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LEVEL CROSSINGS FOR RANDOM FIELDS!

By ROBERT J. ADLER AND A. M. HASOFER
University of New South Wales

For an n-dimensional random field X(t) we define the excursion set 4
of X(t) by A = {tely: X(t) = u}, where I, is the unit cube in R*. It is
shown that the natural generalisation of the number of upcrossings of a
one-dimensional stochastic process to random fields is via the characteristic
of the set 4 introduced by Hadwiger (1959). This characteristic is related
to the number of connected components of 4. A formula is obtained for
the mean value of this characteristic when n = 2, 3. This mean value is
calculated explicitly when X(t) is a homogeneous Gaussian field satisfying
certain regularity conditions.

1. Introduction. The generalisation of level crossings of a one-dimensional
stochastic process to an n-dimensional field X(t), t € R*, involves random point
sets of the form S = {te R*: X(t) = u}, which, for n = 2, form a family of
contour lines in the plane. As is noted by Belyaev (1972a, 1972b) no technique
has yet been developed to handle the distributional properties of these sets.

It has only been possible to obtain results for high levels # by considering the
rather complex set of “A, crossings” (Belyaev (1972a)) or the associated point
process of local maxima. In both cases the results obtained are only partial.
For example, for a homogeneous Gaussian field satisfying regularity conditions
similar to those in Section 3, it has only proved possible to obtain an asymptotic
formula for the mean number of maxima, or A4, upcrossings, above a level « for
high levels u (Belyaev (1972a, 1972b), Nosko (1969), Hasofer (1976)). The
results obtained in this paper are exact for all values of the level #, and can be
used to explain how the known asymptotic formulae arise.

Our technique is based on considering the point set S indirectly, via the set
A = {te R": X(t) = u} which it bounds. If X is a one-dimensional process
satisfying the conditions appearing in Chapter 10 of Cramér and Leadbetter
(1967) it is immediate that 4 is made up of the union of disjoint closed intervals,
so that the number of upcrossings of X in the interval [0, 1] is the number of
closed intervals in the set 4 n (0, 1]. We shall generalise this approach to
upcrossings to the multi-dimensional sittuation.

In Section 2 we shall describe some results from the theory of Integral Geome-
try which will be shown in Section 3 to provide the theoretical foundation for
solving the upcrossing problem in R". Section 3 also shows how our technique
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reduces to considering a particular point process for the case n = 2, and Section
4 is devoted to calculating certain mean values in the Gaussian case. In Section
5 we sketch the results for n = 3, and Section 6 is devoted to some further
results and conjectures.

2. Some integral geometry. We shall now summarise definitions and results
relating to a particular type of point set in R", which we shall call a normal
body. A full treatment is available in Hadwiger (1959). Let V = (v, vy, « -+,
v,) be a set of n vectors which form a basis for R*. Call an i-dimensional hyper-
plane R'(i = 0, 1, - - -, n) of R* V-associated if it is parallel to an i-dimensional
subspace of R" generated by i of the vectors in V. Furthermore, call a compact
set of points P C R™ a V-parcel if the intersections P n R* are connected or
empty for every V-associated hyperplane R* of R", including the case R* = R*
itself.

Define now a body (point set) 4 C R to be a V-package if it can be represented
as the union of V-parcels, such that the intersection of any subset of these parcels
is again a V-parcel. The set of these parcels gives a V-partition of A, and their
number m is called the V-order of the partition.

DEFINITION 2.1. A compact set A < R" will be called a normal body in R" if
for each arbitrary choice of basis V A4 is a V-package, and there exists a V-
partition of A4 with finite order. Denote by ./ the set of all normal bodies.

Note that this definition is slightly broader than the corresponding one in
Hadwiger (1959), but it is clear on checking through his paper that the properties
of _#"we shall require continue to hold.

It is immediate that .#" is invariant under either a rotation of the axes, or
change of origin. Furthermore, .#"is additive in the sense that A .4, Be .4
A n B = @ (the empty set) implies 4 U Be .4 Further properties of .4 "can
be found in Hadwiger (1959).

In Section 4 we shall show that under certain conditions on X(t) the set 4 =
{tel,: X(t) = u} belongs almost surely to .#" With this application in mind,
it is now clear that we wish to find a functional on .4 ¢ say, which will have
the following properties.

