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NONUNIFORM CENTRAL LIMIT BOUNDS WITH
APPLICATIONS TO PROBABILITIES
OF DEVIATIONS

By R. MIcHEL
University of Cologne

For the distribution of the standardized sum of independent and iden-
tically distributed random variables, nonuniform central limit bounds are
proved under an appropriate moment condition. From these theorems a
condition on the sequence f,, n € N, is derived which implies that 1 — F(t,)
is equivalent to the corresponding deviation of a normally distributed
random variable. Furthermore, a necessary and sufficient condition is
given for 1 — Fu(tn) = o(n—c/2t,2+¢),

1. Introduction. Consider a sequence of independent and identically distri-
buted random variables X, X,, - . . such that EX = 0 and EX? = 1.

Let F, be the distribution function of n~1S, = n~* 31»_ X,. It follows from
the central limit theorem that 1 — F,(z,) — 0 if and only if 7, — oo.

In applications we often are interested in obtaining bounds for the speed at
which I — F,(z,) converges to zero. Obviously, these bounds should depend on
n and ¢, in a reasonably good way.

Assuming appropriate moment conditions we establish in Theorems 4 and §
results on the speed of convergence to zero of 1 — F,(¢,), which are deduced
from two fundamental theorems related to two theorems of Esseen [4] and giving
nonuniform central limit bounds. Using these two theorems once more we de-
rive a nonuniform central limit result, which includes a weaker version of the
corresponding result of Nagaev on the Berry-Esseen theorem as a special case.
Finally, we also obtain a short proof of a result of von Bahr [1] on the approx-
imation of the absolute moments of S,,.

2. The results. Since all theorems in this paper are proved under the same
moment conditions, we do not state them explicitly in the formulation of the
theorems. Throughout the paper we will assume the following conditions: X,
X,, - - - is a sequence of i.i.d. random variables such that

EX=0, EX*=1,
and E|X|*** < oo for some (fixed) ¢ > 0.’

THEOREM 1. There exist constants b, r > O (depending on c) such that for all

neN and all te R with £ < (¢ 4 1) log n,
|Fa(r) — @] < bn~" exp[—(1 — 0)#/2] + nP(|X| > rni|t]) ,
where ¢* = 3 min (c, 1) and ¢ = c*(c + 1)~
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THEOREM 2. There exist constants b, r > 0 (depending on c) such that for all
neN and all t e R with # = (¢ + 1) logn,

|Fo () — @) < bn=/*=%+D  nP(|X| > rnt|t]) .

The reader might wonder why the bounds given in Theorems 1 and 2 are
written down in this “incomplete” way, i.e., why we did not use Markov’s in-
equality to obtain nP(|X| > rn}|t|) < bn=**t|~**%. This is so because for |f| — co
we lose a little, namely that in this case we have by the dominated convergence
theorem, nP(|X| > rnt|t]) = o(n~=*|t|-*»). Secondly, this form of the bounding
terms is well suited for the proof of Theorem 6.

Theorem 1 is related to Theorem 2 in Esseen ([4], page 73), whereas Theorem
2 generalizes Theorem 3 of Esseen ([4], page 75), where ¢ > 1 is assumed to be
an integer. This can easily be seen, since the conclusion in the remarks follow-
ing both theorems of Esseen is equivalent to the corresponding assertion of the
theorems.

We remark that Theorem 2 also has a certain relationship to Theorem 1 in
Nagaev ([7], page 214).

In the following theorem we obtain a generalization of Theorem 3 in Nagaev
([7], page 215), where a nonuniform Berry-Esseen theorem is established under
the moment condition E|X|® < oo.

THEOREM 3. There exists a constant b > 0 (depending on c) such that for all
neNandall te R,

[Fu(t) — Q@) = bn='(1 + [1"*) 77,
where ¢* = 1 min (c, 1).

