownian motion and a, = exp {{ u(x,) ds where » is a bounded continuous
function. This can be shown to be equivalent to perturbation of the infinitesimal
generator of Brownian motion by # x I and as has been proved by Helms [4],

it results in an MPCA.

2. Definitions and preliminaries. Let E be a locally compact space with a
countable basis. Let & be its s-algebra of Borel subsets. Let A, V be two points
not in E. Adjoin V to E as an isolated point or as the point of infinity according
as E is compact or not, let & be the resulting s-algebra. Adjoin A to E; as an
isolated point and let &; , be the resulting g-algebra. We will use the notations
of [1] throughout this work. Let X = (Q, F, F,, X,, 0,, P,) be a Markov process
with state space (Ey, &) having transition function P,, t = 0, where P,(x, A) =
P(X,e A), xeE;, Ac&,.

DEFINITION 2.1. A family {@,: 0 < ¢ < oo} of random variables on (Q, F) is
called a functional of the process if «, is F, measurable for r > 0. A functional
is called an expansion functional if it satisfies @, = 1 and E (a,) < oo, fort = 0.

DEFINITION 2.2. (a) A functional a, of the process is called a multiplicative
functional (MF), if a,,, = a,(a,- 6,) a.e. P,, xe Efors, t = 0.
(b) a,is called conditionally monotone if a,,, = E(a,|X,,,), a.e. P,, x € &,.

An MF a, satisfying @, > 1 is obviously conditionally monotone. Indeed
., = a(a,00,) = a,.

DEFINITION 2.3. A function Q,(x, 4), t = 0, X € Ey, A € &, is called a quasi-
transition function (QTF) if Q,(., A) is &,-measurable, Q,(x, +) is a measure on
&y Qy(x, Ey — x) = 0 and Q,,,(x, 4) = Q,Q,(x, A).

DEFINITION 2.4. Let P, Q,, t = 0 be two QTF’s. P, is subordinate to Q, if
Py(x, A) < Q,(x, A) foreacht > 0, xe E;, Ae &,. Q, is said to dominate P,.

For any functional a, = 1 of the process X, define Q,(x, A) = E (a, x, € A).
Then Q,, t = 0, is a QTF dominating P,, t = 0. Q,, t = 0 is called the QTF
generated by a,, t = 0.

The last definition is that of an MPCA. The exact definition was given in [4],
[5]. Mainly, an MPCA having state space (Ey,, &£5,) and transition function P,,
t = 0, isaprocess {§,, & ,: t = 0} defined on a o-finite measure space (Q, &, F),
x € E,, satisfying the following two conditions.

(i) Each v e Q is a function from [0, o) to E; , satisfying w(s) = A implies
o(t) = A for t < 5 and w(s) = V implies w(f) = V for ¢t = s.
(ii) For each x € E;, A ¢ &, the following Markov property holds:

T e A F 0 {E, e E) = P(E, 4)  ae. T, on {§, €Ky}
where &,: Q — E; , is defined by &,(w) = o(f) and where &, = o(§,: s £ 1)
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(generated o-algebra). For some regularity conditions see [3]. For any MPCA
we can define the associated family of marginal distributions Q,, r = 0, by
Q. x, A) = F(6,eA), t =0, xeE;, Ae &,;. Define two random variables
a(w) = inf {t: £,(w) € Ey}, B(@) = inf (¢: §,(w) = V} called the starting time and
annihilation (killing) time, respectively.

3. Expansion multiplicative functionals. In this section we establish the re-
lations between an MF of a Markov process with transition function P,, t > 0,
and an MPCA having the same transition function. We will show that under
some mild conditions, for every MF a, > 1 on the process there exists an MPCA
whose marginal distribution is a quasi transition function generated by a,. For
the reverse implication, we need some extra conditions of absolute continuity
and uniform integrability of the quasi transition function. These conditions
turn out to be necessary and sufficient. Notice the analogy of these results to
Meyer’s results for contraction MF [7]. Using the multiplicativity of a,, we
can prove,

LemMmA 3.1. Let X = (Q, F, F,, X,, 0,, P,) be a Markov process having transition
function P,, t > 0. Let a,, t > 0, be an expansion MF on X. Then Q,(x, A) =
E,(a,, X, € A) is a quasi transition function dominating P, t = 0.