(a) For all V-parcels P

2.1) oP)=0 . P=g,

=1 P+ .

(b) When each of 4, B, AU B, An Bisin 4~
(2.2) (A U B) + ¢(A N B) = ¢p(A) + ¢(B) .

Such a functional does in fact exist, and, moreover, is uniquely determined
by (2.1) and (2.2). It can be defined in at least two distinct ways, but we shall
give only a definition via a recurrence relation which is more suited to our
purposes.
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Choose for V a set of n orthogonal vectors (v,, ---,v,), and consider the
corresponding set of axes which give rise to coordinates (z,, ---,¢,). Let E,
denote the (n — 1)-dimensional hyperplane orthogonal to v,,, so that all points
on E, have their nth coordinate equal to x.

Noting that if 4e.#"and 4 C R*, 4 is composed of the union of a finite
number of disjoint closed (and possibly degenerate) intervals we have

DEerINITION 2.2. Define the characteristic functional ¢ : 4 — 7, where 7, is
the set of integers, and .#"is the set of normal bodies in R*, by
(a) n=1 ;

(2.3) ¢(A) = number of disjoint closed intervals in A4,
) n>1

(24 o(4) = Z.{e(4n E) — ¢(4 N E,.-)}

where

(2.5) p(ANE,)=1m ,0ANE,_), y=0

and the summation is over all real x for which the summand is nonzero.

Hadwiger (1959) has shown that the limit in (2.5) exists, and that the sum-
mation (2.4) is over a finite number of values of x. Furthermore the following
is true.

Lemma 2.1. If A C R* is a normal body, then its characteristic ¢(A) is inde-
pendent of the basis V used for its definition.

Figure 1 shows an example of this concept in R®. Note in particular the set
with the hole “in the middle.” It is on sets like this, and their analogues in
higher dimensions, that the characteristic ¢ and the number of connected com-
ponents of the set differ. In this example, they are respectively zero and one.

—
! K
-1 | — -1 L
2
1 L 2
1 ™
1 | 1 | S—
Change  (AnE ) Change  Q(AnE))
ingQ inQ
=1 Q=0

FiG. 1. The characteristic ¢.

3. Level crossings in R*. Let us now restrict our attention to the values of
X(t) in I,, the unit cube in R, i.e. [, = {teR", t=(t,--+,1,), 0=, <1,
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j=1, .-, n}. Furthermore, let us assume that theset 4 = {t € I,: X(t) = u} is
with probability one a normal body. Sufficient conditions for this will be given
in Lemma 3.2. Then, when n = 1, the number of upcrossings in [0, 1] is ¢(4)
if X(0) < uor ¢(4) — 1if X(0) = u. In fact, by (2.3), the number of upcrossings
equals ¢(4 n [0, 1]) — ¢(A4 n [0]), where [0] denotes the set whose only element
is the origin. This way of counting upcrossings generalises to random fields.

For an n-dimensional random field X(t) and arbitrary real # we shall call the
set A = {tel,: X(t) = u} the excursion set of X(t) above the level u. Then if ],
represents all those faces of I, which contain the origin, a natural generalisation
of the number of upcrossings to random fields is the quantity y(A4), defined as
follows.

DerINITION 3.1. The characteristic of the excursion set 4 of a random field
is defined to be the number

wA) = (A0 1) — (AN k).
It is not hard to see that y(A) also has the following representation

(3.1 2A) = 2. {x(ANE) — x(ANE,.)}

where the summation is, as in (2.4), over all x e (0, 1] for which the summand
is nonzero.

Let us now write X; for the first order partial derivatives 0X/ot; and X,; for
the second order derivatives 02X/ot; o¢t;, i,j = 1,2, - - -, n, of the field X.

For the remainder of this and the following section we shall restrict ourselves
to the simple but representative case n = 2. As one would expect, the following
analysis is only valid when the sample paths of the field X and its partial deriva-
tives satisfy certain regularity conditions which, not surprisingly, are similar to
those required by Belyaev (1972 b).

DEFINITION 3.2. We shall call a two-dimensional random field X suitably
regular if its realisations satisfy, with probability one, the following conditions
for arbitrary real u.

3.2) The sample functions have continuous partial derivatives of
up to second order, with finite variance, in /.

(3.3) The number of points te/, where X(t) =u and either
X(t)=0 or Xy (t)=0 is finite.

