FUNCTIONALS OF MARKOV PROCESSES AND SUPERPROCESSES

BY TALMA LEVIATAN

Tel-Aviv University

It is well known that a contraction multiplicative functional α_t , $t \ge 0$ on some Markov process with transition P_t , $t \ge 0$, yields another Markov process whose semigroup $Q_t(x,A) = E_x(\alpha_t,X_t \in A)$ is subordinate to P_t , $t \ge 0$. The second process results from the original one by adding a killing operation at a rate of $-d\alpha_t/\alpha_t$. This paper deals with expansion multiplicative functionals (satisfying $\alpha_t \ge 1$ and $E_x(\alpha_t) < \infty$). It is proved that such functionals yield a Markov process with creation and annihilation of mass. Relations to the original process are established. Finally the results are generalized to, so-called, conditionally monotone functionals.

1. Introduction. Let $X=(\Omega, F, F_t, X_t, \theta_t, P_x)$ be a Markov process with transition function P_t , $t \geq 0$. Then it is well known that for every multiplicative functional (MF), α_t , $t \geq 0$, of X satisfying $0 \leq \alpha_t \leq 1$ there exists another Markov process subordinated to X, in the sense that its transition function Q_t , $t \geq 0$, satisfies $Q_t \leq P_t$. Q_t is given in terms of α_t by the equation

$$Q_t(x, A) = E_x(\alpha_t, X_t \in A).$$

The relation between the two processes is that the later process is generated from the original one by adding a killing operator. In other words what α_t does, is that for every path $\omega \in \Omega$ it assigns a time $0 \le \tau(\omega) \le \infty$ after which the particle does not continue its motion in the state space E but is killed. Or in a different terminology, it is transferred to a new state added to E—the annihilation state.

A natural question arises. What if α_t is a MF which is not a contraction. Then the relation (1.1) yields a semigroup of kernels which are not sub Markov but rather super Markov. The question then arises—can we still find a process having Q_t , $t \geq 0$, as its quasi-transition function? The fact that $\alpha_t \leq 1$ yields a killing operator suggests that the opposite should happen for $\alpha_t \geq 1$. Namely we can expect processes with creation of particles. Such processes were already defined and treated in recent years by several authors under the name "Markov processes with creation and annihilation" (MPCA).

In this paper we prove the relation between MF $\alpha_t \ge 1$ and MPCA (Section 3). We will also prove in Section 4 that for an existence of an MPCA having quasi transition function Q_t , $t \ge 0$, satisfying (1.1) one actually does not need the condition of multiplicativity of α_t but rather a weaker condition of conditional

Received September 13, 1973; revised March 11, 1974.

AMS 1970 subject classifications. Primary 6062; Secondary 6067.

Key words and phrases. Expansion multiplicative functionals, dominating semigroup, Markov processes with creation and annihilation.

monotonicity. In Section 5 we will consider some examples of functionals $\alpha_t \ge 1$ and the resulting MPCA. A well-known special case is where the original process is Brownian motion and $\alpha_t = \exp \int_0^t u(x_s) \, ds$ where u is a bounded continuous function. This can be shown to be equivalent to perturbation of the infinitesimal generator of Brownian motion by $u \times I$ and as has been proved by Helms [4], it results in an MPCA.

2. Definitions and preliminaries. Let E be a locally compact space with a countable basis. Let \mathcal{E} be its σ -algebra of Borel subsets. Let Δ , ∇ be two points not in E. Adjoin ∇ to E as an isolated point or as the point of infinity according as E is compact or not, let \mathcal{E}_{∇} be the resulting σ -algebra. Adjoin Δ to E_{∇} as an isolated point and let $\mathcal{E}_{\nabla,\Delta}$ be the resulting σ -algebra. We will use the notations of [1] throughout this work. Let $X=(\Omega,F,F_t,X_t,\theta_t,P_x)$ be a Markov process with state space $(E_{\nabla},\mathcal{E}_{\nabla})$ having transition function P_t , $t\geq 0$, where $P_t(x,A)=P_x(X_t\in A)$, $x\in E_{\nabla}$, $A\in \mathcal{E}_{\nabla}$.

DEFINITION 2.1. A family $\{\alpha_t : 0 \le t < \infty\}$ of random variables on (Ω, F) is called a functional of the process if α_t is F_t measurable for $t \ge 0$. A functional is called an expansion functional if it satisfies $\alpha_t \ge 1$ and $E_x(\alpha_t) < \infty$, for $t \ge 0$.

