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THE RECONSTRUCTABILITY OF MARKOV CHAINS

By MicHAEL W. CHAMBERLAIN
University of Santa Clara

As an extension of the work of Denzel, Kemeny, and Snell on the ex-
cessive functions of a continuous time Markov chain, this paper introduces
the concept of reconstructability in two forms. First, there is reconstruct-
ability from the class of excessive functions, where it is seen that the tran-
sition matrix for a transient chain with a finite atomic exit boundary can
be written down knowing only the membership of its class of excessive
functions. A similar result is true, with the transient condition dropped,
for reconstructability from the characteristic operator, based on a natural
extension to the boundary of the operator corresponding to the initial
derivative matrix.

Historically, the initial work on characterizing the transition matrix of a
continuous time Markov chain resulted in a characterization of the range of
the corresponding resolvent operator. It was known that when viewed as a
mapping of the class of bounded functions defined on the state space of the
chain, the Laplace transform of the transition matrix, and hence the transition
matrix itself, is uniquely determined. In the work of Feller, Dynkin, Williams,
and others (see, e.g., [9], [10], [7], [16], [2]), the range of this operator was
specified by conditions formulated in terms of certain entrance or, more com-
monly, exit boundaries induced on the state space. In [6], Denzel, Kemeny,
and Snell focused their attention not on the range of the resolvent, but on the
closely related class of excessive functions for the chain. They found that for
the transient case, this class was rich enough in information for the transition
matrix to be reconstructed from its component parts.

The purpose of the present paper is two-fold. First, there will be a generali-
zation of the results of [6] to transient Markov chains with a more complicated
exit boundary. And, secondly, the initial derivative matrix will be extended to
the boundary as an operator which, even when the chain is not transient, re-
tains the identity of the corresponding transition matrix. The reader is assumed
to be familiar with the notation and fundamental results contained in [3], [4]
and [5]. They, with [1], form the general foundation upon which the following
results are based. Since this paper should be considered as an addendum to
[1], only a sketch of the assumptions in force and the results in use will be
given here. ’

1. Excessive functions. Fix the I, x I, matrix Q so that assumptions A, B’,
and C, of [4] and [5] are fulfilled. That is: Q has finite entries and is conservative;
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the minimal transition matrix @, which can be analytically constructed from
Q (see Section 2.18 of [3]), has all of its recurrent states lumped into the one
absorbing state §; the passable part A of the Martin exit boundary correspond-
ing to Q is nonvoid, completely atomic, and finite. As explained in Section 18
of [5], Q also determines the natural exit laws {I*(); a € A}.

Let Q) be the class of all standard, stochastic transition matrices P = P(r)
for chains with state space I, so that P has initial derivative Q and so that the
atoms in A are distinguishable (assumption D of [5]; a more detailed discussion
of the conditions under which we work can be found in [1]). Let &(P) be the
class of excessive functions for P in Q). Then P is said to be reconstructable
from Z(P) if P can be written down from a knowledge alone of which ®-excessive
functions belong to &(P).

From Theorem 3.18 and inequality (3.14) of [1] we have the following charac-
terization of &(P).

THEOREM. For P in 9(Q), the class & (P) of P-excessive functions consists of
those @-excessive functions which satisfy

(L) 6°C(a) — Xyua F**(00)C() — lim,_, (n°(1), C — Tyex C(B)LY(o0)) = 0
forall ain A.

If a boundary atom is recurrent, then it is shown in [1] that the boundary
condition (1.1) reduces to the requirement that C be constant on that atom’s
boundary and state space recurrence class. From this it might seem that the
existence of P-recurrent boundary atoms could mask the identity of P when
investigated by way of &(P) alone. Indeed, this is the case, and an elementary
but tedious construction contained in [2] shows furthermore that infinitely many
members of Z(Q) can claim &{(P) as their common class of excessive functions.
For this reason, in this section we will consider only transition matrices which
have no recurrent boundary atoms, or equivalently, those transition matrices
for which all states in I are transient.

THEOREM 1.2. If P is transient, then P is reconstructable from &(P).

Proor. By equations (16.15) and (16.20) of [5], in terms of Laplace trans-

forms the vector £(2) in the canonical decomposition of P can be written
€(4) = {I — F(c0) + U} n(3)
=l + I — F(eo)]PU(} I — F(o0)]7n(2)
since I — F(co) is invertible by Theorem (18.4) of [5]. Now column b of the
matrix [/ — F(c0)]"'U(4) is the vector [/ — F(c0)]"*(An(2), L*(c0)>. Hence, if
[/ — F(o0)]7'7(4) can be determined from a knowledge of which ®-excessive
functions belong to &/(P), then obviously so can the resolvent
P(2) = @) + Xaea P(DEA)

or P is reconstructable from &(P) by Lerch’s theorem. We show that this is
the case in much the same way that Denzel, Kemeny, and Snell did in [6].
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Let K = {K(a); ac A} be a vector on A with nonnegative constant entries.
It is easily established that for fixed j, the function defined on the state space
Ias

(1.3) G.j + Zaea K(a)L(c0)
is ®-excessive, where G is the ®-potential | @(r)dr. Since G has 0 boundary

values (see, e.g., (0.3) in the appendix of [7]), by (1.1) this function is in &(P)
if and only if

K(a) — Xyua F**(0)K(b) — lim,_, {n*(t), G.;> = 0
for g in A, or in a more compact matrix form
(1.4) [1 — F(oo)K Z ¢

where e; = {e;%; ac A} is the vector formed from the canonical entrance
sequences

(1.5) e” = \on(t) dt

from Theorem 14.3 of [5]. But since [/ — F(oco0)]~* has nonnegative terms, the
last system of inequalities implies

(1.6) K= [I — F(co)] ;.