ReMARK 1. Since for Y > 0 we have EY = {3 P(Y > t)dt, a nonuniform
bound of the form |F,(f) — @(¢)| < b,(1 + |7|*)7?, t e R, implies that E|S,|? and
therefore E|X|? exists for all 3 € (0, a). Hence, the power of |¢| in our Theorem
3 cannot be increased in general.

When the moment generating function exists, Cramér [3] has shown that

1 — F,(t,) ~ 2n)~%t,texp[—1.2/2],
if ¢, — oo and n=¥, — 0.

For moderate deviations, i.e., for the case 7, = (c log n)? this result has been
obtained by Michel [6] under the much less restrictive moment condition
E|X]**° < oo. .

Using Theorem 1 we prove that—under the same moment condition—this

result holds true for all sequences ¢,, n € N, with z, — oo such that ¢,> — clogn —
(¢ + 1) log log n is bounded from above.

THEOREM 4. Let t,, ne N, be a sequence with t, — oo such that t,> — clogn —
(c + 1) log log n is bounded from above. Then,

1 — Fn(t'n) ~ (271-)—5[”—1 exp[_tnz/z] .
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The preceding theorem gives an approximation of 1 — F,(¢,) for certain se-
quences 7,, n € N. In the remaining case such a strong result cannot be expected
under our mild moment conditions. It is shown in Theorem 5 that in this case
one obtains 1 — F,(t,) = o(n=*t,~®+),

THEOREM 5. Let t,, ne N, be a sequence with t, — oo and t,> — clogn —
(¢ + 1)loglogn — co. Then,

(1) 1 — F'n(tn) = o(n—c/2t”—(2+c)) .

We remark that the result of Theorem 5 has been obtained by Chibisov ([2],
Lemma 4.2, page 158) for the case #,/log n — co.

REMARK 2. It will be proved below that—under the assumed moment con-
ditions—the property £, — clogn — (¢ + 1) loglogn — oo characterizes the
sequences f,, n e N, for which (1) holds true.

There has been much work done in deriving upper bounds for the absolute
moments of S,. In von Bahr [1] expansions of these moments are given. For
the approximation of the absolute moments of order greater than 2 by the cor-
responding absolute moments of a standard normal distribution these results
follow immediately from our Theorems 1 and 2.

THEOREM 6. There exists a constant b > 0 (depending on c) such that for all
neN,
|E|n=2S,|*° — z=12@+921((3 4 ¢)/2)| £ bn,

where ¢* = } min (c, 1).
3. Proofs.

Proor or THEOREM 1. For |f| < 1 the assertion follows from the Katz-Petrov
theorem (see Katz [5]).

For || = 1 the proof is an obvious modification of the proof of Theorem 1
in Michel [6]: Truncate the random variables X;, i = 1, - - -, n, at rn}|¢], where
r > 0 is sufficiently small, and replace c(log n)? by ¢.

ProoF oF THEOREM 2. W.l.o.g. we may assume ¢ > 0 (recall that EX = 0).
For k =1, .., nlet X, denote X, truncated at rnts, where r = 1/(2(c + 1)(c + 2)),
and let S, = n~t 3;2_, X,. Since 1 — F,(t) < P(S, > 1) + nP(|X| > rntt), and
since ## = (¢ + 1)logn implies 1 — @(r) < b, exp[—1*/2] < b,n~"*exp[— ¢}/
(2(c + 1))] < byn=***» we have to show that

P(S, > 1) < byn=cr2e+d
Let 2 = t~'n~¥(clogn + 2(c 4+ 1)(c + 2)log¢). Then,
P(S, > t) < B exp[—hnit] = Bra—cr-dervetn

where § = Eexp[AX].
Using EX* < 1 and |hEX| + 1h® exp[hrn*{]E|X|* < b,n?, where b* > 0 is an
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appropriately chosen constant, we obtain
B =1+ A2 + byn~t < exp[h?/2 + b,n7"].
Hence,
B < exp[nh®/2 4 b,] .
The assertion now follows immediately, since ¢ = ((¢ 4 1) log n)? implies
nh?f2 < clogn + 2¢(c + 2) logt + b,
where b, > 0 is an appropriately chosen constant.