DEFINITION 2.2. (a) A functional α_t of the process is called a multiplicative functional (MF), if $\alpha_{s+t} = \alpha_t(\alpha_s \circ \theta_t)$ a.e. P_x , $x \in E$ for $s, t \ge 0$.

(b) α_t is called conditionally monotone if $\alpha_{s+t} \geq E_x(\alpha_s | X_{s+t})$, a.e. P_x , $x \in \mathcal{E}_v$.

An MF α_t satisfying $\alpha_t \ge 1$ is obviously conditionally monotone. Indeed $\alpha_{s+t} = \alpha_t(\alpha_s \circ \theta_t) \ge \alpha_t$.

DEFINITION 2.3. A function $Q_t(x, A)$, $t \ge 0$, $X \in E_{\nabla}$, $A \in \mathscr{C}_{\nabla}$, is called a quasitransition function (QTF) if $Q_t(\cdot, A)$ is \mathscr{C}_{∇} -measurable, $Q_t(x, \cdot)$ is a measure on \mathscr{C}_{∇} , $Q_0(x, E_{\nabla} - x) = 0$ and $Q_{s+t}(x, A) = Q_s Q_t(x, A)$.

DEFINITION 2.4. Let P_t , Q_t , $t \ge 0$ be two QTF's. P_t is subordinate to Q_t if $P_t(x, A) \le Q_t(x, A)$ for each $t \ge 0$, $x \in E_v$, $A \in \mathscr{E}_v$. Q_t is said to dominate P_t .

For any functional $\alpha_t \ge 1$ of the process X, define $Q_t(x,A) = E_x(\alpha_t \, x_t \in A)$. Then Q_t , $t \ge 0$, is a QTF dominating P_t , $t \ge 0$. Q_t , $t \ge 0$ is called the QTF generated by α_t , $t \ge 0$.

The last definition is that of an MPCA. The exact definition was given in [4], [5]. Mainly, an MPCA having state space $(E_{\nabla \Delta}, \mathcal{E}_{\nabla \Delta})$ and transition function P_t , $t \geq 0$, is a process $\{\xi_t, \mathcal{F}_t : t \geq 0\}$ defined on a σ -finite measure space $(\Omega, \mathcal{F}, \mathcal{P}_x)$, $x \in E_{\nabla}$, satisfying the following two conditions.

- (i) Each $\omega \in \Omega$ is a function from $[0, \infty)$ to $E_{\nabla, \Delta}$ satisfying $\omega(s) = \Delta$ implies $\omega(t) = \Delta$ for $t \leq s$ and $\omega(s) = \nabla$ implies $\omega(t) = \nabla$ for $t \geq s$.
 - (ii) For each $x \in E_{\nabla}$, $A \in \mathcal{E}_{\nabla}$ the following Markov property holds:

$$\mathscr{S}_x(\xi_{s+t} \in A \mid \mathscr{F}_t \cap \{\xi_t \in E_{\overline{v}}\}) = P_s(\xi_t, A)$$
 a.e. \mathscr{S}_x on $\{\xi_t \in E_{\overline{v}}\}$

where $\xi_t \colon \Omega \to E_{\nabla, \Delta}$ is defined by $\xi_t(\omega) = \omega(t)$ and where $\mathscr{F}_t = \sigma(\xi_s \colon s \leq t)$

(generated σ -algebra). For some regularity conditions see [3]. For any MPCA we can define the associated family of marginal distributions Q_t , $t \ge 0$, by $Q_t(x, A) = \mathscr{S}_x(\xi_t \in A)$, $t \ge 0$, $x \in E_v$, $A \in \mathscr{E}_v$. Define two random variables $\alpha(\omega) = \inf\{t : \xi_t(\omega) \in E_v\}$, $\beta(\omega) = \inf\{t : \xi_t(\omega) = v\}$ called the starting time and annihilation (killing) time, respectively.