THEOREM 3.2. Let X = (Q, F, F,, X,, 0,, P,) be a Markov process having tran-
sition function P,, t = 0. Let @, be a right continuous expansion MF. Then there
exists an MPCA Y = (Q, F, T, &, 0, F) with transition function P,, t = 0,
whose marginal distribution is the quasi transition function generated by a,.

Proor. Let Q = Q x [0, o] with points @ = (@, 1), € Q, 0 < 2 < co. Let
& = F x &% be a g-algebra of subsets of Q, where <7 is the g-algebra of Borel
sets of [0, co]. Let =, ,, be the natural projections of Q on Q and on [0, o]
resp. Define a process &, on (Q, &) by £,(0) = X,(0) for t = 2 and £,(d) = A
for t < 2. Let f(@) = B(w), a(®) = inf {t: §,(&) € E;). Define a shift operator
0,(®) = (0,(v), max (2 — ¢, 0)). Let &, t >0, be the sub s-algebra of &~
generated by the sets [0, 5] x A fors <1, AeF,and Q x (5, ), s < 1. F,is
an increasing sequence of g-algebras. Also &, is &, measurable, since for 4 € &,
{€(@) e A} = [0, 1] x {X(w)eA}e &, and (£,(d) =A} = (1, 0] x Qe .F,.
F,, t = 0, are also right continuous.

Let Q' be the subset of Q consisting of all w e Q for which a,(0) < o, t > 0,
t — a,(0) is right continuous and non-decreasing and whence a, = 1. Clearly
P,(Q) =1, x e E,. Thus wecanassume Q = Q'. Define for each » € Q2 a meas-
ure g, on [0, co] via [0, {] = a,(w), pw(bo) = 0 and extend it uniquely to all
Borel subsets. p, is a o-finite measure and p,(A) is clearly measurable for 4 € <Z.

Let Ae & =F x & let A, = {4: (0, 2) ¢ A}. Then as a section of A, A,
is “F-measurable. Also v — ,uw(f\w) is . -measurable. Define

(3.1) FuA) = B (D) = E(pid: (0, D) e A)) .
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7 is a g-finite measure on (Q, F). To show that (Q, F, Fy, & 0, F) is the
required MPCA, let Ae¢ &, then clearly {§, e A4} ={X,e 4} x [0,¢], thus
F(E, € A) = E,(a,, X, e A). Denote this by Q,(x, 4). As for the Markov
property, let Be &, s, t = 0, x ¢ E;, we must show

(3.2) P € B, Ny = E,(P, (6(5) € B), A)

for all A e 7, n Q, where Q, = Q n [0, 7].
It is enough to prove (3.2) for sets of the forms A= {§,edpi=1,.--,n
wheret, = t, A, e &, , since they generate & ,. Or, further, for sets of the form

(tj- t;] % {th €d; - X, €A} = (o 1] % A;, A, e &,

j <i<n ButforsuchaAl
(EreeBy N A ={0,5 +1] x B} N (t;o0, 1] X Aj = (t;20, 1] x (BN AY)
and thus
Fo(éri € B, N) = EJ(a,, — a,, )X,y € B, A))]
= Ex(Aj(atj - atj_,)Ezt(Xs eA)].
As for the right-hand side, let f(y) = E, (X, € 4), then it equals

LAfE)s N = E[f(X)(a,,_, — @), Aj]
= E[(a,, — a,,_)A,E, (X, € 4)] .

The right-hand side of (3.2) was well defined since on Q, §(f) = X(¢) for ¢ = 4.

Notice that for the construction of .2, we have not used the multiplicativity
of a,. We used only right continuity and monotonicity. The multiplicativity
was necessary only to prove the semigroup property of Q,, # = 0.

A shorter existence proof of MPCA, not using right continuity of «a,, can
easily be produced using Corollary 2.3 of [6] (See Theorem 4.1). The advantage
of the proof given here is that it makes clear the notion of creation via the second
coordinate of @ ¢ Q. Also one can get intuitively the “rate of creation” through
this proof by calculating the “conditional probability” of z, > ¢ given no cre-
ation until time ¢, to get a creation rate of da,/a,.

LeEMMA 3.3. The semigroup Q,, t = 0, generated by a,, t = 0, is absolutely con-
tinuous with respect to P,, t > 0.

Proor. Indeed Q,(x, A) = §,xu)c ) @; dP, thus P,(x, A) = P, (X, € A) = 0 im-
plies Q,(x, A) = 0. Denote by g,(x, y) the Radon-Nikodym derivative of Q,(x, +)
W.I.t. P(x, +). g,(x,y) can be chosen to be E; x &, measurable.