And conversely equality in (1.6) implies equality in (1.4). The vector
[l — F(co)]e; is then determined as the minimum of the vectors K for which
the function (1.3) belongs to &(P). Upon varying j, [I — F(c0)]7'7(4) can then
be determined since 7(d) = e — 4e®(2), by Theorem 13.1 of [5].

It is an easy consequence of this theorem that if with positive probability the
boundary is not reached in finite time by the minimal chain from any state (or,
analytically, L(co) < 1), then each member P of Z#(Q) is transient and hence
reconstructable from &'(P).

2. The characteristic operator. We now drop the transience assumption and,
in the spirit of Dynkin and Yushkevich [8], consider what will be called the
characteristic operator of a chain, X, defined in terms of a derivative of the form

EX(C(X) — C()
JEX(4/)

(2.1) lim, _,

Roughly speaking, x is any member of the extended state space ¥ = I, U A and
X, is X, absorbed at all states other than x, if xis in I, or at all boundary atoms
other than x, if x is in A. The random variable 4, measures in some sense the
time X,” spends at x before absorption. Let us look more closely at these defi-
nitions when x is either a state or a boundary atom.

For i in I, let ¢¢ be the first entrance time of /. Define X%(f) to be the post-z*
process until the first exit from i, at which time X*(.) is absorbed at the new
state. Let A(r) be the amount of time X*(+) spends at i until time #. And P'(+)
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will be the conditional probability measure induced by the post-z¢ chain (see
Sections 2.9 and 2.15 of [3]).

LEMMA 2.2. Assume C is a function defined on 1,. Then for i in I, E(C(X})) is
defined for t > 0 if and only if

2.3) (2, C1Y() < 4o,
in which case the limit (2.1) equals QC(i) when x is i.
Proor. If C is nonnegative, then by Theorems 2.15.2 and 2.15.6 of 3]
2.4 E(C(X) = Zju COP'(XS = ) + COPUX, = i)
= T CON — e )qfg, + Clije,

and so for any C, the expectation is defined if and only if (2.3) holds. The dis-
tribution of A%(r) can be derived from 2.15.5 of [3], enabling us to compute
E‘(4Y(1)) as (1 — e~*)/q,. Upon subtracting C(i) from both sides of (2.4) and
dividing by E'(4'(r)) we have QC(i) exactly.

So far, the derivative operator (2.1) evaluated on I is the same for each member
of Z(Q). By modifying the notion of the “a-process” in [5], we will extend this
operator to the boundary for each P in Z°(Q), paralleling the extension of the
minimal chain through the boundary to the chain associated with P. Analogous
to the definition of X'(r) above, for any ae A the chain X°(f) is the post z°-
process until the time g of a “switch of banners,” at which time X°(f) is ab-
sorbed at the new boundary atom. Then X*() has as its state space _* — {a}
with transition probabilities given by (14.8) and (14.30) of [5]. Moreover, from
Definition 14.2 and the subsequent discussion in [5],

(2.5) P"(Xt“ = b) = F“b(l‘)
and
(2.6) PiX = j) = p;%(0)

fort>0,b+a,andjel,.
Now define C(x) on _# to be the limit (2.1) if x is a state in I, to be 0 if
x is 8, and to be
(2.7) lim,_, E4(C(X,") — C(a)
E%(1)

if x is the boundary atom a. Moreover, define the domain () of 7 to be
the family of functions defined on _# for which these defining limits exist and
are finite. From (19.1) of [5] (which can be extended to the recurrent trap
case with some effort), we see that for nonsticky a, if 4, is the number of times
that X’ visits a before time ¢, then E*(¢) is E*(4,%), up to a multiplicative con-
stant. And even when a is sticky, Smythe [14] has shown that in certain situa-
tions, again except possibly for a multiplicative constant, E*(f) is the expected
value starting from a of a local time at a for X, killed at 3°.
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‘

Remembering from [1] that the ®-excessive functions are those nonnegative
functions C on I, for which QC is nonpositive, the next theorem provides a
natural extension to the boundary for P-excessive functions.

THEOREM 2.8. &(P) = {Ce Z(¥): C = 0 and ~C < 0}.

ProoF. Assume C is @-excessive. Then by (2.5) and (2.6) we have for any
ain A,

C(a) — EX(C(X,%)) = C(a) — Zpra F(NC() — <p%(1), C s
whereas by line (3.12) in the proof of the crucial Theorem (3.6) of [1], this last
quantity equals

E({0°C(a) — Zssa F*(00)C(0)} — <7°(+)s C — Lyea C(B)LY(00)) * E°(1) .
Dividing by E°(r) and letting ¢ tend to zero, we have that .%C(a) equals the
negative of the boundary expression in (1.1). The proof then follows quickly
since C is in &(P) if and only if C is ®-excessive and the inequality (1.1) is
true for all @ in A if and only if C is nonnegative and in (%) with .%C
nonpositive.

Together Theorem (1.2), under the transience assumption, and Theorem (2.8)
tell us that transient members of Z?(Q) can be identified from their charac-
teristic operators. Actually, if the entire range of a characteristic operator is
known, then there is no need to assume transience or even a knowledge of the
initial derivative matrix Q. We say that P is reconstructable from its charac-
teristic operator %" if P can be written down from a knowledge alone of the
values of %C for C in Z(.¥).

THEOREM 2.9. Any transition matrix is reconstructable from its characteristic
operator.

Proor. By first taking C to be 0 everywhere on _# except at j in I, where
C is 1, we can determine .%C at i as q,;; hence Q and therefore ®, G, and
{L(c0); be A} can be determined. Next, at a in A, %L*(c0) equals F**(co)
and &/G,; is the e;* of (1.5). From these canonical quantities, »°(+) and 9°
can be derived, and P can then be found in its canonical form.
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