3. Expansion multiplicative functionals. In this section we establish the relations between an MF of a Markov process with transition function P_t , $t \ge 0$, and an MPCA having the same transition function. We will show that under some mild conditions, for every MF $\alpha_t \ge 1$ on the process there exists an MPCA whose marginal distribution is a quasi transition function generated by α_t . For the reverse implication, we need some extra conditions of absolute continuity and uniform integrability of the quasi transition function. These conditions turn out to be necessary and sufficient. Notice the analogy of these results to Meyer's results for contraction MF [7]. Using the multiplicativity of α_t , we can prove,

LEMMA 3.1. Let $X = (\Omega, F, F_t, X_t, \theta_t, P_x)$ be a Markov process having transition function P_t , $t \ge 0$. Let α_t , $t \ge 0$, be an expansion MF on X. Then $Q_t(x, A) = E_x(\alpha_t, X_t \in A)$ is a quasi transition function dominating P_t , $t \ge 0$.

THEOREM 3.2. Let $X=(\Omega, F, F_t, X_t, \theta_t, P_x)$ be a Markov process having transition function P_t , $t \geq 0$. Let α_t be a right continuous expansion MF. Then there exists an MPCA $Y=(\hat{\Omega}, \mathcal{F}, \mathcal{F}_t, \xi_t, \theta_t, \mathcal{P}_x)$ with transition function P_t , $t \geq 0$, whose marginal distribution is the quasi transition function generated by α_t .

PROOF. Let $\hat{\Omega} = \Omega \times [0, \infty]$ with points $\hat{\omega} = (\omega, \lambda), \ \omega \in \Omega, \ 0 \le \lambda \le \infty$. Let $\mathscr{F} = F \times \mathscr{B}$ be a σ -algebra of subsets of $\hat{\Omega}$, where \mathscr{B} is the σ -algebra of Borel sets of $[0, \infty]$. Let π_1, π_2 , be the natural projections of $\hat{\Omega}$ on Ω and on $[0, \infty]$ resp. Define a process ξ_t on $(\hat{\Omega}, \mathscr{F})$ by $\xi_t(\hat{\omega}) = X_t(\omega)$ for $t \ge \lambda$ and $\xi_t(\hat{\omega}) = \Delta$ for $t < \lambda$. Let $\beta(\hat{\omega}) = \beta(\omega), \ \alpha(\hat{\omega}) = \inf\{t \colon \xi_t(\hat{\omega}) \in E_v\}$. Define a shift operator $\theta_t(\hat{\omega}) = (\theta_t(\omega), \max(\lambda - t, 0))$. Let $\mathscr{F}_t, \ t \ge 0$, be the sub σ -algebra of \mathscr{F}_t generated by the sets $[0, s] \times A$ for $s \le t$, $A \in F_s$ and $\Omega \times (s, \infty), \ s \le t$. \mathscr{F}_t is an increasing sequence of σ -algebras. Also ξ_t is \mathscr{F}_t measurable, since for $A \in \mathscr{E}_v$ $\{\xi_t(\hat{\omega}) \in A\} = [0, t] \times \{X_t(\omega) \in A\} \in \mathscr{F}_t$ and $\{\xi_t(\hat{\omega}) = \Delta\} = (t, \infty] \times \Omega \in \mathscr{F}_t$. $\mathscr{F}_t, \ t \ge 0$, are also right continuous.

Let Ω' be the subset of Ω consisting of all $\omega \in \Omega$ for which $\alpha_t(\omega) < \infty$, $t \geq 0$, $t \to \alpha_t(\omega)$ is right continuous and non-decreasing and whence $\alpha_0 = 1$. Clearly $P_x(\Omega') = 1$, $x \in E_{\nabla}$. Thus we can assume $\Omega = \Omega'$. Define for each $\omega \in \Omega$ a measure μ_{ω} on $[0, \infty]$ via $\mu_{\omega}[0, t] = \alpha_t(\omega)$, $\mu_{\omega}(\infty) = 0$ and extend it uniquely to all Borel subsets. μ_{ω} is a σ -finite measure and $\mu_{\bullet}(A)$ is clearly measurable for $A \in \mathscr{B}$. Let $\hat{\Lambda} \in \mathscr{F} = F \times \mathscr{B}$ let $\hat{\Lambda}_{\omega} = \{\lambda : (\omega, \lambda) \in \hat{\Lambda}\}$. Then as a section of $\hat{\Lambda}$, $\hat{\Lambda}_{\omega}$ is \mathscr{B} -measurable. Also $\omega \to \mu_{\omega}(\hat{\Lambda}_{\omega})$ is \mathscr{F} -measurable. Define

$$(3.1) \mathscr{P}_{x}(\hat{\Lambda}) = E_{x}(\mu_{\omega}(\hat{\Lambda}_{\omega})) = E_{x}(\mu_{\omega}\{\lambda : (\omega, \lambda) \in \hat{\Lambda}\}).$$