The following lemma can be found in [3] page 285.

LEMMA 3.4, Let S, ={0=5,< 5, < --- <85, =t} be a partition of [0, t].
Then B(S,) = T17-09s; 1,5, (Xsp Xsy,,)> 1 = 1, in uniform integrable w.r.t. P,. Fur-
ther B(S,) — a, a.e. P, as the norm of partition ||S,|| — O.

The following is the converse of Theorem 3.2.

THEOREM 3.5. Let (Q, 7, 7, &, 0,, F) be an MPCA with transition function
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P,, t = 0 and with marginal distribution Q,, t > 0, constituting a QTF. Suppose
Q.(x, +) is absolutely continuous w.r.t. P,(x, «) for t = 0, x € E; and denote by
4.(X, y) the Radon-Nikodym derivative. Let S,, B(S,) be defined as in Lemma 3.4.
Assume that for any sequence S, of partitions with ||S,|| — 0, B(S,), n = 1, is uni-
form integrable w.r.t. P,. Then there exists an expansion MF a,, t > 0, that
generates Q,, t = 0.

Proor. The proof is similar to Dynkin’s proof to Theorem 9.3. We will give
a short outline for the sake of completeness. One first proves that the semigroup
property of Q,, t > 0, is equivalent to the fact that for s < ¢

(3.3) E[9,(X, X)X, X)) | X.] = qu(x, X)) .

Then let S;, S, be two partitions of [0, 7] such that S, is a refinement of S, and
denote by F(S) = o(X,: s e S) then (3.3) is equivalent to

(3'4) Ez[ﬁ(S,)Iﬂv(Sl)] = B(Sl) a.e. P

x

on Q,.

Thus for any sequence {S,: n > 1} of partitions of [0, ¢], each of which is a
refinement of its predecessor and for which ||S,||— 0 we get by (3.4) that
{B(S,), Z(S,): n = 1} is a martingale, and being nonnegative it converges al-
most everywhere P,. Let a, = lim §(S,), then a, is F, measurable and is clearly
an MF. By (3.4) we get

E(B(S.), X, € A) = E (9%, X,), X, € A) = Qy(x, A)

and by uniform integrability of 5(S,), n = 1, we get, passing to the limit, that
Q,, t = 0, is generated by «a,, ¢ = 0.

The condition of uniform integrability is not easily checked in general and it
would be useful to find sufficient conditions for that, at least in special cases.
For example if g,(x, y) < exp((x — y)f(?)) for f bounded on compact subintervals
of [0, oo], then clearly 8(S,), n = 1, is uniform integrable.

4. Conditionally monotone functionals. In Section 3 we proved relations be-
tween MF and MPCA whose marginal distributions Q,, r = 0, satisfy the semi-
group property. But the semigroup property of Q,, ¢ = 0 is not required in the
definition of MPCA. We noticed in [6] that a necessary and sufficient condition
for Q,, t = 0, to constitute the marginal distributions of a MPCA having tran-
sition function P,, ¢ = 0, is that Q,,, > Q,P, and Q,(x, E;) < oo for s, t = 0.
The question thus arises what characterizes those functionals that generate the
marginal distribution of some MPCA. The result is a new class of functionals
called conditionally monotone functionals which are a generalization of MF. In
this section we prove two theorems which are analogues of Theorems 3.2 and
3.4 for a general MPCA.

THEOREM 4.1. Let @, t = 0, be a conditionally monotone expansion functional.
Let (Q, F, F,, X,, 0,, P,) be a Markov process with transition function P,, t = 0,
and state space (Ey, &y). Let Q,(x, A) = E,(a,, X, € A), xc E,, Ac&,. Then
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there exists an MPCA having transition function P,, t = 0, and marginal distributions
Q,t=0. ‘

Proor. Q,, t = 0, is a family of kernels on E; x & satisfying Q,(x, E;) =
E (a,, X, € E;) = E,(a,) < oo. Further Q,,, = Q,P, for s,t = 0. Indeed

Qui(x, A) = Ef(ays X,y € A) = E[E(a,| X,4,), Xypi € 4]
- =E,E(a» X, € 4| X)) = E(a X, € 4) .
On the other hand
Q,Py(x, A) = E,(a,P(X,, 4))
= E (a,E (X, € 4))
= E,E(a, X,,,c A| X)) = E,(a, X, € ) .

