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STABLE MEASURES AND SEMINORMS
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The tail behavior of a stable measure with respect to a seminorm is
determined. Bounds are obtained for the measure of small spheres. The
geometric structure of the support of stable measures with index p > 1 is
described.

1. Introduction. In this work we study the behavior of stable probability
measures on small spheres and complements of large spheres determined by a
seminorm on a vector space. We also obtain certain results on the topological
support of stable measures.

Section 2 contains some background material on stable measures. In addition,
the existence of mean values of stable measures of index p > 1 is proved. This
generalizes the corresponding fact for Gaussian measures (see Rajput [9]).

In Section 3 we generalize to the case of a stable measure on a vector space
and a seminorm the classical result of P. Lévy on the tail behavior of a stable
distribution on the real line (see [5], page 182). For the particular case of the
norm on a separable Hilbert space the result has been obtained by Kuelbs and
Mandrekar [8]; their method of proof depends on a study of the domain of
attraction of a stable measure, and ultimately on a representation of its charac-
teristic functional. Our proof rests instead directly on basic principles; in any
case, the representation is not known for more general vector spaces. Although
technically quite different, our approach is in the same spirit as that used by
Fernique [4] in proving his remarkable result on tail bounds for a Gaussian
measure on a vector space with respect to a seminorm.

In Section 4 we obtain bounds for the measure of small spheres determined
by a seminorm. We prove in particular that all negative powers of the norm
are integrable with respect to any truly infinite dimensional stable measure on
a separable Banach space.

In Section 5 we prove that the topological support of a symmetric stable
measure of index p > 1 is a closed subspace. This extends the corresponding
result for the Gaussian case (see Kuelbs [7] and Rajput [9]). We also obtain a
description of the support of nonsymmetric stable measures (p > 1) and establish
a relationship between the support and the characteristic functional of a stable
measure (p > 1).

2. Stable measures. A general framework for the study of stable measures
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on vector spaces has been very recently established by Dudley and Kanter [3].
We state some definitions which are slight variants of those formulated in [3],
and refer to [3] for proofs of the facts listed below.

Throughout the paper, unless explicitly stated otherwise, our basic framework
will be a measurable space (E, &%), with E a real vector space and <Z'the o-
algebra induced on E by a real vector space F in duality with E. It can be
proved that (E, <#’) has the following properties:

(1) The map (x,y) — x + y from (E X E, FQ %) into (E, Z) is measurable.
(2) The map (4, x) - Ax from (R X E, @ Q 7)) into (E, &%) is measurable
here (R, %) is the real line with the Borel g-algebra).
g

It follows that &Z'is invariant under translations and homothecies.
Let X be an E-valued random vector (r.v.). The distribution of X will be
denoted Z(X).

DEFINITION 2.1. A probability measure (p.m.) ¢ on (E, &%) is stable if for
every @ > 0 and for every 8 > 0, there exist y > 0 and z ¢ E such that:
(I) if X and Y are independent r.v.’s with A X) = ZAY) = p, then

AaX + BY) = Ly X + 2).

The measure 4 is called strictly stable if for every a > 0, 8 > 0, the choice
z = 0 is possible in (I).

Recall that, given a p.m. v on &%, the p.m. » is defined by 5(B) = v(— B) for
Be . A p.m.is symmetric if v = v. It can be proved that a symmetric stable
p.m. is strictly stable. '

We will assume that ¢ is nondegenerate, that is, ¢ is not a point mass. For
every stable p.m. ¢ on (E, &%) there exists a number p € (0, 2] such that if «,
B, r are as in Definition 2.1, then y = (a? + p*)» ([3], Theorems 2 and 4).
The number p is called the index of .

The following proposition is concerned with the existence of mean values of
stable measures of index p > 1. It complements the results of Section 2 of [3].
Recall that, given a p.m. ¢ on (E, &) such that { [(x, y)|u(dx) < oo for all
y€F, apoint z € E is a mean value of p if

{z,y) = § {x, ydp(dx) forall yeF.

