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ON THE STRUCTURE OF SEMIMARKOV PROCESSES
COMPARED WITH CHUNG PROCESSES!

By ERHAN CINLAR?
Northwestern University

Se.~imarkov processes with discrete state spaces are considered without
restrictions on their probability laws. They admit states where every visit
lasts a positive time even though there may be infinitely many such visits
in a finite interval. These are called unstable holding states as opposed to
the stable holding states which are encountered in Markov processes. Fur-
ther, it is possible to have instantaneous states at which the behavior is
that at an ordinary instantaneous state of a Chung process, or that at a
sticky boundary point, or that at a nonsticky point. To convert such pro-
cesses to Chung processes, each unstable state is split into infinitely many
stable ones, and then a random time change is effected whereby some sets
of constancy are dilated, and sojourn intervals are altered to have expo-
nentially distributed lengths.

1. Introduction. While introducing semimarkov?® processes, Lévy (1954) as-
serted that any such process can be transformed into a Markov process through
a random time change using a suitable strictly increasing time scale. The asser-
tion implies that the qualitative structure of the sample paths of a semimarkov
process is the same as that of a Markov process. The only differences, therefore,
would be restricted to “the probability laws governing the sojourns” at a holding
state: they are exponential for Markov processes and arbitrary for semimarkov
processes.

This, however, is not true. The source of error is the implicit assumption
that sojourn times at a fixed state are well-defined random variables. It turns
out that there are states such that every visit lasts a positive time but that be-
tween any two sojourn intervals there is a third. Of course, then, the left end
points of those intervals cannot be well-ordered, which implies that we need to
talk of random variables such as the length of the first (or second or third. . .)
sojourn interval whose length exceeds ¢. And the law of such intervals, of
course, depends on e. Here is an illustration.

Received February 24, 1975; revised Septembei' 29, 1975.

1 A preliminary version of this was presented at the Fourth Conference on Stochastic Processes
and Their Applications in Toronto, Canada, August 1974.

2 Research supported by the Air Force Office of Scientific Research, Air Force Systems Com-
mand, USAF, under Grant No. AFOSR-74-2733. The United States Government is authorized
to reproduce and distribute reprints for governmental purposes.

8 Spelllng is deliberate; the alternative ‘‘semi-Markov’’ looks ugly in addition to conveying
a meaning which is not quite right; it is the strong Markov property which will be relaxed here.

AMS 1970 subject classifications. Primary 60K15; Secondary 60G17, 60J25.

Key words and phrases. Semimarkov processes, Markov processes, classification of states, sam-
ple path behavior, time changes.

402

[
\
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é, )2

o

The Annals of Probability. STOR IS

WWWw.jstor. org



SEMIMARKOV PROCESSES 403

(1.1) ExampLE. Consider a Brownian motion on (— oo, co) starting from 0.
Let M be the set of all + > 0 at which the process is at the point 0. This is
closed in (0, c0). Let K, be the set of all # in M which are not isolated on the
right. Let K, be the complement of K, in (0, co). Define a stochastic process
(X,) by
X, =0 if rek,,
=1 if rek,.

The process (X,) is semimarkov in all the senses of which we are aware: Lévy
(1954), Yackel* (1968), Pyke and Schaufele (1964), page 1740. State 0 is instan-
taneous, and state 1 is holding. The set K, is a countable union of intervals
each of which has positive length, but any neighborhood of ¢ = 0 contains in-
finitely many of those intervals. No two of these sojourn intervals have an end
point in common, and between any two intervals there lies a third.

We note that the phrase “length of a sojourn interval at state 1’ has no definite
meaning, and it is faulty to speak of its probability law. However, there is a
measure 2 on (0, co), whose total mass is infinite, and which governs the sojourns
at 1 in the following sense: Consider those sojourn intervals whose lengths
exceed ¢; the lengths of the first, the second, - - .such intervals are independent
and identically distributed as

AB)Y/A((e> 0)) » B C (¢, %), B Borel.

It is well known that the set K, is the range of a right continuous increasing
additive process with zero drift. The measure 4 above is the Lévy measure of
this additive process.

Our object is to clarify the qualitative structure of semimarkov processes on
discrete spaces. We will classify the states of a semimarkov process X first as
holding versus instantaneous just as with Markov processes. A holding state is
either stable or unstable depending on whether it is entered only finitely often
or infinitely often during a finite interval. An instantaneous state i is attractive
or repellent depending on whether its set of constancy {¢: X, = i} is perfect or
discrete (perfect means right closed and has no isolated points, discrete means
every point is isolated). An attractive state is light or heavy according as the
Lebesgue measure of its set of constancy is 0 or positive.

Every Chung process (see the definition below) is semimarkov. In a Chung
process, every holding state is stable, and every instantaneous state is heavy.
Supposing that a Chung process has a purely atomic boundary, in the terminology
of Chung (1968), a sticky boundary point is like a light attractive state, and a
nonsticky boundary point is like a repellent state.