ProoF oF THEOREM 3. Follows in the case |f| = 1 immediately from Theo-
rems 1 and 2. For |f| < 1 it is a consequence of the Katz-Petrov theorem.

Proor oF THEOREM 4. Let t,, ne N, be a sequence with 7, — oo such that
t — clogn — (c 4+ 1) loglogn < M, where M is a positive constant. W.Lo.g.
we may assume ¢,> < (¢ + 1) logn. From Theorem 1 we obtain

ln exp[tnz/z:”l - F'n(tn) - (I)(—tn)l
< bt,n~*" exp[ot,?/2] + t,~“tVn~r, exp[t,}/2],
where r, = rm®*OE|X|"**] 55 0, = 0(1).
Concerning the first term of the r.h.s. of the inequality 7> < (¢ + 1) logn
implies )
t,n="exp[ot,?2] < t,n=""? = o(1) .
Furthermore, since ¢ — =+ exp[#*/2] is increasing for t = (c 4 1), we have
t,”Fn=2exp[t,?/2]
< exp[M/2](clog n + (¢ + 1) loglog n + M)=*V"3(c log n)“+V* = O(1) .
Since ®(—1t,) ~ (2r)~4, exp[—1t,%/2], the assertion follows.
PRrROOF OF THEOREM 5. Let t,? = clogn + (c+ 1) loglogn + s,, where s, — co.
(i) For allne N with > = (¢ + 1) log n we obtain from Theorem 2 and from

D(—1,) = exp[—1,’2] = n=*" exp[—1.7/(2(c + 1))]
that
n?t (1 — F,(t,)) = o(l) .
(if) Using @(—t,) < (2x)~1,7'exp[—¢,2/2] we obtain from Theorem 1 for
all ne N with ¢,> < (¢ 4 1) log n that
n*?, (1 — F,(t,) < n%t,*lexp[—t,2/2)((2x)~t + bn=*"t, exp[at,?[2])
+ r_(c+2)E|X|c+21(‘X‘>rn*tn) .
Since
n*t,+lexp[—1t,22] < (¢ + 1)tV exp[—s,/2] = o(1)
and
n="t, exp[at,’/2] < (c + 1)¥(log n)tn==2,

the assertion follows.



106 R. MICHEL

Proor oF REMARK 2. Let ¢,, ne N, with t, — oo be a sequence containing a
subsequence 1,, ke N, such that 7,2 < ¢ log k 4 (¢ + 1) loglog k + M, where
M > 0 is a constant. From Theorem 4 we then obtain for k ¢ N,

ka/ztk2+c(1 _ Fk(tk)) ~ (zﬂ)—ikc/2tk1+c eXP[—tk2/2] .
Since
ket +e exp[—1,2/2]
= (clogk + (c + 1) loglog k + M)1+97(log k)=+9/ exp[ — M/2],
we have
lim inf k°2,2+5(1 — Fy(1,)) > 0.
Hence,
lim sup n*1,***(1 — F,(1,)) > 0.

PROOF oF THEOREM 6. Since Y > 0 implies EY = (¢ P(Y > t)dt, we obtain
from Theorems 1 and 2

|E|n2S, |2 — z=i2+0AT (¢ 4+ 3)/2)|
< (5 [P(n73S,| > f/ety — 20(— /)| dt
< 2,17 §jm exp[— (1 — o)+ 2] ds
+ 2b,n~" §2 172 dt + 2n (3 P(|X| > rndf/ev?) dy

where r, = ((c + 1) log n)«+>72,
Since the integrals in the first two terms of the r.h.s. of this inequality are
finite, the conclusion follows from

Vo P(|X| > rntf/e) dt = p(e+dp=Cnng| x|+

Acknowledgment. The author is indebted to the referee and editor for sug-
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