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THE EQUIVALENCE OF ABSORBING AND REFLECTING
BARRIER PROBLEMS FOR STOCHASTICALLY
MONOTONE MARKOV PROCESSES!

By D. SIEGMUND
Columbia University and Stanford University

The equivalence between absorbing and reﬂectiné barrier problems for
random walks is shown to hold for stochastically monotone Markov pro-
cesses. For Markov chains in continuous time this relation is expressed
directly in terms of the Q-matrices of the chains. Some examples are given.

1. Introduction. Let p(¢, x,dy), 0 <t < oo ort=0,1,2, ... be a Markov
transition probability on the state space [0, co] and denote by (P?, X(f), 0=t< c0)
(or t=0,1,2,...) the Markov process associated with p, i.e., satisfying
P*{X(t) € A} = §, p(t, x, dy) for Borel sets 4 C [0, 00],0 < x < o0, 0 < ¢ < 0.
For most applications P*{X(f) < oo} = 1 (0 < x < oo), and then the process is
said to be honest.

In what follows it will be notationally convenient to denote the paths of
Markov processes generically by X(r), 0 <t < oo (ort=0,1,2,...) and to
distinguish different processes by attaching subscripts to the probability measures
governing their evolution. For purposes of terminology it will be convenient to
refer to the process P* (or P;” or P,”).

The central problem of this paper is to find conditions under which, given a
process P%, one can find a process P,” such that for all 0 < x, y, t < oo

(1) PAX() 2 y) = PHX() < 1)

Putting y = 0 in (1) shows that P,® (if it exists) necessarily has an absorbing
barrier at 0. (The methods of this paper show that one may easily formulate
and prove analogous results for the converse problem: given P,” with an absorb-
ing barrier at 0 find P, so that (1) holds. For the sake of brevity details con-
cerning this converse problem are omitted.)

The relation (1) when P,* is Brownian motion on [0, co) with reflection at 0
and P,” Brownian motion with absorption at 0 has been systematically exploited
by P. Lévy (1948, pages 210 ff.). The same relation for random walks was
noticed by D. Lindley (1952) in his work on queueing theory and has subse-
quently been applied in this context by others. To be more precise let x,, x,, - - -
be independent and identically distributed, and let P,* denote the probability
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governing the random walk with initial value x, increments x,, and reflection
at 0; so under P* the random variables X(f) may be defined recursively by
X(0) = x, X(f) = max (0, X(t+ — 1) +x,), t=1,2,.... Let P denote the
probability governing the random walk with initial value x, increments —x,,
and absorption at 0, i.e., in terms of 5, = 3 ,_, x,, (s, = 0), under P,* the random
variables X(f) may be defined by

X(t)=x—s, if x—s,>0 forall n<1t

=0 otherwise.
Then (1) follows easily from the fact that (x,, - - -, x,) have the same joint dis-
tribution as (x,, - - -, x)).

A classical application of (1) for random walks is as follows. Let 7, =
inf {¢t: X(#) = 0}, where by convention inf ¢) = 4 oco. Then under mild condi-
tions which are satisfied by the random walk example of the preceding paragraph,
forall x =0
(2) limt—»oo P1E{X(t) = )’} = Pz”{z'o < 00} s
and, under additional conditions on the distribution of the increments x, of the
random walk, a result of Cramér on the probability of ruin for a risk process
provides an estimate for the right-hand side of (2) for large values of y (cf. Feller,
1966, page 393). More recently the author (1976) has described Monte Carlo
techniques which permit one to estimate the right-hand side of (1) or (2) by
simulation with considerably more accuracy than direct simulation of the left-
hand side. These applications motivate the present study.