It is obvious that is F separates points of E and a mean value exists, then it is
unique: we will denote it m(x). Dudley and Kanter [3] call (E, F) a semifull
pair if every sequentially ¢(F, E)-continuous linear form on F is defined by an
element of E. Examples of semifull pairs are (a) (F’, F), where F is a metriza-
ble topological vector space (see Dudley [2]); and (b) (E, E’), where E is a
complete separable locally convex Hausdorff topological vector space (see
Schaefer [10], page 150). :

THEOREM 2.1. Let (E, F) be a dual system, with E separated by F. Let % be
the o-algebra induced on E by F.
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(1) Let p2 be a stable measure on (E, &) of index p > 1. Then m(pu) exists. If
e is strictly stable, then m(yp) = 0.

(2) Suppose (E, F) is a semifull pair and let yu be a p.m. on (E, <Z) such that
o y~tis stable of index p > 1 for all y e F. Then m(p) exists.

Proor. For each yeF, p1 0 y~'is a stable measure of index p in R. Itis well
known (see [5], page 182) that § |#|u o y~(dt) < oo (We could also deduce this
fact from Theorem 3.2). Let

o(y) = § (x ydp(dx)  for yeF.
Given a > 0, 8 > 0, let y = y(a, B), z = z(a, B) be as in Definition 2.1. If
X and Y are independent r.v.’s with Z(X) = ZAY) = p, then forall ye F
LaX + BY, pd) = LKrX + z,y)), and therefore
E({aX + BY, y)) = ErX + 2, 1))
(@ + B)p(y) = re(y) + <z, »)
p(y) = (@ + B — 1)z« B), ) -
It follows that (¢ + 8 — 7)~*z(a, ) does not depend on (a, 8) and is the mean
value of p. If p is strictly stable, then z(«, 8) = 0, hence m(p) = 0.

Statement (2) is a consequence of Theorem 5 of [3], where it is proved that
the assumptions imply that s is stable of index p. [J

REMARK. It is proved in [3], Theorem 4, that if y is stable of index p = 1
then there exists a unique element z,€ E such that p o 07" is strictly stable,
where 0, (x) = x 4 z,. Let us observe that if p > 1, then m(y) = —z,. In
fact,

0 = ECX + 23, %) = (m(p), yy + (7 yy  forall yeF.
The next proposition, stated for easier reference, contains some elementary
and essentially known properties of the characteristic functional
A(y) = § expix, yy(dx) , yer
of a symmetric stable measure.

PROPOSITION 2.1. Let p be a symmetric stable p.m. on (E, Z). Then i =
exp(—¢), where ¢: F — R has the properties:

(@) ¢(0) =0, ¢ =0, and ¢ is negative definite

(b) ¢(ty) = |tPP¢(y) forall te R, ye F
(¢) ¢ is sequentially o(F, E)-continuous
(d) {y:¢(y) = 0} is a sequentially o(F, E)-closed subspace of F..

Proor. Let ye F. Then p oy~ is symmetric stable in R. Therefore there
exists ¢(y) = 0 such that

(10 y)(0) = exp(—¢M)I1") »
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where p is the index of x. Now
Aty) = (po y=) () = exp(=d(y)lt) and
Aty) = (1o (1)) (1) = exp(=¢(1y)) ,

Therefore ¢(ty) = |t]*¢(y).
Since characteristic functionals are positive definite, it follows that exp (—s¢)

is positive definite for all s = 0. Therefore ¢ is negative definite (see e.g. [6],
Chapter 3).
(c) follows from the o(F, E) sequential continuity of characteristic functionals.
To prove (d): in the condition of negative definiteness

Pi=o (P(x;) + Wxa) — P(x; — xj))cic—a' =0,

for all nonnegative integers m, all x,, - - -, x,, e F,all¢, ---, ¢, €C, take m = 1,
¢, = ¢, = 1 and put —x, instead of x,. One obtains

0 < 2¢(xg) + 2(P(x0) + P(x1) — P(Xo + X1)) + 2¢(xy)
= 4(P(x) + P(x1)) — 24(xy + Xy) -

It is clear from here that {y: ¢(y) = 0} is closed under addition. Closure under
scalar multiplication is obvious. []

3. The tails of a stable measure. In the following lemmas, p is a strictly
stable p.m. on (E, &) of index p, X is a r.v. with & (X) = p, and ¢ is a
measurable seminorm on E. Let y = 2V,