3.4 There is no point t on the boundary of [/, for which
X(t) = u and either X (t) =0 or Xy (t)=0.

(3.5)  There is no point tel, for which X(t)=u, X(t)=0
and Xy (t)=0.

(3.6) There isno point tel, for which X(t) =u, and either
X(t) = X;(t) =0 or X, (t) = Xu(t) =0.
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REMARK. Itisnothard to find conditions under which a homogeneous random
field is suitably regular. The proofs are straightforward, although messy, and
examples of the type of argument involved can be found in Belyaev (1972b).
Indeed if X is a homogeneous random field over I, satisfying (3.2), and if each
of the joint probability densities of (X, X;, X;), (X, X, X;;) and (X, X,, X,,) is
bounded by a finite constant, then X is suitably regular. In the case when X is
also Gaussian these last conditions are automatically fulfilled. Conditions on
the covariance function of the field so that it satisfies (3.2) can be found in
Garsia (1972).

We shall now show how the characteristic of an excursion set, as defined by
(3.1), can be calculated by considering a particular point process, and from
this prove that excursion sets are normal bodies with probability one.

Except where explicitly stated otherwise we shall, for the remainder of this
section, assume that we are dealing with a particular realisation X(t) of the
random field that satisfies (3.2)—(3.6). Consider the summation in (3.1). For
given x, E, is a straight line parallel to the ¢, axis, and 4 n E, is composed of
a sequence of n, disjoint closed intervals not containing the point (0, x), and
one more such interval containing this point if X(0, x) > #. Thus y(4 n E,) =
n, and so values of x contributing to the sum clearly correspond to values of x
where n, changes. It is immediately clear from continuity considerations that
contributions to y(A) can only occur when E, is tangential to the boundary of
A (Type I contributions) or when X(0, x) = u or X(1, x) = u, (Type II contri-
butions). Consider the former first.

Since all the points on the boundary of A4 satisfy X(#,, t,) = u, t, can be defined
locally for such points as an implicit function of #. The standard rules for dif-
ferentiating implicit functions give us that dt,/dt, = — X,/X,, so that applying
what we have just noted about the tangency of E, to the boundary of 4 we
have that for each unit contribution of Type I to y(A) there must be a point
t € I, satisfying

(3.7) Xty =u,
and
(3.8) X(t)=0,

since there are no points with X(t) — u = X,(t) = X,(t) = 0 by (3.5). Further-
more, since the limit in (3.1) (see (2.5)) is one-sided, continuity considerations
imply that contributing points must also satisfy

(3.9) X,(t) > 0.

Conversely, for each point satisfying (3.7)—(3.9) there is a unit contribution
of Type I to y(4). Note that there is no contribution of Type I to y(A4) from
points on the boundary of I, when (3.4) holds. Thus we have set up a one-one
correspondence between unit contributions of Type I to y(4) and points in the
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interior of /, satisfying (3.7)—(3.9). It is easily seen that contributions of +1
will correspond to points for which X,,(t) < 0 and contributions of —1 to points
for which X, (t) > 0. By (3.6) there are no contributing points for which
Xu(t) = 0. ’

Consider now Type II contributions to y(4). Using similar arguments it can
be seen that we obtain a contribution of 41 for every point t = (1, x), x e (0,
1], where X(t) = u, X,(t) > 0, X,(t) > 0, and a contribution of —1 for each
point t = (0, x), x € (0, 1] satifying the same conditions. Thus if we define

(3.10) Xt (") = number of points in [, satisfying (3.7)—(3.9)
and X,,(t) < 0 (Xy(t) > 0),

(3.11) x2"(x;~) = number of values of x, xe(0,1], for which
if t=(1,x) (t=(0,x)) X(t)=u, X, (t)>0, X(t)>0,

we have the following result.

LemMA 3.1. If X is a suitably regular two-dimensional random field on I, the
characteristic of its excursion set is, with probability one, given by

WD) =0ur+ 0" — (L +xw)-

We now wish to establish that excursion sets are normal bodies, so that the
sum (3.1) defining y(A) has the properties discussed in Section 2.