Before proceeding with the general problem of determining P,” from P* so
that (1) holds, it is of interest to consider another example suggested by Lindley
(1959). Now let P,* denote the random walk with initial value x, increments
x,, and reflection at 0 and » > 0. Hence under P, X(0) = x and X(¢) =
min (b, max (0, X(¢+ — 1) + x,)), t = 1,2, .... Under P, let X(¢) be a random
walk with initial value x, increments —x,, and absorption at 0 and b+. More
precisely let 7'=inf{t: x — s, ¢ (0, 4]}, and under P,” let X(0) = x, X(7) =
max (0, x — Spi0rpy)s £ = 1,2, ---. Then (1) holds forall0 < x,y < b, t =0,
1,2, .... This result, which is slightly more subtle than for a single barrier,
follows easily from Theorem 1 in Section 2.

2. Stochastically monotone Markov processes. Theorem 1 below gives simple
necessary and sufficient conditions on P,°{X(f) = y} in order that there exist a
process P,” satisfying (1). In many applications P,* is given in terms of its in-
finitesimal characteristics. Theorems 2 and 3 are restricted to the case of a
denumerable state space and are concerned with the problem of determining P,
directly from the infinitesimal characteristics of P,”.

A Markov process P* is called stochastically monotone by Daley (1968) if for
some £ > 0 (h = 1 for discrete time)

3) Pe{X(1) = y}
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is nondecreasing in x for each 0 < y < o0, 0 < ¢ < k. It will be convenient to
refer to the process P* as right continuous if the probability (3) is right con-
tinuous in x for all 0 < y < oo and 0 < 7 < . (Note that this concept of right
continuity has nothing to do with the sample path behavior of the process.)

THEOREM 1. Given a process P,* which is honest or for which oo is an absorbing
state, in order that there exist a process P,® satisfying (1) it is necessary and suficient
that P\* be stochastically monotone and right continuous. Under the sufficient condi-
tions the process PY may be assumed to satisfy (1) for all 0 < y < co.

Proor. The necessity of the conditions is obvious, since the right-hand side
of (1) is nondecreasing and right continuous in x for all y, r. For this part of
the theorem the additional hypotheses on P,* are unnecessary.

To prove the sufficiency, for each fixed 0 <7< %, 0 < y < co define a set
function p,(t, y, A) by

(5) Pty [0, x]) = P*{X(1) = y}, 0<x< oo,
and
(6) Pt y, {oo}) = 1 — lim,_, py(2, y, [0, x]) .

By assumption for each 0 <t < £, 0 < y < oo, p, is a nondecreasing right con-
tinuous function of x and hence extends to a measure on the Borel subsets of
[0, o0). By (6) it is actually a probability measure on the Borel subsets of [0, co].
As the limit of the decreasing sequence P,*{X(r) = n} as n | co, P*{X(t) = oo} is
nondecreasing and right continuous in x, so (5) and (6) also define py(t, oo, )
as a probability measure.

To show that this family of probabilities are actually Markov transition prob-
abilities on [0, 4] and hence define a Markov process, it suffices to prove that
they satisfy the Chapman-Kolmogorov equations on [0, 4], i.e., for 0 < y < oo,
015, ¢4 s <h, and Borel sets 4 C [0, oo]

(7 Pt + 8,9, A) = §10,001 Pa(ts ys d2)py(s, 2, A) .

Since the left and right-hand sides of (7) are measures, it suffices to give the proof
for sets of the form 4 = [0, x] for 0 < x < oo and 4 = {co}. The following
calculation is justified by (5), the Chapman-Kolmogorov equations for P,?, the as-
sumption that P,* is honest or has an absorbing state at co, and Fubini’s theorem.

Pt + 5, y, [0, x])
= P{X(t + ) = y}
= §o,0) Pr{X(?) € dz}PF{X(5) = y} + P{X(f) = oo}P>{X(s) = y}
(®) = S10,000 Pr7{X(2) € d2} §10,1 Po(S, y5 d) + PA{X(1) = oo}
= §1o,0) Pa(8: ¥» du)Py*{u < X(1) < oo} + P{X(f) = oo}
= $10,1 o8> y» du)P{X(1) = u}
= 10,1 25(5: > d2)py(t, 2, [0, x]) .
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Also by (6), (8) and the monotone convergence theorem

Pt + 5,y {o0)) = 1 — lim,_, 0,001 Po(S5 ¥ d2)pa(t, 2, [0, x])
= Y1 o8, 3, d2)(1 — lim, .. (2, 2, [0, x]))
= St0.01 Po(S; > d2)po(ts 2, {o0}) .
Hence p, satisfies the Chapman-Kolmogorov equations and defines a process P,*
satisfying (1) on [0, £].