The most important qualitative difference between semimarkov ‘and Chung
processes is due to unstable states. While converting a semimarkov process to

¢ Our claim is true in spirit although not actually true: Yackel excludes this possibility by
assuming that the transition functions involved are ‘‘strong.”
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a Chung process, each unstable state i is “split” into infinitely many stable ones
in addition to dilating light attractive states and replacing sojourn intervals by
exponentially distributed ones. Details of this conversion problem will be -re-
ported elsewhere.

Finally, we would like to introduce the following much needed definition.

(1.2) Chung processes. Let (X,) be a (continuous time-parameter) Markov
process defined on a complete probability space, and taking values in a discrete
state space E-(a countable set with the discrete topology which is further com-
pactified by adding an extra point if not already compact). Then X is said to
be a Chung process provided that

(a) the transition function of X be standard, and
(b) the sample paths be “right lower semicontinuous,”

that is, for any 7 and w, the sample path X,(») has at most one limiting value
in E as s decreases to #; X,(w) is equal to that limiting value in E if it exists, and
is equal to the “point at infinity”” if there is no such limit in E.

Chung processes are important because Chung, Doob, Feller, Kolmogorov,
and Lévy have worked on them; they are interesting because their sample paths
have intricate discontinuity properties not possessed by “standard” Markov pro-
Cesses on more general state spaces; and they need to be singled out because they
do not fit neatly into the general potential-theoretic framework. Finally, on
sheer volume of publications concerning them alone, Chung processes deserve
a name of their own amongst other processes such as Brownian motion, Feller
processes, Hunt process. We hope that the wisdom and the justice implicit in
this definition will be recognized.

Our terminology for elements of stochastic processes in general follows
Dellacherie (1972). In addition, we write R, = [0, o0), R, = (¢, o) for any
teR,; and &2, and &, for the associated s-algebras of all Borel subsets.

2. Semimarkov processes. In this section we describe the processes we are
interested in. A more fundamental definition (which seems to have been what
Lévy had in mind) will be given elsewhere along with comparisons with other
definitions.

Let E be a discrete set (countable with discrete topology). If E is finite, let
E = E. If E is not finite, let £ = E U {p} be its one point compactification.
Let (Q, _#, P) be a complete probability space, let S, be a random variable on
it with values in (R,, £2,), and let X = (X,),,, be a stochastic process defined
on (Q, ) and taking values in E. Let 57 = ¢(X,;0 < s < #) V o(S,) and
G = V7. Let 57, be the completion of 5£7.°, and let 57, be the g-algebra
generated by 227 = N,., ;" and all the negligible sets in 5#7,. We will refer
to the family 57" = (5#;) as the history generated by (X, S). Stopping times,
progressive sets, etc., are all relative to this history unless specified otherwise.

For each o € Q let M(w) be the set of all # > 0 at which the path X(w) : 5 — X ()
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is not continuous plus those ¢ > 0 at which X(w) is continuous and has the value
¢. The random set M will be called the discontinuity set of X.

Fix w € Q. The set M(w) is closed in (0, o). Its complement (1f not empty)
is a countable union of open intervals. Each such open interval is said to be
contiguous to M(w). We define L(w) to be the set of all left end points of the
intervals contiguous to M(w).

For every ¢t > 0 and w € Q we define

2.1)  S(0) = S(w) + ¢ if (0,7 n M) = @
=t —sup{s < t: se M(w)} otherwise.

We call S,(w) the sojourn value at t for the path X(). If ¢ is a time of discon-
tinuity for X(w), then Sy(w) = 0. Otherwise, if ¢ belongs to the contiguous in-
terval (a(w), b(w)) (on which, by the way M(w) is defined, the path X(w) remains
constant), the sojourn value at ¢ is S(w) = ¢ — a(w), unless a(w) = 0 in which
case Sy(w) = Sy(w) + ¢.

Throughout this paper we assume that the following axioms hold.

(2.2) Regularity. For almost every w and every ¢ > 0,

(a) if t € L(w), then the path X(w) is right continuous at ;
(b) if t € M(w)\L(w), and if there exists a sequence (¢,) C M(w)\L(w) decreas-
ing to 7 and such that X, (w) = i for every n for some i € E, then X,(0) = i.

(2.3) Point ¢. For every t > 0, P{X, = ¢} = 0.

(2.4) Progressive measurability. The process X is progressively measurable
with respect to the history 57

(2.5) Regeneration. The process (X, S) = (X,, S,);5, is a time-homogeneous
Markov process which further enjoys the strong Markov property at every stopp-
ing time T of 5 such that X, € E a.s. on {T < oo}.

Then X is a semimarkov process in the strict sense.