A s clearly closed and bounded, and thus, by the Heine-Borel theorem, is com-
pact. Thus we need only show that 4 has, for any basis of R?, a partition into a
finite number of parcels, whose intersections are again parcels. Consider the
points t € [, where X(t) — u = X,(t) = 0, or X(t) — u = X,(t) = 0. For each of
these points draw a line parallel to the ¢, or respectively, ¢, axis, containing the
point. These lines form a grid over I, and, from the characterisation of the
points contributing to y(A4), the connected regions of 4 within each cell of this
grid are parcels. See Figure 2 for some examples.

§ CE\, AN
W | A4
</] a2

Fi1G. 2. Partitioning excursion sets. (Partitioning points are marked with 0 or ©.)

By (3.3) there is only a finite number of cells, and so we have exhibited 4 as
the union of a finite number of parcels, whose intersections are either closed
intervals, points, or empty, and thus also parcels. A similar argument holds
for any choice of basis, and so we have
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LemMA 3.2. If X is a suitably regular two-dimensional random field on I, then
its excursion set is a normal body with probability one.

The measurability of y(A4) follows from its representation as the sum of
integrals in the following section.

4. The mean value of y(A).

THEOREM 4.1. Let X be a zero mean, homogeneous, two dimensional Gaussian
field on I,. Assume X(t) satisfies (3.2), has finite spectral moments of up to and
including order 6, and has a spectrum with a continuous component. Then the mean
value of the characteristic of its excursion set is given by

(4.1) E{y(A)} = — Sx2>0 §o =m0 XaXn@(, 0, Xy, Xxyy) dx, dx;,
where ¢(x, x,, X,, X,) is the joint density function of (X, X,, X,, X})).

Proor. This is essentially a generalisation to higher dimensions of a counting
technique in one dimension used by Kac (1943).

For a realisation X(t) satisfying (3.2)—(3.6) consider the mapping f: I, — R?,
given by f(t) = (X(t) — u, X,(t)) = X. Let K be the set of points in /, for which
X,(t) > 0 and X,,(t) < 0. Then K is clearly open, and if we denote by K* the
interior of the complement of K in I, we have under (3.5) and (3.6) that the
points in [, with X(t) — u = X (t) = 0 lie in K or K*.

Since from (3.3) these points are isolated, we can surround each one by an
open sphere ¢(7) in such a way that the spheres neither overlap nor cross the
boundaries of K or I,.

Now let g(¢) denote the disc |X| < ¢ in the image space. We can show, using
(3.4), that we can choose ¢ so small that the inverse image of g(¢) in [, is con-
tained in the union of spheres (7).

Furthermore, since X,(t) > 0 and X),(t) < 0 in K, we can choose ¢, 7 so small
that for each () in K, o(¢) C f(o(7)) and so the restriction of f to each a(7) is
one-one. Its Jacobian will be given by |X, X,, — X; X,,| = |J| say.

Defining a function d,(X) on R* which is constant over g(¢) and zero elsewhere,
and for which §,, 6.(X) dX = 1, it follows that we can choose ¢ so small that

a(e)

0t =),
where y,*(¢) is given by

1t () = §1, LXK dt

and /(K) is the indicator function of the set K.
Since y,* does not depend on ¢, we also have

4.2) ' = lim g x,7(e) .

Now let ¢(x, x;, X,, X;,, X,,) denote the joint density function of (X, X, X,, X,;,
X,,). Then, for fixed ¢ we have

E{y,*(e)} = SIO dt § o.(x — u, x)|J|@(x, Xy, Xy, X5, Xpg) dX dX, dX, dxyy dXyy
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where the second integral is over x, > 0, x;; < 0, and all x, x,, x,,. The integral
interchange is justified by Fubini’s theorem.

Because of homogeneity, the second integral does not depend on t and so the
above expression equals

Szu sz S“’m dx,, dxy dxy, §, le 0(X — u, X)X, X3 — X20| (X, Xy, Xy, Xy, Xyp) dix dX,

The inner integral clearly converges to —x,x,¢(u, 0, X,, x;;, X;;) as ¢ — 0.
Furthermore, as we shall now show, this inner integral is bounded by an inte-
grable function, so that applying dominated convergence and integrating out
x,;, we have

lim, _, E{X1+(5)} = — Smu<o Sx2>0 Xy Xy, (U, 0, Xy, Xy,) dxydxy,

To obtain the bounding function we note that the inner integral is not greater
than