To extend this process to [0, co) observe that except for the first equality the
calculation given in (8) is valid for arbitrary 0 < ¢, s < 4. By the monotone
convergence theorem applied to the final expression in (8) one sees that
P*{X(t 4+ 5) = y} is nondecreasing and right continuous in x for ¢t + s < 24.
Hence (7) holds on [0, 2/] and by repetitions of the argument on [0, o).

ReEMARKs. The condition of stochastic monotonicity is the crucial one in
Theorem 1. The continuity condition will typically be satisfied, as it is for ex-
ample if §;, .., p,(¢, x, dy)f(y) is a continuous function of x on [0, co) for bounded
continuous f.

Theorems 2 and 3 are restricted to the case of a countable state space. In many
applications a standard substochastic transition matrix p(t, ], k), 0 < t < oo,

J»k=0,1, ... is given in terms of its Q-matrix (and appropriate boundary
conditions), Q = (¢(J, k)) defined by
%) q(j, k) = lim,_o t7{p(1, j, k) — 6(j, k)},

where d(j, k) = 1 or 0 according as j = k or j = k. The matrix Q defined by
(9) necessarily satisfies

(10) o > q(j, k) 2 0 j#k
and
(11) —9(J, J) Z Zwxi 90> k) »

and an arbitrary matrix having these properties is called a Q-matrix (Chung, 1967,
page 251). It is called conservative if equality holds in (11). In what follows
all entries ¢(j, j) are assumed finite.

THEOREM 2. Let Q, be a conservative Q-matrix and define

(12) 9ks )) = Doz (oY) = f = Lv)  kj=0,1,...
(9.(—1, k) = 0). Then Q, = (9(k, J)) is‘a Q-matrix if and only if

(13) 9k j) 2 0 J#k,
which is conservative if and only if

(14) lim;_, q,(j, k) =0 k=0,1,2,....

THEOREM 3. Let Q, be a conservative Q-matrix and P,? the minimal Q, process.
Assume that (13) and (14) hold, so that (by Theorem 2) Q, defined by (12) is also a
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conservative Q-matrix. Then there exists a process P,t with Q-matrix Q,, which
satisfies

(15) PIX(1) Z K} = PHX(1) <j},  jik=0,1,2, -+, +o0,
If the minimal Q; process is honest for i = 1 or 2, then P,* is the minimal Q,-process.

If neither minimal process is honest, then P, is an honest process which satisfies the
forward Kolmogorov equations.

Proor or THEOREM 2. First note that since ¢,(j, j) < co by assumption it
follows from (11) that g¢,(k, j) defined in (12) is in fact a well-defined, finite
number. The condition (13) is obviously necessary in order that Q, be a Q-
matrix. To see that it is also sufficient, by (11) it is enough to verify that

Ziz09u(k, j) = 0. By (12)
(16) i=o 9k J) = Tieo Doze (4205 ¥) — (U — 1L, ) = Tz > v)

which is nonpositive for all J > k, since Q, is a Q-matrix. By (16) Q, is con-
servative if and only if lim,_,, >},5, ¢,(/, v) = 0. But since Q, is conservative,

(17) 2z (s v) = =2, qu(J,v) — 0
as J — oo if and only if (14) holds.