 \mathscr{T}_x is a σ -finite measure on $(\hat{\Omega}, F)$. To show that $(\hat{\Omega}, \mathscr{F}, \mathscr{F}_t, \xi_t, \theta_t, \mathscr{T}_x)$ is the required MPCA, let $A \in \mathscr{E}_v$ then clearly $\{\xi_t \in A\} = \{X_t \in A\} \times [0, t]$, thus $\mathscr{T}_x(\xi_t \in A) = E_x(\alpha_t, X_t \in A)$. Denote this by $Q_t(x, A)$. As for the Markov property, let $B \in \mathscr{E}_v$, $s, t \geq 0$, $x \in E_v$, we must show

$$\mathscr{S}_{x}(\xi_{s+t} \in B, \hat{\Lambda}) = \mathscr{E}_{x}(P_{\xi_{s}}(\xi(s) \in B), \hat{\Lambda})$$

for all $\hat{\Lambda} \in \mathscr{F}_t \cap \Omega_t$ where $\Omega_t = \Omega \cap [0, t]$.

It is enough to prove (3.2) for sets of the forms $\hat{\Lambda} = \{\xi_{t_i} \in A_i, i = 1, \dots, n\}$ where $t_n = t$, $A_i \in \mathcal{E}_{\nabla, \Lambda}$ since they generate \mathcal{F}_t . Or, further, for sets of the form

$$(t_{j-1}, t_j] \times \{X_{t_i} \in A_j, \dots, X_{t_n} \in A_n\} = (t_{j-1}, t_j] \times \Lambda_j, \qquad A_i \in \mathcal{E}_{\nabla}$$

 $j \leq i \leq n$. But for such a $\hat{\Lambda}$

 $\{\xi_{s+t} \in B\} \cap \hat{\Lambda} = \{[0, s+t] \times B\} \cap (t_{j-1}, t_j] \times \Lambda_j = (t_{j-1}, t_j] \times (B \cap \Lambda_j)$ and thus

$$\begin{split} \mathscr{S}_{x}(\xi_{s+t} \in B, \hat{\Lambda}) &= E_{x}[(\alpha_{t_{j}} - \alpha_{t_{j-1}})(X_{s+t} \in B, \Lambda_{j})] \\ &= E_{x}(\Lambda_{j}(\alpha_{t_{j}} - \alpha_{t_{j-1}})E_{x_{t}}(X_{s} \in A)]. \end{split}$$

As for the right-hand side, let $f(y) = E_{\nu}(X_s \in A)$, then it equals

$$\begin{aligned} \mathscr{E}_x(f(\xi_t), \hat{\Lambda}) &= E_x[f(X_t)(\alpha_{t_{j-1}} - \alpha_{t_j}), \Lambda_j] \\ &= E_x[(\alpha_{t_j} - \alpha_{t_{j-1}})\Lambda_j E_{x_t}(X_s \in A)] \ . \end{aligned}$$

The right-hand side of (3.2) was well defined since on $\Omega_t \, \xi(t) = X(t)$ for $t \geq \lambda$. Notice that for the construction of \mathscr{T}_x we have not used the multiplicativity of α_t . We used only right continuity and monotonicity. The multiplicativity was necessary only to prove the semigroup property of Q_t , $t \geq 0$.

A shorter existence proof of MPCA, not using right continuity of α_t , can easily be produced using Corollary 2.3 of [6] (See Theorem 4.1). The advantage of the proof given here is that it makes clear the notion of creation via the second coordinate of $\hat{\omega} \in \hat{\Omega}$. Also one can get intuitively the "rate of creation" through this proof by calculating the "conditional probability" of $\pi_1 > t$ given no creation until time t, to get a creation rate of $d\alpha_t/\alpha_t$.

Lemma 3.3. The semigroup Q_t , $t \ge 0$, generated by α_t , $t \ge 0$, is absolutely continuous with respect to P_t , $t \ge 0$.

PROOF. Indeed $Q_t(x, A) = \int_{\{X(t) \in A\}} \alpha_t \, dP_x$ thus $P_t(x, A) = P_x(X_t \in A) = 0$ implies $Q_t(x, A) = 0$. Denote by $q_t(x, y)$ the Radon-Nikodym derivative of $Q_t(x, \bullet)$ w.r.t. $P_t(x, \bullet)$. $q_t(x, y)$ can be chosen to be $E_{\nabla} \times \mathcal{E}_{\nabla}$ measurable.