(7e?) " pa(Xas X115 Xy) §225 e Sfr:l:—s {elxn| + [xaxul}eu(x, X, | xa5 Xy, Xp5) dx dx,

where ¢, and ¢, are respectively the joint probability densities of (X(t),
X (t) ]| Xy(t), Xpy(t), Xyu(t)) and (X,(t), X, (t), X;x(t)). Since under the conditions
of the theorem the determinants of the covariance matrices of these densities
are bounded away from zero it follows that if ¢ < 1 the above expression is
bounded by

K= y(%y X135 Xp2){|X1a| + [Xa X1y}

for some K < oo. This expression is clearly integrable since under the con-
ditions of the theorem each of X,,, X;, X}, has finite variance. If we can show
that sup,_, E{[x,"(¢)]'} < oo we can then apply a result of Feller (1971) (pages
251—252) to obtain

lim,_, E{x,*(e)} = E{x,*} >
so that
(4.3) E(y,*) = — Sz2>0 Szu<0 X, Xy (4, 0, Xy, xy) dX, dx,; .

That this in fact holds under to conditions given in the statement of the theorem
is a consequence of Lemmata 4.1 and 4.2 which follow this proof. Using
completely analogous arguments we can also show

(4.4) E(17) = $p50 Vappp0 Xa X (45 0,5 Xy, Xyy) dix, dxy, .
Furthermore, it follows simply from the homogeneity of the random field that
E(y,") = E(y,") so that

E(y) = — §2p>0 Vopym—eo Xa X1 0(%5 0, X, xy,) dX, dxyy

and the theorem is established.

We shall state the following two results without proof. The proofs follow
exactly the pattern of similar results for the kth factorial moment of the number
of upcrossings by a one-dimensional process due to Cramér and Leadbetter
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(1965) and Belyaev (1966). Both proofs are tedious, but not difficult. As in
the one-dimensional analogue, the condition that the spectrum of X(t) has a
continuous component plays an important role in establishing (4.5).

LemMmA 4.1. If X(t) satisfies all the conditions of Theorem 4.1 then

E{y [t — 11} < lim,_, E{x,*()[1a*(e) — 11}
(4.5) = {1, 1, E{(X(1))* (Xa(8))H (Xu(1)) = (Xs(8)) ™ | B(L, 8)}
X p(u, u,0,0,t,s)dtds,

where (y)* = max (y, 0), (y)~ = min (y, 0), p(x, y, x,, yy, t, S) is the joint density
of [X(t), X(s), X\(t), X\(s)] and B(t, s) is the event that this vector valued variable
equals [u, u, 0, 0].

LeMMA 4.2. If a two-dimensional homogeneous Gaussian field has partial deriva-
tives of order 3 which are mean square continuous, then the integral on the right
hand side of (4.5) is finite.

The requirement that the field has continuous partial derivatives of order 3,
rather than of order 2 as would at first seem to be appropriate, arises from the
fact that we are considering not only zeroes of X(t) — u, but also zeroes of the
derivative X,(t). In the one-dimensional case for example, it follows from
Theorem 3 of Belyaev (1966) that the variance of the number of stationary
points of a process X(¢), t € R, is finite if X() is 3 times differentiable in mean
square. Note that the conditions of the lemma correspond to the condition
that 0°R(t)/ot,*1 9t,*2, k, + k, = 6, is continuous at the origin, where R(t) is the
covariance function of X{(t), or equivalently to the condition that the spectral
moments of order 6 are finite.

The last two results complete the proof of Theorem 4.1. We now give an
explicit form for (4.1). It follows from considering the spectral representation
of X that we can write

(X5 X35 Xg5 X11) = 01(X)Po( X5 Xg)P5(Xy | X)

where the ¢, are normal densities. Now let ¢ = E(X?), and let A be the
covariance matrix of the first order derivatives of X. Computing the integral
we obtain

THEOREM 4.2. Let X be a zero mean homogeneous Gaussian field on R® satisfying
the conditions of Theorem 4.1. Then the mean value of the characteristic of its
excursion set is given by

E{y(A)} = (270”) 7| APu exp(—4u’/a?) .