Proor oF THEOREM 3. Let N be a positive integer and define the (N 4 1) X
(N + 1) matrix
90, 0), -+, ¢(0, N — 1), 23,25 4:(0, v)
Qv = (9(Js k) =
(N, 0), - - -, g(N, N — 1)’ DiveN ql(N’ v)

and the (N 4 2) X (N + 2) matrix
qz(of 0), - -+, 920, N), 23, 2n41 (0, v)

Q21v= 2Nk’. = :
oo D)= 0N 0), <) g, V), D N 9)

o ... 0 0
It is easily verified that Q,, is defined in terms of Q,, by the relation (12) (with
g.x(N 4+ 1, k) = 0), that both Q,, and Q,, are conservative Q-matrices, and for
the Markov chain determined by Q,, the state N + 1 is absorbing. Let p,,(¢, j, k)
denote the standard transition probability determined by the finite Q-matrix Q,,
and define

Pax(ts ks ) = 20k (pun(tsjs v) — puy(t, j — 1, v)) 0<j,k=N,
(18)  pult, N+ 1) =o(N+ 1,)) 0</=N+1,
Pt ky, N4+ 1) =1 — 30 pu(t, k, J) O0<k<N4+1.

It is shown below that p,, defined by (18) satisfies the forward Kolmogorov
equations

d ,
(19) 5;P2N(t’ k, J) = 2075 pan(ts ks v)qan(vs )
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for 0 < j,k < N+ 1and ¢t > 0, together with the initial conditions
(20) Pan(0, k, j) = d(k, j) -
To prove (19) for 0 < j, k < N, observe that from (18), the relation (12) between
the matrices Q,, and Q,, and the fact that p,, satisfies the backward Kolmogorov
equations, follows
0 . ] . 0 .
5;[’21\7([’ k,j) = Xl ('a—tpuv(t’ Jrv) — b—tpuv(t’ =1 ”))
= 2 o (9> 1) — quw(J — 1, D))pun(ts i, v)
= 2o (quv(Js ) — que(G — 1, 0)) 200 pan(ts k5 v)
= 2o pan(ts ks v) 2, (G ) — que(j — 1, 0))
= 2025 pan(t, ks v)qan(vs ) -
The case j = N + 1, k < N follows from the preceding case by subtraction, and
the case k = N + listrivial. The initial condition (20) follows easily from (18)
and the same condition for p,,. Hence by known results (Doob, 1954, page 240)
pan(t, k, j) is the Markov transition probability determined by Q,y, and by (18)
for0<j<NO0OZk<N+1
21) 2= Pan(ts ks v) = Zli pin(ts J5 v) -
Let P#, denote the process with initial state j and Q-matrix Q,y (i =1,2; N =
1,2, ...). Then (21) is equivalent to
(22) Pi{X(1) = k} = PE,{X(1) £ j} 0Zj=<NO0OZkZN+1.
The rest of the argument involves some sample path analysis, and it may be as-
sumed (with no loss of generality) that the processes P}, (i = 1, 2), P,?, and P,’
when the latter represents the minimal Q, process are strong Markov and have
right continuous sample paths. Let 7, = inf{t: X(¢f) = N}, 7, = limy_, ty.
The sample paths of the processes Pi, and P,7 agree for all # < 7, and hence
(23)  Pi{X(t) 2 k} = Pyife, > 1, X(1) = k} + Piyfey < 1, X(0) = k} .
Also
(24) Pifry £ t, X(t) 2 k} < Pifry, < 1}
Assume that the minimal Q, process is honest, i.e., that
(25) Pir <t} =0.
It follows from (23), (24) and (25) that
(26)  lim,_. Piy{X(1) = k) = Pi{e. > 1, X(1) 2 k} = PH{X(1) 2 K}
Let P,* denote the minimal Q, process. Since N + 1 is absorbing for the Pk,
process, for N + 1 > j

Po{X(n = j} = sz{TNH >t X() =}
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and letting N — co yields

@7)  limy. Ph{X() < J} = PHeo > 1, X(1) < j} = PHX() < J) -

Hence from (22), (26) and (27) follows

(28) PIX() 2 K} = PHX() < j}  jk=0,1,2, ...