Regularity axiom (2.2) is close to a separability axiom. By (2.2a) every in-
terval of constancy has the form [ ). Axiom (2.2b) is in fact an axiom on
random sets on which X is in a fixed instantaneous state. These axioms might
require the state space to be closed, and thus the need for compactifying the
state space. Hence (2.3) delimits ¢ to the role of “an extra point added for
reasons of smoothness.” Axiom (2.4) is technical. The crucial assumption is
(2.5): First, note that each S, is 57, measurable, that (S,) is right continuous,
and that (X, S) is progressively measurable relative to 5. So, it is meaningful
to talk of strong Markov property for (X, S). This property is of particular
interest for stopping times T whose graphs [T] are contained in M, i.e., T(w) €
M(w) for almost every w € {T < oo}. Then, S, = 0, and the strong Markov
property at T may be rephrased as follows. For every state i ¢ E there exists a
probability measure P¢ on (Q, 5£.°) such that

(2.6) E[W o 0,|5;] = E[W] as.on {X,=1i}
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for any bounded 577" measurable random variable W and any stopping time T
such that [T] c M. Here and below we assume the existence of a family (6,)
of shift operators defined on Q such that

Xtoeu:Xt+u’ Sooau:Su
for all te R, and u ¢ R,. Note that, then, S, 0 0, = S,,, also.

2.7) ExampLE. Consider the process X of Example (1.1), and put S, = 0.
Then, it is well known that § is a strong Markov process (see Meyer (1970), for
instance). For any stopping time T, on {S;, > 0} we have X, = 1. There is no
stopping time 7" such that [T] c L, other than T = co. Therefore, for any stop-
ping time 7', on {T < co, S; = 0} we have X, = 0. It follows that the strong
Markov property of S implies that of (X, S); that is, Axiom (2.5) is satisfied. It
is easy to check the other three axioms. So, X is semimarkov.

(2.8) Chung processes. Suppose X is a Chung process, put S, = 0. Then right
lower semicontinuity implies (2.2). Point ¢ being “fictitious,” (2.3) is true.
Axiom (2.4) follows from right lower semicontinuity again. And it is known
that (2.5) holds. So, X is semimarkov.

(2.9) Regenerative sets. Let K, be a regenerative set in the sense of Maison-
neuve (1971) (Markov random set is another equivalent term; and the set on
which a regenerative phenomenon in the sense of Kingman (1972) is equal to 1
is a particular regenerative set). Define X to be 0 on K, and 1 on R)\K,. The
resulting process X is semimarkov. Example (1.1) is a special case.

We end this section by giving a regularization of sample paths, due to Lévy
(1954), which simplifies certain questions.

For each i ¢ E and w € Q define

(2.10) Kf(w) ={t > 0: X,(0) = i}.
The random set K, is called the constancy set for i.

(2.11)  DEeFINITION. A point ie E is said to be instantaneous if for a.e. w
the set K (w) has an empty interior. It is said to be a holding point if for a.e.
o the set K () is a countable union of intervals each of which has a finite positive
length. It is said to be absorbing if, for a.e. w, K (w) is either empty or consists
of one infinite interval.

By Fubini’s theorem, Axiom (2.3) implies that the point ¢ is instantaneous.
If X is a Chung process then every point / is either instantaneous or holding or
absorbing. However, in general, a semimarkov process may have states which
are neither instantaneous nor holding nor absorbing. The following “splitting
of states” is to eliminate this unpleasantness.

We define

(2.12)  R(w) = inf M(w), R,w) = inf{s > t:se M(w)} — ¢.
Then, R, is the remaining time to be spent in the state being occupied at ¢, and
R=Ryand R, = R 0,.
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(2.13) PROPOSITION. For every w € Q and t > 0 define
X,/ (0) = ai if R(w)= +o
=hi if Ryfw)e(0, o)

=ii if R(w)=0

when X (o) = i. Then, the process X' is again a semimarkov process, and every state
i’ is either instantaneous, or holding and not absorbing, or absorbing.

This proposition can be found in Lévy (1954). Throughout the remainder of
this paper we assume that the regularization implicit in this proposition is already
carried out, so that we may assume the following:

(2.14) Regularity. Each point i € E of the process X is either absorbing or
holding or instantaneous. Further, the defining conditions in (2.11) hold for
every w instead of almost every w.

3. Behavior at a holding point. Throughout this section i is a fixed holding
point. For every w, the set K,(w) = {t > 0: X,(w) = i} is a countable union of
intervals. By Axiom (2.2b), each component interval has the form [ ) except
possibly the first which may have the form (0, 7). Since it is possible that
K,(w) n B have infinitely many components for even bounded intervals B, first
we consider those component intervals of K,(w) whose lengths (strictly) exceed .