5. Three-dimensional fields. We shall now briefly consider the mean value
of y(4) when X is a Gaussian field on R®. The analysis is very similar to the
two-dimensional case. With a similar set of conditions for suitable regularity
to those in Definition 3.2 we can show that there is, for suitably regular
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processes, a positive contribution to y(A4) in the interior of I, whenever the
implicit function defining ¢, as a function of # and 7, on the boundary of A has
a maximum or minimum and X,(t) > 0. Negative contributions correspond to
saddle points. Writing J(t) = (J;;(t)) as the n X n matrix with J;,(t) = X;,(t),
and denoting by J, the matrix J with its kth row and column removed, we find
that E{y(A4)} is equal to the mean number of points te I, with X(t) — u =
Xi(t) = Xy(t) = 0, X;3(t) > 0, and det (J,(t)) > 0, minus the mean number of
points satisfying these conditions but with det (J,(t)) < 0. As in the two-
dimensional case the mean contribution from the boundaries vanishes. It then
follows that

E{x(A)} = § xy(x X — XB)e(#, 0, 0, Xg, Xy55 Xgg, X13) dXg dxy; dxy, dx,,

where the integral is over all values of x,;, x,,, X, and x, > 0, and ¢ is the joint
density function of (X, X, X;, X;, Xy;, Xy, Xyy). Computing this integral gives

THEOREM 5.1. Let X be a zero mean homogeneous Gaussian field on R® whose
sample functions have a.s. continuous partial derivatives of up to second order with
finite variance in I,. Furthermore, let X have finite spectral moments of up to and
including order 6, and a spectrum with a continuous component. Finally, suppose
that for each k = 1, 2, 3 and any real numbers x;, the following determinant nonde-
generacy condition is satisfied.

(5.1) Pldet (J(t)) = 0| X(t) = u, X;(t) = x;, 1 £ j < 3,j#+ k} =0.
Then
(3:2) E{y(A)} = (2a)7"|A[le™*(u* — o) exp(—$u’/o’)
where A is the covariance matrix of the X; and o* = E{X*(t)}.
An explanation of how (5.1) arises can be gleaned from Belyaev (1972b).

6. Remarks. 1. As we noted in Section 3, y(A) is a natural generalisation
to random fields of the notion of the number of upcrossings in one dimension
and it would thus be of interest to know its mean value for n > 3 as well. We
conjecture, but can as yet only prove heuristically, that for an n-dimensional,
homogeneous, zero mean Gaussian field satisfying similar conditions to those
in Theorem 5.1

6.1)  Efy(A) = @r)H|Alg=2-bun-t exp(—fufo’)(1 — O(u)) .

2. It is of considerable interest that (6.1) leads to the asymptotic formula
obtained by Nosko (1969) and Hasofer (1976) for the mean number of maxima
above a high level. This follows from Theorem 2 of Nosko (1969), where it is
shown under more restrictive conditions than ours that excursions above a high
level, u, can be approximated within O(x~') by the segment of a particular second
order surface lying above the hyperplane X(t) = u, such that each such excursion
has one associated local maximum. From the point of view of this paper, this
means that each excursion has a surface which is approximately a hyper-ellipse,
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and so has characteristic one. Thus for large values of u the number of maxima
above u, and y(A), are essentially the same. The obvious advantage of our
approach is that our results are exact for all values of u, at least for n = 2, 3.

3. Since none of our results explicitly involve the second order derivatives,
it seems possible that they will continue to hold in the absence of the conditions
we have placed on them. This is certainly the case with the corresponding one-
dimensional result.

4. The recent work by Nosko (1973) represents the only serious attempt
other than our own to obtain a generalisation of level crossings via the topologi-
cal properties of the excursion set. Nosko considers only excursions by two-
dimensional fields over rather special subsets of R?, using the number of connected
components of the excursion set to generalise the number of excursions of a one-
dimensional process. This random variable is not readily amenable to statistical
investigation however. For example, it is not possible to obtain an exact ex-
pression for its mean value but only upper and lower bounds. It is perhaps
worth mentioning here that exact expressions for E{y(A4)} such as those given
in Theorems 4.2 and 5.1 open up the possibility of using the characteristic of
an excursion set to estimate |A| in the same way that one uses the number of
upcrossings of a one-dimensional process to estimate its second spectral moment.
(See, for example, Lindgren (1974).) The parameter, |A|, plays an important
role in the distribution of the maximum of X{(t) (Belyaev (1972b)).

7. Acknowledgments. The authors are indebted for the idea of using the
characteristic functional for level crossings to the work of J. Serra in connection
with mathematical morphology (Serra (1969)).
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