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THE LAW OF LARGE NUMBERS FOR SUBSEQUENCES
OF A STATIONARY PROCESS

By JuLius BLum! AND BENNETT EISENBERG?
University of New Mexico and Lehigh University

Convergence in mean of N=1 Z}_; X;, is studied for stationary pro-
cesses classified according to parameter space and type of spectral measure.

0. Introduction. In this paper we consider the problem of estimating the
mean of a stationary process by using a subsequence of the possible observations.
To begin assume x,, is a weakly stationary sequence with mean m and covariance

R(n) = E((x,, — m)(xy4, — m)) = (4~ exp(2xiin) dF(2) .

The measure given by F is called the spectral measure of the process. If dF(0)=0
the process is called ergodic in the wide sense and in this case N-! ¥ x,con-
verges to m in mean square. Unlike the case for uncorrelated random variables
N=' ¥ %1 X, does not converge for arbitrary subsequences n,. In this paper we
find conditions on subsequences for which there is convergence for certain classes
of processes.

Hanson and Pledger (1969) studied a closely related problem in the discrete
parameter case and gave a fairly complete solution. Section 1 starts with a dif-
ferent approach to the problem, includes a derivation of some known results
(Hanson-Pledger (1969) and Blum-Eisenberg (1974)) and continues with a con-
sideration of the same problem in the continuous parameter case. The same ap-
proach is used in Section 2 for the class of processes weakly mixing in the wide
sense, i.e., those with continuous spectral functions. Some new sampling sub-
sequences are shown to be admissible here. A sequence ¢, is called admissible
for a stationary process x, if N=* 31¥_, x, converges to m in mean square.

In Blum-Hanson (1960) it is shown that any subsequence is admissible for a
process which is strongly mixing in the wide sense, i.e., a process whose covari-
ance R(n) — 0 as n — co. Conversely, they show that if every subsequence is
admissible then the process must be strongly mixing. In Section 3 an extension
of these results is given for continuous parameter processes.

In all this work we neglect the question of whether m could be better esti-
mated by some other linear combination of observations since this would require
more detailed knowledge of the spectral measure of the process.
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1. Ergodic processes. The first theorem occurs in greater generality in Blum-
Eisenberg (1974) and includes results of Hanson-Pledger (1969) (i.e., the equiva-
lence of (1) and (5)).

THEOREM 1A. The following are equivalent:
(1) N~ 31 x,, — 2 m for every stationary ergodic process x.,.

(2) §o~ [| 2¥=1 exp(27idn,)|’/N*] dF(2) — O for all spectral measures with
dF(0) = 0.

3) N=' 3 ¥_, exp(2niAn,) — O for all nonintegral 2.

4) For irrational 2, N-' 31 7_, exp(2miAn,m) — 0 form = 1,2, 3, - .., and for
integral p

% Ty exp(2rin,mlp) -0  for m=1,2,...,p—1.

%) An,, is uniformly distributed modulo 1 for irrational 2 and n, mod p is uni-
formly distributed on 0 to p — 1 for integral p.

ProoF. (1) < (2). The map x, — m to exp(2zidn) in L*(dF) is an isometry.

(2) — (3). Let dF be a point mass at 4 mod 1.

(3) — (2). Dominated convergence utilizing dF(0) = 0.

(3) — (4). For the first part, substitute Am for 2 and in the second part sub-
stitute m/p for A, m =1, ..., p — 1.

(4) — (3). Let m vary from 1 to p — 1.

(4) — (5). The Lévy continuity theorem for probability measures on the unit
circle T states that y, — p weakly if and only if the Fourier coefficients fi,(m) =
{r exp(2rimt)d, (exp(2rit)) converge pointwise to f(m) for all integers m
(Billingsley (1968) page 50). For the first part of the equivalence of (4) and (5)
let 4, be the uniform measure on the points exp(2zidn,), k =1, ..., N. Then
(4) says fiy(m)— 0 for m = 0. That is, 2,(m)— fi(m), where p is normalized
Lebesgue measure on the circle. This holds if and only if g, — p weakly which
is true if and only if An, is uniformly distributed mod 1.

For the second part of the equivalence of (4) and (5) let x, be the uniform
measure on exp(2zin,/p), k =1, ..., N and note that (4) says p, converges
weakly to the uniform measure on exp(2zij/p), j =0, .-+, p — 1. []

Condition (3) is interesting in that it- shows that for processes with discrete
spectral measure and almost periodic sample paths there will be convergence
almost surely in (1). It is striking that this condition is sufficient for (1) to hold
for processes with continuous spectral measure.