LEmMA 3.1. (@) Lets > 0,¢ > 0. Then
Plg(X) > 5] = 2P[q(X) > 7s(1 + )IP[¢(X) < 7s¢].
(b) Lets >0,0<a<1,b=1—a. Then
Pg(X) > 5] < 2P[q(X) > ays] + (P[g(X) > brs])*.
Proor. (a) Let X, Y be independent r.v.’s with Z(X) = Z{(Y) = p. Then
Pl(X + Y) > 15] = P[g(X) > rs(1 + ), ¢(Y) < 75¢]
+ P[g(Y) > rs(1 + ¢), g(X) < 7se]
= 2P[g(X) > rs(1 + &)JP[g(X) < 7s¢] -
By the hypothesis of strict stability,
P[(X + Y) > p5] = PlgG*(X + Y)) > ]

(b) Since = P[g(X) > s].

[¢(X + Y) > 1] < [¢(X) > bt, g(Y) > ber] U [¢(X) > ar] U [(Y) > ar],
one has '

Plg(X + Y) > 1] < 2P[9(X) > at] + (P[¢(X) > bt])*.
Now put ¢ = ys and apply the strict stability of . []
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LEmMMA 3.2. Lets >0,¢, >0forn=1,2,.... Let
0, = P[q(X) £ rse],
9, =PlgX) S s TIet (1 4+ €)e,]  for n=2.
Then for alln = 1

Plg(X) > 5] = 2"P[q(X) > r"s T]7- (1 + €)] T1i 0, -
Proor. Using Lemma 3.1 (a) we have, inductively:
Plg(X) > 5] = 2P[q(X) > 75(1 + &)]P[g(X) < 7s¢,]
= 2(2P[q(X)rs(1 + e)(1 + &)P[9(X) = 7’s(1 + &)e])d,
= 2°P[q(X) > 7’s(1 + &)(1 + &,)10,0,

= 2°P[q(X) > 1" T1ea (1 + )] T17a 0 - 0

LEMMA 3.3f Foralla >0,8>1,

D5 Plg(X) > ] < oo .

Proor. It is clear that it is enough to prove the statement for the case a = 1.
Choose k so that g* > y. Applying Lemma 3.1. (a) with s = g, ¢ = y=(8* — 1),
we obtain, for all n > 1:

(1) Plg(X) > 6] = 2P[g(X) > prHIP[g(X) < B — 16"]
Choose N so that @ = P[q(X) < BY(B* — r)] > 4. Given n = N, write n =
N +dk + r, with 0 < r < k — 1. Then using (1), one has
P[g(X) > "] = P[q(X) > pr+e+7]
é (2a)—-1P[q(X) > ‘8N+(d—l)k+r]

-

< (20)*P[g(X) > §"+7]
< (o) Ple(X) > BT
Let C = P[¢(X) > 8"]. Then
Tinan Pl9(X) > pr] = Xr2h Tioo Plg(X) > pr++]
S 255 L C2a)™ = kCQ2a)/2a — 1) < oo []
THEOREM 3.1. Let p be a stable p.m. on (E, %) of index p. Let q be a

measurable seminorm on E. Then
(1) There exists a constant C > 0, such that

u{xig(x) >t} < Cr? forall t>0.

(2) Let p < 2. Suppose that there exists a measurable linear form f on E such
that (a) |f| < Kq for some constant K and (b) p o f~* is nondegenerate. Then there
exists a constant D > 0, such that

w{x:q(x) >t} = Dt=*  for all sufficiently large 1t .
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Proor. (1) First we prove the statement for strictly stable measures. Choose

a so that y* < a <1, and define ¢, =a* for i=1,2,.... Then o=
IT52: (1 + ;) < oo. Choose s so that P[¢(X) < s] > 0. By Lemma 3.2,
(1) Plg(X) > s] = 2"P[q(X) > r"s T]7oa (1 + €)] 171 6;