For ¢ > 0 consider the collection of instants ¢ e K,(w) such that S,(») = .
Let Q,,(w) be the nth such instant if it exists, and set Q..(0w) = + oo if not. Note
that each Q,, is a stopping time, and that

(3'1) XQen = i’ San = ¢ on {Q‘” < OO} :

Recall the definition (2.12) of R, note that ¢ + R o 0,,, is the length of that
component interval of K; which straddles Q,,, and that X, o 0,,, is the next state
to be visited. By the strong Markov property at Q,,, for A C Eand B R, =
(e, o0) Borel, we have

(3.2) P{Xpo0,,€A4,¢4+ Roby eB|5F, }
= L(i, 4, B) a.s.on {Q, < oo}
for some measure L,(i, .) on the Borel subsets of £ x R,, where we write
L(i, 4, B) for L(i, A x B), and below we will write L,(i, j, B) for L,(i, {j} x B).
We now explore the meaning and shape of L,(i, ). Consider the transition
semigroup (P,) of the Markov process (X,, S,),5,, and let P, be the probability

law of the process corresponding to the entrance law P,((i, s), +), t > 0. It is
clear that

(3.3) L(i, A, B) =P {Xpe A, ReB — ¢}, ACE, Be %,
Concerning the shape of L, we have the following:

3.9 PROPOSITION. There is a measure L(i, +), on the Borel subsets of E x R,,
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unique up to a multiplicative constant, such that L(i, i, R) = 0,

(3.5) n(i, t) = L(i, E, R) < o
for every t e R, and with 0/0 = 0,
(3.6) L, j, B) = L(i, j, B)[n(i, ¢) , jeE, ceR), Be %, .

Proor. Define
n(i, t):Ls(i,E, R, = P, {R >1t— s}, 0O<s<t.

Let 0 < s < rand Be %,; then, the event {Re B — s} implies {R > ¢t — s}, and
on the latter set we have X, , =i and S, , =1t a.s. P,. Thus, applying the
Markov property at + — s to the right side of the equation (3.3) written for
¢ = 5, We obtain .

3.7 L, j, B) = ni, t)L,(, j, B) , 0<s<t BeZ,,
and in particular, summing over j € E and putting B = R,,
(3.8) n(i, u) = n,(i, ny(i, u) O<s=Zt=su.

Next we show that there exists a > 0 such that n,(i, @) > 0 for all & < a unless
K, = @ almost surely. If K, is not a.s. empty, then there exists @ > 0 such that
P{Q, < oo} > 0, where' Q, = Q,, is the first time (X, S) enters (i, a). Let b < a,
and note that Q, < oo if and only if Q,, < coand R0 §,, > a — b for some n.
Hence,

P{Q, < o} £ X, P{Qy, < 0, Ro by, > a— b}
= Y P{Qsn < 0}Py{R > a — b}
by the strong Markov property applied at Q,, (see (3.2)). Now the positivity
of the left side implies that n,(i, a) = P,{R > a — b} > 0.
Finally, if K, is almost surely empty we define L(i, -) = 0 identically; other-
wise, we define

3.9) n(i, t) = 1/n(i, a) if 0<t<a,
= n,(i, 1) if t=za;
and set
(3.10) L(i, j, B) = n(i, ¢)L (i, j, B) if BeZ,, e>0.

It follows from (3.8) and (3.9) that we have ny(i, t) = n(i, )[n(i, s) for all 0 <
s < t, and this together with (3.7) shows that the definition (3.10) is unambiguous.
Now the desired assertions (3.5) and (3.6) follow from (3.9) and (3.10).

The measure L(i, -) is the i-entry of a kernel L which plays the same role in
semimarkov processes as Lévy kernels do in the theories of Hunt processes and
Markov additive processes (see Cinlar (1975)). Moreover, the functions n(i, -)
figure as densities for some measure N which is invariant for (X, S) (this is to
explain the particular choice of letters L, n, etc.).
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(3.11) ExampLE. Consider the semimarkov process X of Example (1.1). For
the holding state 1 we have

L(1,0,B) = A(B), L(1,1,B)=0.

(3.12) ExaMPLE. Suppose X is a Chung process and let i be a holding pomt
Then n(i, t) = ¢ - e for some finite constant A(/) and some constant ¢ > 0.
Therefore,

(3-13) L(i, j, dt) = cK(i, j)A(i)e~*¥* dt

for some numbers K(i, j) = 0, K(i, /) = 0. In terms of the generator G of X
(that is, G(i, j) is the derivative at t+ = 0 of the transition function P,(i, j)), we
have

() = —G(@, i) ; A(O)K(@, j) = G, j), JERE

Returning to the general case we note that L(i, -) and n(i, +) are defined only
up to multiplication by a constant. If the limit n(i, 04) of n(i, #) as ¢ | 0 is
finite, then a convenient normalization is effected by choosing the multiplicative
constant so that
(3.14) n(i) = lim, on(i, 1) = 1.
Otherwise, if n(i, 04+) = oo, we set ,
(315) n(i) = lim”o n(i, t) = +o00.
(3.16) DEFINITION. A holding state is said to be stable if n(i/) = 1 and un-
stable if n(i) = oo.