That (28) continues to hold when j = co or k = oo follows at once from (25)
and the fact that P,/ and P,* are minimal (hence co is absorbing).

This proves the theorem in the case that the minimal Q, process is honest.
For the dishonest case define truncated matrices Q,, and Q,, as above but with
the difference that N is absorbing under Pj, and reflecting under P%,. Itis easy
to show as above that (22) continues to hold and hence P, {X(#) = k} is non-
decreasing in j < N. The argument leading to (27) applied now to P, and P’
yields

limy ... PIy{X(t) Z K} = Pifz. > 1, X(t) 2 K} + P < 1} = PAX() 2 K)

and hence P,7{X(¢f) = k} is nondecreasing in j. It follows from Theorem 1 that
there exists a process P,* satisfying (15). (This process is not, in general, the
minimal Q, process.) Since p,(t, j, k) = P,’{X(f) = k} satisfies both the forward
and backward Kolmogorov equations (cf. Chung, 1967, page 253), it is easy to
modify the proof of (19) to show that

pit o J) = PHXW) = j} = Tom (5t o) — pults J — 1,5))
= 2 (pln ] — Ly) = pu(t /o)

satisfies both the backward and forward Kolmogorov equations with Q-matrix
Q,. If the minimal Q, process is honest, there exists only one such process, which
thus must be P,*. It remains to show that if the minimal Q, process and minimal
Q, process are both dishonest, then P,* is honest (and hence not minimal).

By (15) P*{X(?) < j} = P#{X(¢) = k} = P{X(f) = oo} and hence for all k =
19 2, R + o
(29) PHX(f) < oo} = lim,_, Pi{r,, < t}.
Thus to show that P,* is honest it suffices to prove that for all t > 0
(30) Pir,>1}—0 j— oo,

The proof of (30) is complicated slightly by the possibility that under P,’ there
exists a finite number of states from which explosion cannot occur. For pur-
poses of proving (30) these states may be lumped together into a single absorbing
state, which by relabeling the state space if necessary may be taken to be the
state 0. The proof of (30) in the (more usual) case that co is accessible from 0
under P,7 is similar but easier and hence omitted. Assume then that 0 is absorb-
ing under P/ and let * = inf {#: X(#) = 0}. Then

Pifre > 1} < Pi{ea, A o* > 1} + Pi{r, > ¥}
S EJ (T A T*) + P, > ¥},
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and since by stochastic monotonicity the probability in (30) is nonincreasing in
J» it suffices to prove

(31) lim;_, Pir, > t*} =0
and
(32) liminf;_, E¥(z, A t*) = 0.

By stochastic monotonicity P,{r,, > t*} = 1 — lim,_,, P;’{X(f) = oo} is nonin-
creasing in j and hence converges to a limit p > 0 as j — co. Thus for each
N>j>0
Pi{r, > ¥} = Pi{ry > t*} + Yivoy P{ry < %, X(ty) = k}PHr, > %)
= Pi{ry > t*} + pPiry < t*}.
Letting N — co yields 0 = pP,é{z,, < r*}, and since by assumption P #{r, < t*} >
0, it follows that p = 0 and (31) holds. Similarly by the lemma given below
Ej(t, A %) < oo for all j and
Ei(t, A t*) = Ef(ty A t*) 4+ Yoy Pty < o, X(ty) = k}E (z,, A T%)
= Eji(ty A t*) + inf,y EF(T, A o¥)Piry, < %},
so letting N — oo yields (32).
LeMMA. If for some t, < oo, Pz, < t,} =1 > 0, then E\i(z,, A t*) < oo for
all j.
Proor. It obviously suffices to prove
(33) SUPigjce Pri{Te A T% >t} < (1 — ) n=12,....