= 2°P[q(X) > 7"sp] [17-1 0/
where 3/ = P[¢(X) < s(ra)’]. By Lemma 3.3,
2 (1 =0/) = T Pg(X) > s(ra)] < oo ;
since also d,/ = P[¢(X) < s] > O for all i, we have
C' =1T1[m 0/ >0.
From (1) we obtain now: for all n > 1
Plg(X) > spp™] < P[g(X) > s]2* T, 3/)" < C"2-"

with C"" = P[q(X) > 5]/C". A simple interpolation gives the result now. Given
t > 0, choose n so that spy" < t < spy*! (we omit the trivial case of “small”
values of ¢, that is, < spr) and recall y = 2V/», Then

Plg(X) > 1] < P[g(X) > spr"] < C"27" < Ct=?

with C = C"2(sp)?, because t < sp2™+V/? implies 2= < 2(sp)?t=?.

To obtain the result for a general stable p-m., we proceed as follows. Let
X, Y be independent r.v.’s with ZAX) = Z(Y) = p. Then AX — YN=puxa
is a symmetric stable p.m. of index p, hence a strictly stable p.m. of index p.
Then for ¢ > s

Plg(X) > 1]P[g(Y) < s] = P[q(X) > 1, 9(Y) < 5] < P[q(X — Y¥) > 1 — 5].
There exists a constant C such that for all 7 > s,
PlgX —=Y)>t—s5]<C(t —s)".
Therefore
Plg(X) > 1] = (P[g(X) < s)7'C(t — s)7.
It is clear now that by choosing an appropriate constant C, we obtain the
inequality:
Plg(X) > t] < C,t7? forall ¢+>0.

(2) Once more, we prove the statement for strictly stable measures first. We
start by obtaining an inequality which corresponds to Lemma 3.2. Let a, = 1,
0<a;<1,b;=1—a;forj=1,2, -+, and put ¢(f) = P[g(X) > 1]. Apply-
ing the inequality of Lemma 3.1 (b) successively to

Plg(X) > rsa;], -+ -, P[q(X) > y"'sa, - - - a,_.1],.
we get

@ Plg(X) > 5] < 2"P[q(X) > rmsay - -+ @,] + T2, 27 N(p(risay - - - a;_1b))* .
Let « <1, and define a; =1 —a’, i=1,2, ... Then p = [[2,a, > 0.
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From (I) we obtain: for all s > 0, all n > 1

(II) Plg(X) > s] < 2"P[g(X) > 7"sp] + X 3=1 297 H(e((ra) sp))* -
Let he R, h = 1, and consider the statement:
(*) There exists a constant M such that ¢(f) < Mt="*» for all r > 0.

If (*) holds and one chooses a so that y2-1 « o < 1, then for all s > 0, all
n>=1
521277 He((ra)isp))* < §M*(sp)™» 1_, (2(re)~*r)
< M s where M, isa constant.

From (II) we may obtain now: for all s > 0, n > 1
(1L Plq(X) > r*sp] = 27%(P[¢(X) > 5] — Mys™*?) .

We:shall prove now that if p < 2, then (*) cannot hold for # > 1. Assume,
to the contrary, that (*) holds for some 4 > 1, and suppose that for some

5 >0, A= P[g(X) > s5,] — Mysy%? > 0. Then for all n > 1,
M(r"si0)™ = ¢(r"s,0) Z 427",
M(s,p)~*?27** > A2-", impossible.

Therefore P[¢(X) > 5] < M;s~*2 for all s > 0. We may conclude: if (*) holds

for some 4 > 1, then it holds forall # > 1 and consequently g(X') has moments
of all orders. In particular, E(¢(X))* < co. This fact and the nondegeneracy of

% of_1 y161d
0 < Varf(X) < oo.
On the other hand, if X, Y are independent r.v.’s with (X)) = AY) = g,
we have
2¥? Var f(X) = Var f(2"?X) = Var f(X + Y)
= Var (f(X) + f(Y)) = Var f(X) + Var f(Y)
= 2 Var f(X) .
We have thus reached a contradiction.
By part (1) of this theorem, (*) is in fact true for # = 1. Therefore (III) is

true for 4 = 1; also, for some s, we must have 4 = Plg(X) > 5] — M, sy > 0.
The result follows by interpolation from the inequality

P[g(X) > y"s,0] = 427"

In order to pass to a general stable p.m., consider, as in part (1), independent
r.v.’s X, Y with £{X) = ZAY) = p, and use the inequality

Plg(X) > 1] =z $P[9(X — Y) > 21],
which follows from

[9(X — Y) > 21] C [9(X) > ] U [q(Y) > 1]. 0
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REMARKS. (1) Part (2) of Theorem 3.1 can be proved trivially by applying
to z#o f~! P. Lévy’s result on the tail behavior of one-dimensional stable
measures. However, we belisve that the proof we have given is of interest,
since it is elementary and direct.