Uniform distribution mod 1 has been widely studied. Condition (5) of the
theorem is a condition of simultaneous uniform distribution for different se-
quences and will rarely be satisfied.

Examples of admissible sequences are 1,2, 3, ... as well as 1, 10, 11, 101,
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102, 103, - - . consisting of longer and longer strings of consecutive integers
arbitrarily spaced, and 1, 2,4, 5,7, 9, . . . consisting of an odd number followed
by two consecutive evens, three consecutive odds, etc. All can be checked
using (3).

Examples of sequences which do not work are n, = 2k and n, = 3* as can be
verified by (5).

An analogue of this theorem for continuous parameter processes is stated
here without proof. In the continuous case we assume x, has covariance R(f) =
(=, et dF(2).

THEOREM 1B. The following are equivalent:
1) N~ {1 X, — m for every stationary ergodic process.

2) N=2 (=, | h=1exp(idt,)|* dF () — 0  for every spectral measure with
dF(0) = 0.

3) N-t 30 exp(idt,) — O for all 2 + 0.
4) Nty exp(id,m) —» 0 forall A0, m=1,2, ...
(&) Aty is uniformly distributed modulo 1 for all 2 + 0.

Obviously no sequence of integers satisfies (5) when 2 = 1. However, a
theorem of Fejer gives the existence of many admissible sequences 7,. Namely,
if f(x) is a differentiable function such that f’(x) | 0 but lim,_, x|f’(x)] = co
then the sequence #, = f(k) is uniformly distributed mod 1 (Kuipers and
Niederreiter (1974) page 14).

But if f satisfies the hypotheses of Fejer’s theorem so does g(x) = Af(x), 2 > 0.
Hence g(k) = Af(k) is uniformly distributed mod 1 for any 2 > 0 and it is also
seen (5) holds for 2 < 0 as well. Hence f(k) satisfies (5). An example of such
an admissible sequence is 1, = v/ k .

At this point we should mention that in a recent paper Niederreiter (1973) has
shown that integer sequences n, satisfying Theorem 1A, part (5) can be gotten
from sequences ¢, satisfying Theorem 1B, part (5) by taking n, = [¢,], the greatest
integer less than z,.

We now consider some results for random sampling schemes for a continuous
time process.

Let y, = x,, for some constant «. Then

N DNy, —m = § L N exp(iing) dZ() — T dz (2K

[44

and E(N7* X 8_,y, — m)®) — X%__.,dF(2rk/a). But if a is chosen at random
with continuous probability distribution dP then writing y, (0, ©') = X, (®'),

E(( Ztara —m) )= § Seemwdr (25 dp@) = 0

since )] dF(2nk/a) = 0 except for at most countably many «. In this case there
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is a set 4 of w’s with P(4) = 1 for which there is convergence in L*w’). But
this set A4 is not universal in that it depends on the spectral measure F of the x,
process.

A more complicated case of random sampling is where y,(®, ') = x((T, + - - -
+ T,)(w), »'), where we write x(¢, ») for x,(w) and where T, are independent
identically distributed random variables with characteristic function ¢(2) satis-
fying |¢(2)] < 1 for 2 = 0. That is, the 7, do not have a lattice distribution.
Without loss of generality assume n < m. Then

E(Yayn) = E,E,(X(Ty + -+ + T)(@), @)x((Ty + -+ + Tp(@), @)
=E,R(Tors + -+ + Ta)(®))
=E,(§ e (Tors + -+ + Tn) dF(2)) = § p(A)™ " dF(2) .
Hence E(N™' 38_,y,)) = S N2 0, 23N _, ™ "(2) dF(4). But for any a with

la] <1,
1
N?

N—k ,
a
N

N N |m—m|
m=1 Z n=1 a

1 2
= IW + —]V chv=1
2 0
(1 — |a)N

IA

1
N +

Substituting ¢(2) for a we have E(N* }; y,)* — 0. Again this does not say that
N3N  exp(iA(Ty + - -+ + T,)(®)) — O for any fixed 2 == 0. However, Robbins
(1953) has shown that for each 1 == 0 there is convergence to 0 a.s. and Blum
and Cogburn in some unpublished work have shown there is simultaneous con-
vergence for all 2 == 0 with probability 1. That is¢, =T, 4+ --- + T, is ad-
missible with probability 1.