It follows from (3.13) that for a Chung process every holding state is stable.
The following proposition shows that the behavior of a semimarkov process at
a stable holding state is qualitatively the same as that of a Chung process at
such a state. We will later see that the converse of this propos1t10n is also true
(see Proposition (3.30)).

(3.17) PROPOSITION. Let i be a stable holding state. Then, for almost every w,
the set K(w) N B has only finitely many connected components for any bounded in-
terval B.

Proor. It is enough to show this for B = (s, s 4 ) where s is arbitrary and
t > 0 fixed. Choose ¢ such that n(i, #) > 0. Define

(318) Ten:s+Qen°08’ Uen:Ten+R°0T

Note that the number of component intervals K, has in B = (s, s 4 ¢) is equal
to, or one greater than,

(3.19) , N =lim, , 33, 14(T.,)
and that
(3.20) P{N > k} = lim, |, P{3, 15(T.,) > k} .

So, we need to show that this goes to 0 as k — co.
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The event figuring on the right side of (3.20) implies the event that the lengths
of the intervals (T,,, U,), - - -, (T, U,,) sum to something less than ¢, and this
event in turn implies the event that each one of these k intervals is less than ¢
inlength. On the other hand, T,,, T, - - - are all stopping times. By the strong
Markov property applied thereat, the lengths of the k intervals in question are
i.i.d. with the common distribution function ¢ given by

(3.21) o) =1 — n(i, e + u)/n(i, ¢) , uz=0.
Hence,

. n(i,e + 1)
(3.22) PN >k} < hmsw[l - T(zZ)“:] .

By hypothesis of stability for #, n(i, ¢) — 1 as ¢ — 0. So, the limit on the right
is [1 — n(i, £)]*, which goes to 0 as k — oo since n(i, ) > 0 by choice.
For the fixed state i under examination, define

(3.23) V=infMnK,, V,=t+Vo0,, t>0.

We call V the time of first visit to i, V, is the time of first visit to ; after . Note
that V(o) differs from the first hitting time H,(w) of i after r whenever X,(0) = i:
If X,(w) = i then (¢, t + ¢) C K () for some ¢ > 0, which implies that V,(w) >
t + ¢ whereas H,(w) = ¢.

In interpreting the following recall that X, o §, = X, is the state at the time
of first visit to i after ¢.

(3.24) THEOREM. For almost every w and for every t > 0,
Xy o0, (w)=1 if i isstable,
X, 00 (w)e E\(i}  if i isunstable.
ProoF. Case of stable i. By the preceding theorem, for every w in a set Q'
of full measure, the left end points of the component intervals of K;(w) form a

discrete set (i.e. every point is isolated). Therefore, V,(w) must be one of those
left end points for € @', and by axiom (2.22), X(w) is equal to i at V,(w).

Case of unstable i. Let
(3.25) p(s) =P{X,00,=i,R00,00,>s}.
By the strong Markov property applied at ¥, + s, recalling that

P {R > u — s} = n(i, u)/n(i, 5) ,
we have
(3.26) p() = p(s)n(i, u)[n(i, s) , O<s<u.
Since i is unstable, n(i, s) — oo as s — 0. Since p(s) is bounded, (3.26) can hold
only if
3.27) ps)=0 forall s>0.
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Since 7 is a holding state,
Rofyob,=R, >0 on {X,0-0,=1i}.
Therefore, (3.27) can hold only if (éf. (3.25) also)
(3.28) P{X,00,=i}=0.
This shows that for fixed  there is a negligible set Q, such that X, o 6, # i
outside Q,. Let

(3'29) QO = Ut rationa: Qz .
Then Q, is negligible. Pick w ¢ Q,and ¢ > 0. If V,(w) = ¢ then X, o ,(0) + i
(since X,(w) = i implies V(w) > t). If V,(w) > t, then there are rationals r
in (1, V(w)), and for any such r we have V (0) = Vy(w). So, X, 0 6,(0) =
X, 0 0,(w) + isince w ¢ Q,. This completes the proof.

The following shows that the converse of Proposition (3.17) is also true; a
holding state i is stable if and only if, for almost every w, K,(w) has only finitely
many component intervals in a bounded time interval.

(3.30) PROPOSITION. Let i be an unstable holding state. Then, for a.e. v, be-
tween any two component intervals of K, (w) there is a third component interval of
K (o).

Proor. Let Q, be the negligible set defined by (3.29), and suppose w ¢ Q,.
Let [p, 9) and [4, v) be two component intervals of K (w), suppose ¢ < u. Pick
te(g,u). Clearly, Vy(w) <u. But the equality cannot hold, since then
X(V,(w), w) = X, (0) = i which contradicts the choice of w. So, V,(w) < u and
therefore there must exist r, s € (V,(w), ) such that [r, s) is a component interval
of K(w).