The following lemma can be found in [3] page 285.

LEMMA 3.4. Let $S_n = \{0 = s_0 < s_1 < \dots < s_n = t\}$ be a partition of [0, t]. Then $\beta(S_n) = \prod_{i=0}^n q_{s_{i+1}-s_i}(X_{s_i}, X_{s_{i+1}}), n \ge 1$, in uniform integrable w.r.t. P_x . Further $\beta(S_n) \to \alpha_t$ a.e. P_x as the norm of partition $||S_n|| \to 0$.

The following is the converse of Theorem 3.2.

THEOREM 3.5. Let $(\hat{\Omega}, \mathcal{F}, \mathcal{F}_t, \xi_t, \theta_t, \mathcal{F}_x)$ be an MPCA with transition function

 P_t , $t \ge 0$ and with marginal distribution Q_t , $t \ge 0$, constituting a QTF. Suppose $Q_t(x, \cdot)$ is absolutely continuous w.r.t. $P_t(x, \cdot)$ for $t \ge 0$, $x \in E_{\nabla}$ and denote by $q_t(x, y)$ the Radon-Nikodym derivative. Let S_n , $\beta(S_n)$ be defined as in Lemma 3.4. Assume that for any sequence S_n of partitions with $||S_n|| \to 0$, $\beta(S_n)$, $n \ge 1$, is uniform integrable w.r.t. P_x . Then there exists an expansion MF α_t , $t \ge 0$, that generates Q_t , $t \ge 0$.

PROOF. The proof is similar to Dynkin's proof to Theorem 9.3. We will give a short outline for the sake of completeness. One first proves that the semigroup property of Q_t , $t \ge 0$, is equivalent to the fact that for $s \le t$

$$(3.3) E_x[q_s(X, X_s)q_{t-s}(X_s, X_t) | X_t] = q_t(X, X_t).$$

Then let S_1 , S_2 be two partitions of [0, t] such that S_2 is a refinement of S_1 and denote by $\mathcal{F}(S) = \sigma(X_s : s \in S)$ then (3.3) is equivalent to

(3.4)
$$E_x[\beta(S_2) | \mathcal{F}(S_1)] = \beta(S_1) \quad \text{a.e.} \quad P_x \quad \text{on} \quad \Omega_t.$$

Thus for any sequence $\{S_n: n \ge 1\}$ of partitions of [0, t], each of which is a refinement of its predecessor and for which $||S_n|| \to 0$ we get by (3.4) that $\{\beta(S_n), \mathscr{F}(S_n): n \ge 1\}$ is a martingale, and being nonnegative it converges almost everywhere P_x . Let $\alpha_t = \lim \beta(S_n)$, then α_t is F_t measurable and is clearly an MF. By (3.4) we get

$$E_x(\beta(S_n), X_t \in A) = E_x(q_t(x, X_t), X_t \in A) = Q_t(x, A)$$

and by uniform integrability of $\beta(S_n)$, $n \ge 1$, we get, passing to the limit, that Q_t , $t \ge 0$, is generated by α_t , $t \ge 0$.

The condition of uniform integrability is not easily checked in general and it would be useful to find sufficient conditions for that, at least in special cases. For example if $q_t(x, y) \leq \exp((x - y)f(t))$ for f bounded on compact subintervals of $[0, \infty]$, then clearly $\beta(S_n)$, $n \geq 1$, is uniform integrable.

4. Conditionally monotone functionals. In Section 3 we proved relations between MF and MPCA whose marginal distributions Q_t , $t \ge 0$, satisfy the semigroup property. But the semigroup property of Q_t , $t \ge 0$ is not required in the definition of MPCA. We noticed in [6] that a necessary and sufficient condition for Q_t , $t \ge 0$, to constitute the marginal distributions of a MPCA having transition function P_t , $t \ge 0$, is that $Q_{s+t} \ge Q_s P_t$ and $Q_t(x, E_v) < \infty$ for $s, t \ge 0$. The question thus arises what characterizes those functionals that generate the marginal distribution of some MPCA. The result is a new class of functionals called conditionally monotone functionals which are a generalization of MF. In this section we prove two theorems which are analogues of Theorems 3.2 and 3.4 for a general MPCA.