By stochastic monotonicity P,{z,, > t} < PY{r,, > t} and hence (33) is true for
n = 1 by hypothesis. Since
Pi{r, A t* > nt} < 3 pi(te, Jo k)PHr, A% > (n — D),
(33) follows for n = 2, 3, ... by induction.
3. Examples and remarks. (a) For discrete time honest Markov processes
Theorem 1 implies that to prove (1) for all # =1, 2, ... it suffices that it be
satisfied for # = 1. Thus for the two barrier random walk example at the end

of Section 1, if F denotes the left continuous distribution function of the x, and
G(x) = 1 — F(—x) is the right continuous distribution function of —x,, then

PriX()zypp=1—-Fy—-—x, O0=x, y<b

=0 . y>b
and

P;‘{X(l)gx}:\G(x—y), 0x, y<b
=0 y> b,
so by Theorem 1 equation (1) holds forall s =1, 2, . ...
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(b) For the Markov chain imbedded in the G/M/s queue at the instants imme-
diately preceding new arrivals, the transition probability matrix is of the form
(cf. Kendall, 1953)

o 0 — — — —
A |— — — — — —
P1= ﬁ) o — = = = .
H h 0 — — —
Boxs | o i fo 0 — —

where f, > 0, 3] f, = 1. By direct computation

10 — — — 0/]0 0 — — — —
A_1yxs C’(s—l)Xoo

P _ fi h f — — —

B o f A — — —

X8 0 0 fo . . .

Let 7, = inf {n: X, < i}. It is easy to see from the queueing context that under
P, all states communicate except 0 and hence passage to the limit t — oo in (1)
yields (2) for x,y =0, 1,2, - ... Moreover, from the form of P, one may show
by standard arguments that

PHry,< oo} =1 forall k if XNkf, <1
AP & oo}, ks — 1

where 0 < 4 < 1 is the unique solution of }; A*f, = 2. This limiting distribu-
tion for P, was calculated by Kendall (1953). The present derivation has the
advantage that it “‘explains” the geometric tail of the distribution.

(c) For the Markov chain imbedded in the M/G/1 queue at the instants imme-
diately following departures, the transition probability matrix is of the form

gO gl g2
9 9 9
) P=10 g g
0 0 g
from which by simple algebra
1 0 o
P, = 29 0 g
0 g

2.2 Ok

It is interesting to compare these matrices with those of the preceding example
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for the special case s = 1. Again properties of the P, chain can be deduced from
those of the P, chain, and vice versa.

(d) Let
— Ao» Aos 0, 0, — — —
Q, = Hv — (4 + m), Ass 0, — — —
0, Has —(A+ )y Ay — — —

where 2;, p; > 0 for all j, so that P,/ is a birth and death process. Then Q,
defined by (12) is

0, 0, 0, 0, — — —
0, = Aos  — (4 + t)s P15 0, — — — ,
Oa Z1, _('21 + /"2)’ /12’ - - -

so that P,/ is also a birth and death process. According to Reuter (1957), the
minimal Q, (Q,) process is honest if and only if

(34) Zl( +2’;:1+ +”:m/;:)=oo
(ZT(E+;%+~-+H)=®);

and if both series converge, there exist infinitely many Q, processes which satisfy
the forward Kolmogorov equations but only one of these is honest. This is the
process P,/ of Theorem 3. It is interesting to inquire in the more general sto-
chastically monotone context whether the conditions that P,/ be honest and
satisfy the forward Kolmogorov equations determine P, uniquely. It would
also be interesting to know whether a stochastically monotone Markov Q-matrix
can give rise to processes having essentially more complicated boundary behavior
than that possible for birth and death processes and the extent to which boundary
behavior more complicated that absorption and reflection is compatible with
stochastic monotonicity of the Markov chain.

For birth and death processes it is easy to see that (2) follows from (1) and an
easy exercise to derive the limiting behavior of P,/ from the absorption properties
of P,7 and vice versa.

(e) Formal calculations suggest that if P, is a linear diffusion with generator
D, f = af” + bf’, then for P,* to satisfy (1) it should be a diffusion with gener-
ator D, f = af” + (¢’ — b)f’. The formulation and proof of an analogue to
Theorem 3 for a general (real-valued) Markov process is an open problem.
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