Thus the conditions of Theorem 2.1 of [6] hold and there exists an MPCA
satisfying the required properties.

THEOREM 4.2. Let Q,, t = 0, be a family of finite kernels on E; x &;. Let
(Q,F,F,, X, 0, P,) be a Markov process with transition function P,, t = 0, and
with a state space (Ey, &) such that Q,,, = Q,P,, s,t = 0, and with Q,(x, +)
absolute continuous w.r.t. P,(x, +), t = 0. Then there exists a conditionally mono-
tone functional a,, t = 0, generating Q,, t = 0.

Proor. Let g,(x, y) satisfy g,(x, 4) = §, 9.(x, y)P,(x, dy). Let a, = g,(x, X,).
Then a,, t = 0, is certainly a functional of the process. For conditional mono-
tonicity we must prove

Ex(asft’ X8+t € A) g E:c(as’ Xx+t € A) ¢
But ‘
E(a, X,y € A) = E(q,(%, X,), X,,, € A)
= Ea:[qx(x’ Xs)E:v(Xs+t e |Xs)]
= QaPt(x, A) .
Notice that by Theorem 2.1 of [6] there exists MPCA with P, and Q, as defined
above, and by the last theorem its Q,, t = 0, is generated by a,, = 0.

5. Application and examples. Let us see some examples of expansion func-
tionals of Markov processes and examine their application to perturbation theory
of Markov processes.

Let u be an integrable nonnegative function on (—oo, o) satisfying
E,(exp §tu(X,) ds) < oo for some Markov process (Q, F, F,, X,, 6,, P,). Then
a, = exp ¢ u(X,) ds is clearly a right continuous expansion MF. Thus there
existsan MPCA (Q, G, T 6 0,, ) satisfying F,(§, € A) = E,[exp §§ u(X,) ds,
x, € A]. If u is continuous and bounded then the infinitesimal generator of the
new process is A + u x I where A is the infinitesimal generator of the original
process. This result was first proved, by a completely different method by Helms
[4] for Brownian motion and for u satisfying lim,_, u(x) = 0.
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An example of an expansion conditionally monotone functional which is not
multiplicative is a, = 1 + §{u(X,)ds where u is nonnegative and satisfies
E,[§¢u(X,) ds] < oo. This functional being monotone in ¢ is also conditionally
monotone. Thus there exists a MPCA corresponding to it. For this functional

Q.(x, A) = P,(x, A) + E,[{ u(X,) ds, X, € A]
= Py(x, 4) + §§ o 24(X)u(X,) sz‘ds
= Py(x, A) + §i Vay Poo(ys A)P(ds, dy)
where ¢,(ds, dy) = u(y)P,(x, dy)ds is a measure on [0, co) x E, satisfying
$.([0, 1] x Ey) = §§ §z, u(»)P,(x, dy) = E, §ju(X,)ds < co. Thus we obtain an
explicit representation for the creation measure ¢, as defined in [4]. Of course
the marginal distribution of the resulting MPCA does not constitute a semigroup.

The theory of probabilistic solutions to perturbation of partial differential
equations was developed in [5]. Let us only notice relations to MF. For a given
Markov process with infinitesimal generator 4, the introduction of a MF results
(under some continuity condition) in a new MPCA whose infinitesimal generator
can be denoted by 4 + B, B = 0. Thus the MF provides a probabilistic solution
to a new differential equation. The question then arises, if 4 is the infinitesimal
generator of some Markov process, to what kind of perturbation of 4 (by B)
can we find a probabilistic solution by means of MF on the process. We know
by [2] Chapter VIII.1 and [6] Theorem 3.1, that if B satisfies, for example,
§¢||BP,|| ds < oo, for some ¢ > 0, then there exists an MPCA corresponding to
A + B satisfying

(5.1 Qi(x, A) = 25, S, (x, A)
where S =P,, S,=1\;S,_,BP,_,ds.

n-1 t—s

Now Theorem 3.5 gives sufficient conditions for the existence of a corresponding
MPCA. Thus, for example, if the original process a is Brownian motion, then all
measures P,(x, «) s > 0 are absolutely continuous with respect to each other
and thus by (5.1) Q,(x, ) is absolutely continuous with w.r.t. P(x, «). So for
each B the only condition remains to be checked is uniform integrability to get
a probabilistic solution via MF to the perturbed equation.

As in [3] it might be interesting to find relations between the resolvent families
of the original process and the one generated by «a,, t = 0.
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