THEOREM 4.1. Let α_t , $t \geq 0$, be a conditionally monotone expansion functional. Let $(\Omega, F, F_t, X_t, \theta_t, P_x)$ be a Markov process with transition function P_t , $t \geq 0$, and state space (E_v, \mathcal{E}_v) . Let $Q_t(x, A) = E_x(\alpha_t, X_t \in A)$, $x \in E_v$, $A \in \mathcal{E}_v$. Then

there exists an MPCA having transition function P_t , $t \ge 0$, and marginal distributions Q_t , $t \ge 0$.

PROOF. Q_t , $t \ge 0$, is a family of kernels on $E_{\nabla} \times \mathcal{E}_{\nabla}$ satisfying $Q_t(x, E_{\nabla}) = E_x(\alpha_t, X_t \in E_{\nabla}) = E_x(\alpha_t) < \infty$. Further $Q_{s+t} \ge Q_s P_t$ for $s, t \ge 0$. Indeed

$$Q_{s+t}(x, A) = E_{x}(\alpha_{s+t}, X_{s+t} \in A) \ge E_{x}[E_{x}(\alpha_{s} | X_{s+t}), X_{s+t} \in A]$$

= $E_{x}E_{x}(\alpha_{s}, X_{s+t} \in A | X_{s+t}) = E_{x}(\alpha_{s}, X_{s+t} \in A)$.

On the other hand

$$\begin{split} Q_{s}P_{t}(x, A) &= E_{x}(\alpha_{s}P_{t}(X_{s}, A)) \\ &= E_{x}(\alpha_{s}E_{x}(X_{s+t} \in A)) \\ &= E_{x}E_{x}(\alpha_{s}, X_{s+t} \in A \mid X_{s}) = E_{x}(\alpha_{s}, X_{s+t} \in A) \; . \end{split}$$

Thus the conditions of Theorem 2.1 of [6] hold and there exists an MPCA satisfying the required properties.

THEOREM 4.2. Let Q_t , $t \ge 0$, be a family of finite kernels on $E_{\nabla} \times \mathcal{E}_{\nabla}$. Let $(\Omega, F, F_t, X_t, \theta_t, P_x)$ be a Markov process with transition function P_t , $t \ge 0$, and with a state space $(E_{\nabla}, \mathcal{E}_{\nabla})$ such that $Q_{s+t} \ge Q_s P_t$, $s, t \ge 0$, and with $Q_t(x, \bullet)$ absolute continuous w.r.t. $P_t(x, \bullet)$, $t \ge 0$. Then there exists a conditionally monotone functional α_t , $t \ge 0$, generating Q_t , $t \ge 0$.

PROOF. Let $q_t(x, y)$ satisfy $q_t(x, A) = \int_A q_t(x, y) P_t(x, dy)$. Let $\alpha_t = q_t(x, X_t)$. Then $\alpha_t, t \ge 0$, is certainly a functional of the process. For conditional monotonicity we must prove

$$E_x(\alpha_{s+t}, X_{s+t} \in A) \ge E_x(\alpha_s, X_{s+t} \in A)$$
.

But

$$\begin{split} E_{x}(\alpha_{s}, \, X_{s+t} \in A) &= E_{x}(q_{s}(x, \, X_{s}), \, X_{s+t} \in A) \\ &= E_{x}[q_{s}(x, \, X_{s})E_{x}(X_{s+t} \in A \, | \, X_{s})] \\ &= Q_{s}P_{t}(x, \, A) \; . \end{split}$$

Notice that by Theorem 2.1 of [6] there exists MPCA with P_t and Q_t as defined above, and by the last theorem its Q_t , $t \ge 0$, is generated by α_t , $t \ge 0$.

5. Application and examples. Let us see some examples of expansion functionals of Markov processes and examine their application to perturbation theory of Markov processes.

Let u be an integrable nonnegative function on $(-\infty, \infty)$ satisfying $E_x(\exp \int_0^t u(X_s) \, ds) < \infty$ for some Markov process $(\Omega, F, F_t, X_t, \theta_t, P_x)$. Then $\alpha_t = \exp \int_0^t u(X_s) \, ds$ is clearly a right continuous expansion MF. Thus there exists an MPCA $(\hat{\Omega}, \mathscr{F}, \mathscr{F}_t, \xi_t, \theta_t, \mathscr{F}_x)$ satisfying $\mathscr{F}_x(\xi_t \in A) = E_x[\exp \int_0^t u(X_s) \, ds, x_t \in A]$. If u is continuous and bounded then the infinitesimal generator of the new process is $A + u \times I$ where A is the infinitesimal generator of the original process. This result was first proved, by a completely different method by Helms [4] for Brownian motion and for u satisfying $\lim_{x\to\infty} u(x) = 0$.