(2) The theorem remains true if one replaces the hypothesis “y is a stable
p-m.” by the slightly weaker one “x is a p.m. such that x o y=* is stable for all
yeF.” Infact, if ¢ is a p.m. satisfying the latter condition, then y x /2 is sym-
metric stable (see [3], Section 2).

(3) If p = 2, then # is Gaussian; in this case the tail behavior is very different
and requires a separate treatment. This has been done by Fernique [4]. In-
cidentally, Remark (1) above could be applied trivially to obtain an inequality
of the Fernique type in the opposite direction.

From Theorem 3.1 we obtain at once

THEOREM 3.2. Let y be a stable p.m. on (E, &%) of index p. Let q be a
measurable seminorm on E. Then

(1) Foreveryr < p,§ q du < co.
(2) Let p < 2, and assume that q satisfies the condition of Theorem 3.2(2). Then
§ g dy = 0 forevery r=p.

4. The behavior of a stable measure on small spheres. Let p be a stable
p.m. By Proposition 2.1 we have (¢ x )" = exp(—¢), and therefore |A| =
(e % ))t = exp(—39).

THEOREM 4.1. Let y be a stable p.m. on (E, &Z), and let N = {y: ¢(y) = O}.
Let q be a measurable seminorm on E, and let G be the subspace of all g-continuous

elements of F.
Suppose 0 < r < codimg (G N N). Then there exists a constant M > 0, such that

px:gq(x —z) <t} £ Me” forall zeE, forall =>0.

Proor. Let n be a positive integer such that r < n < codim, (G n N).
Choose a linearly independent set {f;, - - -, f,} C G such that

Span{f,, ---, f,} 0 N = {0}.
Let 7= (f, /)i E— R and put O, -+, 1,) = J§(Siitf) for
(t, +++, t,)e R*. We have
(0 7=ty -+, )] =[S0 1S )]
= exp (—D(¥)) t=(t, -, t,).

Now @ is a continuous function such that ®(r) > 0 for 7+ 0 and ®(r) =

|4|7®@(t). Therefore
§ exp(—D(1))dt < oo,

and by the Fourier inversion theorem it follows that y o z~! has a bounded
continuous density p.
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Since each f; is g-continuous, there exist constants ¢; such that |f,| < ¢;q,
and consequently

Srlfd £ eq, with ¢ = >r.¢,.

Let ||s|| = X%, |s,| for s = (5, -+ -, 5,) € R*, let v be Lebesgue measure on R*,
and let K = supp. We have

pxiqx —2) S 1) S plxe B B, Kx — 2, f)] < ex)
=pomseR":||s — 5|| £ cr},

o= (210 5 <2 fu))
= Slomsglizer P((dS) < Kv{s: ||s — 5| < er}
< Mz for some constant M . 0

As a corollary we obtain:

THEOREM 4.2. Let (E, q) be a separable Banach space, and let <% be the Borel
o-algebra of E.

Let yt be a stable measure on (E, <7) such that ((S) = O for every finite-dimensional
subspace S of E. Then for every r > 0, there exists a constant C > 0, such that

§ (q(x — 2))"ud) < C  forall zeE.

Proor. Recall that <Z coincides with the g-algebra induced on E by F = E'.
In the present situation G = F, so codim,; (G n N) = codim N. Suppose
codim N = n, n a positive integer. Then dim N* = n. But p* g(N*) = 1 by
the argument in Theorem 5.2, so we have reached a contradiction. Therefore
codim N is infinite and the result follows from Theorem 4.1 by a standard
argument. []

REMARK. Theorems 4.1 and 4.2 are true under the weaker hypothesis “y is
a p.m. such that poy-' is stable for all y e F”’ (see Remark (2) following
Theorem 3.1).