If it is also assumed that dF has compact support then there is no problem in
estimating the mean of a continuous time process by discrete observations. Name-
ly, if x, has spectral measure dF with support [—T, T'] then N-* 317 , x,, > m
for every 0 < a < 2x/T. This follows because if a < 27/T then |al| < 2z for
|2l £ T. Hence N7' 3 ¥_ exp(idna) - 0for 2 0in [T, T]. If a« = 2x/T and
2 = T there is no such convergence. In fact, if dF consists of point masses at
4T then R(t) = cos tT and R(2zn/T) = 1. Hence X, , = X,

Another important class of processes are the continuous time periodic pro-
CESSES X, = D, ,0 Ly €XP(2mint) + m.

This time the theorem takes the form:

THEOREM 1C. The following are ‘equivalent:
(1) N7 Y 1 x,, — m for every stationary ergodic process with period 1.
(2) Dinzo N2 | 24, exp(2zint)|’c, ——> 0 forallc, >0, 3¢, < co.
3) N ¥ exp(2@int,) —» 0 all n =+ 0.
4) t, modulo one are uniformly distributed on [0, 1).

Examples of such sequences are #, of the form ka, where « is irrational.
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More generally we have that the orbit T*s of almost all points s in [0, 1] under
an ergodic measure preserving transformation T is uniformly distributed. Name-
ly, let f,(u) = exp(2winu). Then by the pointwise ergodic theorem

%[_ S fATs) = % S, exp(2minT*s) — 0 a.s.

Thus for almost all s this is true simultaneously for n = 1,2, 3, -... By Theo-
rem 1C, t, = T"s for these s satisfy (1). Note that to say a sequence is uniformly
distributed in a space with probability one is stronger than saying it visits any
particular set 4 with the correct frequency with probability one.

A very important use of the estimate of m using observations X, for an ad-
missible sequence n, is in the prediction of the average value of other observa-
tions X,. If this is the purpose of the estimate it is not necessary to assume the
process is ergodic, but merely stationary. By the spectral representaion X, =
{1~ exp(2ridn) dZ(2) and we see that X, — dZ(0) is an ergodic stationary process
with mean 0. In this case N7* 310, X, will converge in mean square to dZ(0)
rather than m, but this does no harm since N=' 3¥_, X, also converges in mean
square to dZ(0).

2. Weakly mixing processes. As there is essentially no difference in the
mathematics we consider only discrete time processes. The obvious analogue
of Theorem 1 is

THEOREM 2. N7' ¥¥, x, — min L* for all weakly mixing processes if and only
if \a= N2 | 24, exp(2midn,)|* dF(A) — O for all continuous spectral functions F(2).

It is thus sufficient that N=' 3 4_, exp(27idn,) — 0 except for countably many
2. This permits lattice sequences n, = 2k, for example, to be used.

On the other hand the sequence n, = 3* is still inadmissible. By the Schwarz
inequality, it is necessary that {§ N=* > ¥_, exp(24idn,) dF(4) — O for all continu-
ous spectral measures dF(4). In particular let F(2) be the Cantor function. 2 of
the form 3}y »,3™", w, = 0 or 2 form the Cantor set and the measure given by
the Cantor function corresponds to making the , independent with P(w,=0) = 3.
Thus

§1 - Ty exp(2mi23Y) dF(2) = - T, E exp(2mi3)

where E stands for expectation over the probability space of the w,’s. But
exp(2xi3*2) all have the same distribution over that probability space so that

; —k
% S, Eexp(2mi3d) = Eexp(2ni2) = [I5n <e"P(2’”2£3 ) + 1)
which is seen to be nonzero. A
Hanson and Pledger show it is sufficient that for all sets S of density 0,
#x(S) — 0, where p, assigns measure N~*! to each of n,, ..., ny. It is not easy
to derive this result even using Theorem 2. We merely note here a corollary
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to their result that any sequence with positive lower density is admissible for
weakly mixing processes.

Examples of admissible sequences are certain additional random sequences.
Let a be irrational and let n, be the kth integer j such that exp(2zija) is in a
fixed set 4 in the unit circle D, i.e., the kth entry time of exp(2zija) into A.
The Lebesgue measure of 4 is assumed to be positive but the Lebesgue measure
of 94 is assumed to equal zero. More complicated but similar sequences were
studied by Brunel and Keane (1969). We give a simple self-contained proof that
such entry time sequences are admissible for weakly mixing processes.

LEMMA. If a and B are rationally independent, i.e., there are no nonintegers m
and n for which am -+ fn is an integer, then if n, is the kth entry of exp(2nima)
into A as above, then N~* 3, ¥_, exp(2nifin,) — 0.