An example of an expansion conditionally monotone functional which is not multiplicative is $\alpha_t = 1 + \int_0^t u(X_s) ds$ where u is nonnegative and satisfies $E_x[\int_0^t u(X_s) ds] < \infty$. This functional being monotone in t is also conditionally monotone. Thus there exists a MPCA corresponding to it. For this functional

$$Q_{t}(x, A) = P_{t}(x, A) + E_{x}[\int_{0}^{t} u(X_{s}) ds, X_{t} \in A]$$

$$= P_{t}(x, A) + \int_{0}^{t} \int_{\Omega} \chi_{A}(X_{t})u(X_{s}) dP_{x} ds$$

$$= P_{t}(x, A) + \int_{0}^{t} \int_{E_{\nabla}} P_{t-s}(y, A)\phi_{x}(ds, dy)$$

where $\phi_x(ds, dy) = u(y)P_s(x, dy) ds$ is a measure on $[0, \infty) \times E_v$ satisfying $\phi_x([0, t] \times E_v) = \int_0^t \int_{E_v} u(y)P_s(x, dy) = E_x \int_0^t u(X_s) ds < \infty$. Thus we obtain an explicit representation for the creation measure ϕ_x as defined in [4]. Of course the marginal distribution of the resulting MPCA does not constitute a semigroup.

The theory of probabilistic solutions to perturbation of partial differential equations was developed in [5]. Let us only notice relations to MF. For a given Markov process with infinitesimal generator A, the introduction of a MF results (under some continuity condition) in a new MPCA whose infinitesimal generator can be denoted by A + B, $B \ge 0$. Thus the MF provides a probabilistic solution to a new differential equation. The question then arises, if A is the infinitesimal generator of some Markov process, to what kind of perturbation of A (by B) can we find a probabilistic solution by means of MF on the process. We know by [2] Chapter VIII.1 and [6] Theorem 3.1, that if B satisfies, for example, $\int_0^t ||BP_s|| ds < \infty$, for some t > 0, then there exists an MPCA corresponding to A + B satisfying

(5.1)
$$Q_t(x, A) = \sum_{n=0}^{\infty} S_n^t(x, A)$$
where $S_0^t = P_t$, $S_n^t = \int_0^t S_{n-1}^s B P_{t-s} ds$.

Now Theorem 3.5 gives sufficient conditions for the existence of a corresponding MPCA. Thus, for example, if the original process a is Brownian motion, then all measures $P_s(x, \cdot)$ s > 0 are absolutely continuous with respect to each other and thus by (5.1) $Q_t(x, \cdot)$ is absolutely continuous with w.r.t. $P_t(x, \cdot)$. So for each B the only condition remains to be checked is uniform integrability to get a probabilistic solution via MF to the perturbed equation.

As in [3] it might be interesting to find relations between the resolvent families of the original process and the one generated by α_t , $t \ge 0$.

REFERENCES

- [1] Blumenthal R. M. and Getoor R. K. (1969). Markov Processes and Potential Theory. Academic Press, New York.
- [2] DANFORD N. and SCHWARTZ J. (1964). Linear Operators, Part I: General Theory. Interscience, New York.
- [3] DYNKIN E. B. (1964). Markov Processes 1. Springer-Verlag, Berlin.
- [4] Helms L. L. (1967), (1970). Markov processes with creation of mass, I, II. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 225-234; 15 208-218.
- [5] LEVIATAN TALMA (1972). Perturbations of Markov processes. J. Functional Analysis 10 309-325.

- [6] Leviatan, Talma (1973). On Markov processes with random starting time. *Ann. Probabiliy* 1 223–230.
- [7] MEYER P. A. (1962). Functionnelles multiplicative et additive de Markov. *Ann. Inst. Fourier* (*Grenable*) 12 125-230.

DEPARTMENT OF STATISTICS
TEL-AVIV UNIVERSITY
RAMAT-AVIV, TEL-AVIV
ISRAEL