5. The topological support of a stable measure. Let H be a Hausdorff to-
pological space, % the Borel g-algebra of H, that is, the o-algebra generated
by the open subsets of H. The support of a p.m. ¢ on (H, .5") is the set

S(¢) = {xeH: p(U) > 0 for every open set U containing x}.

It is well known and easily proved that S(y) is closed and that if D is closed and
#(D) = 1, then S(¢) — D. The notion of support is of interest when x(S(x)) =
1; this is true if the topology of H has a countable base, or if y is a regular
Borel measure. However, no assumption ensuring that S(x) has full measure
is needed in Theorem 5.1. ~

The following proposition describes the geometric structure of the support of
a stable p.m. of index p > 1 (the simple method used also yields some infor-
mation on the case p < 1; however, it does not seem satisfactory). Let us call
a (nonempty) subset 7' of E a truncated cone if (a) T + T Tand (b) ATC T
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for all 2 = 1. It is easily proved that if 7' is a truncated cone, then T — T is a
subspace. It follows that if T = —7, then T'isa subspace.

THEOREM 5.1. Let E be a Hausdorff topological vector space. Let <% be the
Borel g-algebra of E, and assume that &% is the g-algebra induced on E by a vector
space F in duality with E.

Let yt be a stable p.m. on (E, %) of index p > 1. Assume S(¢t) # ¢. Then

(a) S(¢) = m(p) + T, where T is a closed truncated cone
(b) If p is symmetric, then S(u) is a closed subspace.

ProoF. By the remark following Theorem 2.1, it is enough to prove (a) for
strictly stable measures. Let x# be such a measure, and let X, Y be independent
r.v.’s with g(X) = g(Y) = p.

Let ¥ be an open, balanced neighborhood of 0, and let U be an open,
balanced neighborhood of 0 such that U 4+ U C V.

Let a > 0, 8 > 0 be such that a? 4- B# = 1. Then for all xe E, y € E,

P[Xex+ UP[Yey + Ul =P[Xex+ U,Yey + U]
< PlaX + BY e (ax + By) + (aU + BU)
< PlaX + BY e (ax + By) + V].

Since AaX + BY) = p, we have

1) w(x + U)p(y + U) < p(ax + Fy) + V) -
Take x = y in (1); then »
) [#(x + U) = p#((x + fx + V) -

Since {a + 8|a? + g7 = 1} = (1, 2¥9], with (1/p) + (1/g) = 1, we may conclude
from (2): if x € S(z), then 2x € S(x) for all 2 with 1 < 2 < 2¥¢. But this in turn
implies Ax € () for all 2 = 1.
Take now a@ = 8 = 2-7 in (1); then x € S(z), y € S(p) implies 2=V?(x + y) €
S(zz). By the conclusion of the previous paragraph, this implies x + y € S(¢).
If 42 is symmetric, then S(¢) = —S(¢). By the remarks preceding the theorem,
it follows that S(x) is a closed subspace. []

Given a stable p.m. g on (E, &) let ¢ be such that (g 2)” = exp(—¢)
(Proposition 2.1). '
THEOREM 5.2. Let (E, F) be a dual system of vector spaces. Assume that 8

coincides with the c-algebra generated by the weak topology o(E, F).
Let p be a o(E, F)-regular stable p.m. on (E, &) of index'p > 1. Let N =

{y:9¢(y) =0} Then

(2) S(z) = S(g) = N*
(b) If p is symmetric, then S(¢) = N+ .
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Proor. It can be proved easily that, given a o(E, F)-regular p.m. v on (E, &%)

[SO)]: = {yeF:9(ty) = 1 forall te R}

(see [1], page 275). If v is a symmetric stable p.m. on (E, &%), then it follows
that [S(v)]* = N, and consequently [S(v)]** = N*. Since S(v) is a closed sub-
space, we have [S(v)]*+ = S(v). This proves (b).

For a stable measure g, we have S(u * 1) = N*+. But S(u * 2) = S(¢) — S(p)
by an elementary property of supports. []

Acknowledgment. I thank the referee for a remark that led to an improve-
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