ProoF. Let p, be the uniform measure on the points (exp (2ziej), (exp(27ifj)),
j=1,..., N, in D*. Then

§{p $pexpri(mr + ns)) dpy(e*™r, e¥*) = _]lv 2V, exp(2nij(ma 4 nf)) — 0

for m and n nonzero since ma -+ nf are irrational. By the Lévy continuity
theorem for probability measures on D? this implies p, converges weakly to
Haar measure on D% The function C,(exp(2=ir))exp(2zis) is bounded and
continuous a.e. on D? where C, is the characteristic function of 4. Hence

§ § C(exp(2mir)) exp(27is) dpy(e*, %)
— §5 V5 C(exp(2mir)) exp(2zis)drds = 0 .
But the left side is just N* 33, _ exp(2zin, ), where n, is the kth entry into 4.
The lemma says N=* 31 ¥_, exp(2=in, ) — 0. To prove this let v, be the measure
giving measure 1/N to exp(2ziaj) for j = 1, ..., N. Then as above v, converges
weakly to Haar measure on D and {, C,(exp(2miar)) dvy(e***) = N-' (number

of entries for j < N) — Haar measure of 4 > 0. Hence N~ 3}, exp(2xin, f)
must also approach 0. []

CoROLLARY. The sequence of entry times of exp(2wian) into A as above is ad-
missible for weakly mixing processes.

ProoF. N-* 314, exp(27ifn,) — 0 except for 8 such that am + pn is an inte-
ger for m and n not both zero. There are at most countably many such 5. Hence

1. .
§o” N | 241 exp(2widn,)|* dF(2) — O

for continuous measures dF.

3. Strongly mixing processes. In Blum-Hanson (1961) it is shown that a
process is strongly mixing if and only if all subsequences are admissible for it.
In this section we extend this result to continuous time processes.
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THEOREM 3. Let p, be a sequence of probability measures on the real line such
that p1,(I) — O uniformly over all intervals I of fixed length. Then if X, is a strongly
mixing process \ X, dp,(t) — m in L.

ProoF. E((§ X, dp,(f) — m)*) = § § R(s — t) dp,(s) dp,(f). Since X, is strongly
mixing, for all ¢ > O there is an interval I such that for u ¢, |R(u)| < ¢/2.

1§5 R(s — 1) duy(s) dpns(O] = 5 + | § 5 R(s — 1) dp(s) din(0)

=< sup, (I + t) + -;— .

Since sup, p,(I + t) — 0, for n large enough
1§ R(s — ) dp,(s) dpa(1)] < e . 0

Examples of such measures y, satisfying the hypotheses are p, of the form
ta(A) = (A n E,)|A(E,), where 2 is Lebesgue measure and E, are any sets with
A(E,) — oo. Thatis, sup <, ¢#,(I) < L/A(E,) — 0. This corresponds to sampling
over the sets E,.

For discrete time processes the Blum-Hanson result says that if the law of
large numbers holds for a process for all subsequences then the process is strongly
mixing. We now show that this converse is true for s, (4) = (4 n E,)/A(E,),
where 2 is Lebesgue measure.

THEOREM 3A. If A(E,)™* \z X,dt — m for all E, with AE,) — co, where 2 is
Lebesgue measure, then X, is strongly mixing.

Proor. If X(E,)™' {5 X,dt — m then

1
A(E,)

If X, is not strongly mixing, there is an ¢ > 0 with lim sup |R(f)| > 2¢. Thus
there is a sequence ¢, with R(#,) > ¢. But R(r) is uniformly continuous. Hence
there isa d with R(f) > ¢ on the set Ui, (t, — 0,1, + 0). Let E, = Jp_, (¢, —
0,1, + 9). Then A(E,) — oco. Yet |A(E,)™*{, R(#)dt| >e. This is a contra-
diction. []

L — my(X, — mydr =

AE) $z, R(t)dt - 0.

We also have

TueorEM 3B. If N7 310, X, — m for all sequences of integers n, then X, is
weakly mixing.

ProOF. As before N™* ¥, R(n,) — O for every subsequence n,. By letting n,
first be the subsequence where R < 0 and then the subsequence where R > 0 it
follows that N=* 37, |[R(n)| — 0. By Wiener’s theorem R(n) = {* e dF(2),
where F is continuous. ButdF(2) = Y}5__., dG(A+ 2xk), where R(f) = | e** dG(2).
Hence G must be continuous. []
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More can be said if X, is assumed to be bandlimited. If X, has spectral meas-
ure dF with support [—, ] and if N=* 3§, X, — m for all subsequences 7,
then X, is strongly mixing. This follows from the Blum-Hanson theorem and
the fact in Salem (1963), that if {= _ e'*” dF(2) — 0 as n — oo through the integers
then {7 e dF(2) — 0 as t — co.

We have not been able to construct a process which is not strong mixing but
for which all subsequences of the integers are admissible.
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