The next corollary follows from Theorem (3.24) and the preceding proposition.
Recall that L is the set of all left end points of the intervals contiguous to M.
Therefore L n K; is the set of all left end points of the component intervals of K.

(3.31) COROLLARY. Let i be an unstable holding point. Then, for a.e.  and
every t > 0, if (t,t + €) contains one point of L(w) N K,(w), it contains infinitely
many points of L(w) N K(w).

We have seen in Theorem (3.24) that, at the time of a visit to an unstable
state /, X is always at some other state. From the definition of visiting time and
the preceding corollary, it follows that at such a time X must be in an instan-
taneous state.

(3.32) COROLLARY. Let i be an unstable holding state. Then, for any t > 0,
X, o 8, is in the set of instantaneous states almost surely.

It follows that, if the semimarkov process X has an unstable state, then it
must also have some instantaneous states. This, however, does not require that
the state space be infinite. In Example (1.1), for instance, state 1 is an unstable
holding state.
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(3.33) REMARK. As before, consider the transition function (P,) of the
Markov process (X, S), and let P, be the probability law corresponding to the
entrance law P,((i, 5), +), ¢ > 0. If i is a holding state and s > 0, then it is clear
that ' '

(3.34) lim, , (X,, S,) = (i,5) a.s. P

i -
If i is a stable holding point, the same is true for s = 0 also. However, if i is
an unstable point, this limit no longer exists for s = 0. In fact, when i is un-
stable, the point (i, 0) is a branching point for the semigroup (P,),,, and the
branching distribution is concentrated on the set {(j, 0): j € E instantaneous}.

4. Instantaneous states. Throughout this section i will be a fixed instan-
taneous state in E. This leaves out the instantaneous point ¢ about which, for
reasons which will become clear, there is not much to report.

Consider the set K, = {t: X, = i}. For each w, we define K;(w) to be the set
of all limit points of K,(») from the right side, that is, ¢ e K (w) if and only if
there is a sequence (7,) C K (w) which is strictly decreasing to t. Define K;*(w)
similarly as the set of all limit points from the left. Finally, let

(4.1) - KM0) = K(o)\(K7(0)\K (@) ;

that is, K,™ is obtained from K, by removing from K, those nonisolated points
of K; which are isolated on the right.

(4.2) LEMMA. (a) The random set K, is progressively measurable (relative to
7). (b) For almost every w, K(w) is right closed, that is, K;(w) C K(o).
(c) The random set K™ is progressive.

Proor. (a) The first statement follows from the progressive measurability of
X itself. _

(b) By the definition of an instantaneous state K, C M almost surely. By
Axiom (2.2a), L n K; = @ almost surely; hence, K, € M\L. Now Axiom (2.2b)
applies to show that K (o) is right closed for a.e. .

(c) Since K, is progressive, soare K;” and K;~ (see Dellacherie (1972), page 126).
Now (4.1) implies the same. for K,™.

(4.3) THEOREM. There is a right continuous increasing additive process (A,),c g,
(where A, is not necessarily zero) such that, for a.e. w,
(4.4) K™w) = {t: A(w)'=t for some s}.

Proof is immediate from the characterization theorem of Maisonneuve (1971)
for regenerative sets whose conditions on K, are satisfied by the following facts:
K;™ is right closed and progressive, and is “minimal,” i.e., the left end point of
a contiguous interval belongs to K,™ only if it is isolated. For every re K", we
have X, = i and S, = O (the latter is because K," C K, C M). Therefore, by
the strong Markov property, for any stopping time 7 with [T] C K;", the past
S#, is independent of the future o(X,,,; ¢ = 0) which includes the “future of
K™ after T.”
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It follows from the well-known facts about increasing additive processes that

(4.5) E[exp{—2A(A4, — A,)}] = exp[—sAN*(i)] ,
where
(4.6) ANYG) = 2a(i) + §ig,m (1 — e )L(i, dy)

for some constant a(i) ¢ R, and some Lévy measure L(i, +) on R, = (0, oo].
We define (recall that R, = (1, oo])

(4.7) n(i, t) = L(i, R,) , t=0;

then N(i) is the Laplace transform of the measure N(i, -) which has an atom
of weight a(i) at t = 0 and is absolutely continuous on (0, co) with density n(i, «).

4.8) DerINITION. The instantaneous state i is said to be attractive if
n(i, 0) = + oo and repellent if n(i, 0) < oco. If i is attractive, it is further said
to be light if a(i) = 0 and heavy if a(i) > 0. State i is said to be recurrent if
n(i, +o0) = 0 and transient if n(i, co) > 0.

The next proposition provides the meanings behind these definitions. We omit
the proof, which follows from Theorem (4.3), the well-known facts about ad-
ditive processes, and the observations that K,\K,™ is at most countable and that
its every point is a limit point of K.

(4.9) PROPOSITION. The following statements are true for a.e. w in {K; #+ @}.

(a) If i is attractive K,(w) is everywhere dense in itself, and therefore, is perfect
(in the right-topology). If i is repellent, then every point of K (w) is isolated, and
therefore, K,(w) is at most countable.

(b) If iis repellent, or attractive and light, then the Lebesgue measure of K,(w)
is zero. If i is heavy, then the Lebesgue measure of K(w) is strictly positive.

(¢) Ifiisrecurrent then K,(w) is unbounded; if i is transient then K () is bounded.

In the case of a repellent state, if T, T}, - - - are the successive points of K,
we see that each T, is a stopping time and the process (7',) is a delayed (and
possibly transient) renewal process. If X is a Chung process, then every instan-
taneous state is attractive and heavy. However, repellent and light attractive
states do come up within the boundary theory for Chung processes. The be-
havior at a repellent state is very close to that of a Chung process at a nonsticky
boundary point (though not exactly the same, as we shall see below), and the
behavior at a light attractive state is the same as that of a Chung process at a
sticky boundary point (for the terms see Chung (1968)).

The following clarifies the picture at a repellent state.

(4.10) THEOREM. Let i be a repellent state. Then, for almost every w and for
every t € K (w), the path X(w) admits ¢ as a limit point from the right at t; moreover,
if X(w) admits j e E as a limit point from the right side at t, then j must be an un-
stable holding point.
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REMARK. It is possible to have more than one unstable state as limit points
from the right.

ProoF. Let Q' be the set on which K; ¢ M\L and K; D K5 for every stable
holding state j and for every instantaneous state j. By the definition of an instan-
taneous state i, by Proposition (3.17) on K; for a stable holding state, and by
Lemma (4.2) concerning K; for j instantaneous, we have that P(Q') = 1.

Let w € Q" and let 7 € K,(w). Since t € M(w)\L(w), there is a sequence (t,) C
M(w) strictly decreasing to . If the sequence (X, (»)) has no limit points in E,
then there is a subsequence (X, ()) converging to ¢ since the state space E is
compact.

Suppose that (X, («)) admits j € E as a limit point for some sequence (z,) de-
creasing to f. Since w € @, the facts that ¢ e Kj(w) and ¢ € K,(w) imply that j
must be unstable. Let V7 be defined by (3.23) for the present state j; and consider
the sequence (s,) = (V§ (»)). By Corollary (3.32), X, () is instantaneous for
each n. Hence, the sequence (X, (w)) cannot have any limit points in E, because
(s,) decreases to t and w € Q'. So, (X, (w)) must admit ¢ as a limit point.

The preceding proof goes through for ¢ € K,(w) where i is attractive and t is
isolated on the right. We put this next along with some other supplementary
facts about such points ¢. Note that Theorem (4.3) specifies the structure of K,
completely, and hence the next proposition completes the picture of K.

(4.11) PROPOSITION. Suppose i is attractive, and let L, = K\K,™ = K7\K;.

(a) The random set L, is progressive.

(b) If T is a stopping time such that [T] C L,, then T = 4 oo almost surely.

(c) Fora.e. w, L(w) is countable; if t e L(w), then there is (t,) | t such that
X, (0) — ¢; if te Ly(w) and if there is (1,) | t such that X, (w) — j for some je E,
then j is unstable.

PRroor. (a) follows from Dellacherie (1972), page 126; the proof of (c) is the
same as that of Theorem (4.10). To show (b) let T be such a stopping time.
Then, [T] C K|, and the strong Markov property at T together with Proposition
(4.9a) imply that T(w) € K;(w) for a.e. € {T < oo}. Since L(w) N Ki(0) = @,
andsince T(w) € L(w) fora.e. € {T < co} by hypothesis, we musthave ' = + oo
almost surely. 4

We have seen in the preceding propositions that if i is attractive and if a left
end point ¢ of an interval contiguous to K,(w) is such that ¢ € K,(») and t € K5(w)
for some j, then j must be unstable. The following strengthens this result by
showing that, in that case, te Kj(w) also: in other words, there are infinitely
many component intervals of K;(w) in any interval (¢t — ¢, f) with ¢ > 0.

(4.12) PROPOSITION. Suppose i is attractive, let L, = K\K,™ as before. Then
for almost every w,

Lw) 1 K5(0) C Lw) 0 K7 ().
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Proor. Let V,7 be the time of first visit to j after ¢ defined by (3.23), but for
state j. For any fixed ¢, this is a stopping time, and therefore, [V,/] N L, = @
almost surely by Proposition (4.11b). Let

(4.13) O =U.{VieL}

where the union is over all rational numbers r. Then P(Q') = 1.

Choose w e Q' and suppose te L(w) N Kj(w). Then, for any s <t, s <
Vi(w) £ t. On the other hand, if s is rational, V,/(w) cannot be ¢ since w € Q.
Choose a sequence r, of rationals strictly increasing to ¢. Then,

rs Vi(w) <t

for every n, which implies that for each n there is s, € [r,, f) such that s, € K;(w).
Since r, 1 ¢, this implies that € K7(w).

In view of the ease with which Theorem (4.3) is obtained, it is worth com-
menting upon its main ingredients. The obvious (and quite reasonable) ones are
the progressive measurability and strong Markov property. Other than these,
the most important is Axiom (2.2b), which is equivalent to saying that K is
right closed for every instantaneous state i. For Chung processes this follows
from right lower semicontinuity, which in turn is made possible by separability
and stochastic continuity. However, for semimarkov processes, it is difficult to
obtain the property (2.2b) by any reasonable hypothesis. The following is an
example of a strong Markov process X which satisfies all the axioms except
(2.2b), and for which Theorem (4.3) fails, and the behavior at any of the three
instantaneous states is radically different from that described above.

(4.14) ExAMPLE. Let (N}), (N, - - - be independent Poisson processes each
of which has parameter 1. Let Q' be the set of all w such that no two paths
t — N,(») and ¢ — N,"(») have any jump time in common. Then P(Q’) = 1as
is well known. We now define

X(w) =1 if weQ and ¢ isa jump time of N™(w)
for some odd integer m ;

=2 if weQ and ¢ isajumptime of N™(w)
for some even integer m ;

=0 otherwise.

Then P{X, = 0} =1 for every ¢, and X is stochastically continuous. For
almost every o, X(w) admits all three possible values as limiting values from the
right (and left) at any time ¢. So, X is separable trivially. Let 5%, = o(N,;
5 < 1), and set 77 = ! ®2#Q - - -. Then, X is strong Markov with respect
to (7). Every state is instantaneous, every ¢ is a time of discontinuity, Axiom
(2.2a) holds trivially, Axiom (2.2b) does not hold. Theorem (4.3) is not true
for any state.

It should be clear from the foregoing discussion that we cannot say much



416 ERHAN CINLAR

about the structure of K, = {: X, = ¢} even though ¢ is an instantaneous point.
This is because the set K, is not necessarity right closed; and because we do not
have the strong Markov property at stopping times 7' at which X may be in ¢.

5. Concluding remarks. We mention the implications of several possible
regularity conditions which are commonly introduced.

If every path X(w) is a separable function, then there can be no repellent
states (but all other kinds are possible). If X is right separable, then there can
be no repellent states, and K, is minimal (i.e. L, = @) for every instantaneous
state i. If X is right continuous, then there are no instantaneous states and no
unstable states.

The role of “right lower semicontinuity” (RLSC) is somewhat ambiguous. If
we define it as usual, i.e. by the condition that

(5.1 X, = liminf,,, X,

for some ordering of states in E so that ¢ always corresponds to +-oco, that
ordering becomes important. For example, in Example (1.1), X satisfies (5.1).
However, if we interchange the labels of the two states (so that 0’ =1 and
1’ =0and 0’ < 1), then X is not right lower semicontinuous; and moreover
any attempt to make it so would set X,” = 0’ for all ¢.

We may define a property RLSC by requiring that, for any ¢, X have at most
one finite limiting value at ¢ from the right, and that X be equal to that finite
limit if it exists, and be otherwise ¢. In the case of Chung processes this property
“RLSC” is simply the right lower semicontinuity. For semimarkov processes,
if X has the RLSC property, then there can be no unstable states and no repellent
states.

Finally, we mention the following rectification of Lévy’s assertion alluded to
in the introduction. Suppose there are no repellent states, and let D be the set
of all unstable states. Put

D=bDx{l,2,.-..}, E=(EDUD.
Define a projection from £ onto E by setting
() =i if ieE\D, a(i,n)=i if (i,neD.

Then there exist a Chung process X with state space £ and a strictly increasing
continuous process A such that

X, =n(X,).

Since a strictly increasing continuous time transformation leaves the qualitative
structure of a path unaltered, this result singles out the unstable states as the
main source of difference between semimarkov and Chung processes; each un-
stable state i is obtained by lumping together infinitely many stable states (i, n)
of the Chung process X.
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If there are no unstable and no instantaneous states this is the result proved
by Yackel (1968), who insured this state of affairs by assuming that the transition
semigroup of (X, §) is “strong.” The general result will appear in Cinlar (1975).

Note added in proof. In the paragraph containing (3.3) there is an implicit
assumption that (X, S) has a transition semigroup (P,). It is possible that there
is no such (P,)—we are grateful to Professor Jean Jacod for pointing this out.
However, by the strong Markov property at Q, = Q,,, there is a probability P;,
such that for bounded W

E[W o 0,15, = EJW] on {Q, < co}.

If Q, = +oo a.s. then set P,, = 0 identically. Using this P, in the remainder
eliminates the implicit assumption mentioned.
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