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WEAK CONVERGENCE TO BROWNIAN MEANDER
AND BROWNIAN EXCURSION!

By RicHARD T. DURRETT,? DONALD L. IGLEHART?
AND Doucgras R. MILLER

Stanford University and University of Missouri

We show that (i) Brownian motion conditioned to be positive is
Brownian meander; (ii) tied-down Brownian meander is Brownian excur-
sion; and (iii) Brownian bridge conditioned to be positive is Brownian
excursion. Using these results we derive the distribution of the suprema
of the meander and excursion.

1. Introduction and summary. Brownian meander and Brownian excursion
processes have recently appeared as the limit process of a number of conditional
functional central limit theorems. These results may be found in Belkin (1972),
Iglehart (1974, 1975), and Kaigh (1974, 1975, 1976).

Our purpose in this paper is to investigate relationships between Brownian
meander, Brownian excursion, Brownian motion and Brownian bridge. In par-
ticular, we present some conditioned families of Brownian processes which have
Brownian meander or Brownian excursion as their weak limit. (This is similar
in spirit to weak convergence to Brownian bridge of Brownian motion which
is conditioned to be close to 0 at time 1; see Billingsley (1968), pages 83-86.)
Employing the continuous mapping theorem, Durrett and Iglehart (1977) use
these results to determine the distributions of various functionals of Brownian
meander and Brownian excursion.

To describe our results in greater detail, we need to introduce the two proc-
esses mentioned above. Brownian meander, W+ = {W*(r): 0 < ¢t < 1}, can be
described as follows: Let {W(¢): ¢t = 0} be standard Brownian motion, 7, =
sup {re[0,1]: W(rf) = 0}, and A, = 1 — 7,. Then

W) = AW (e, + )], 0<r<1.

In Belkin (1972), page 61, it is shown that W+ is a continuous, nonhomogeneous
Markov process. If n(x) = (2zs)~% exp(—x*/2s) and N,(a, b) = (¢ n(x) dx, then
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W* has transition density given by
(1.1) P{W*(1) edy} = p*(0, 0,1, y) dy

= 217y exp(—)*[21)N,_(0, y) dy
for0<t<landy>0;for0<s<t=<landx,y>0
(1.2)  PW+(@) edy| WH(s) = x} = p*(s, x, 1, y) dy

= 9t — 5 %, Y)[Ni- 0, y)/N,-.(0, x)] dy ,

where : »
9(t, %, ) = n(y — x) — n(y + x)
' = P{W(t)edy; W(s) > 0,0 <5 < t|W(0) = x}/dy .
The second equality follows from (11.10) of Billingsley (1968).

Note that P{W*(1) < x} = 1 — exp(—x*/2), x = 0, the Rayleigh distribution.
Throughout the paper we will use P{Z e dy} = f(y)dy to mean that the distribu-
tion of Z has the density f with respect to Lebesgue measure dy.

Brownian excursion, W,* = {W,*(f): 0 < ¢ < 1}, is also a continuous nén-
homogeneous Markov process. Let 7z, =inf{r = 1: W(r) = 0} and set A, =
7, — 7,. Then : '

, Wot (1) = AW (r + 1A))[, 0sr<t.
‘The transition density is given by

. . 2y -y 2t (1 — ¢
(13)  PWr()edy) = p*(0,0,1,y)dy = e(xzpn(ﬁ(f P f)'s)* by

for0<t§ Lifor0<s<t<landx,y >0
P{W,+(1) € dy| Wy*(s) = x)
(1.4) = py*(s, x, t, y)dy

sy yexp(ey = 1)
= g(l §, X, )’) (1 — I> xexp(-—x’/Z(l - S)) dy,

see It6-McKean (1965), page 76, for this result.
Next we introduce some notation. For 0 < ¢ < 1, let

m(t) =inf {W(s): 0<s<f} and  M@) =sup{W(s):0<s< 1},

where W is standard Brownian motion. Let m = m(l) and M = M(1). For
Brownian bridge, W,, Brownian meander, W+, and Brownian excursion, W,*,
we use corresponding notation for the infimum and supremum; e.g.

M (t) =sup (WH(s): 0< s <1}, my(f) = inf {W,*(s): 0 < s < 1} .

Let C = C[0, 1] be the space of continuous functions on [0, 1], and let & be
the Borel sets of C when it is endowed with the topology generated by the
supremum metric, p. We shall need a concise definition and notation for con-
ditioned processes. Suppose Y is a random function of (C, ¥), i.e., Y is a meas-
urable mapping from some probability space (Q, &, P)into (C, €”). The random
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function induces a probability measure, Q = PY~*, on (C, &’)." Let A be a Borel
subset of C with Q(A) > 0. Then let (A, An &, Q,) be the trace of (C, &, Q) on
MANZ=[{AnA: Ae €}and Q,(4) = Q(4)/Q(A) for Aec A n &, Also
let (Y-%(A), Y~}(A) n &, Py-1,,) be the trace of (Q, &, P) on Y-}(A). Then
we define the random function

Y[A: (YHA), YHA) 0.5, Prosn)) = (A, A 0 2, 0,)

as the restriction of Y to Y-}(A). It follows that Py_i,,((Y]|A)7'(+)) = Qa(+)-
As discussed by Billingsley (1968), page 22, convergence in distribution of random
functions is equivalent to weak convergence of the induced probability measures.
We now define the following conditioned random functions of (C, &), for
e>0:
R W‘=W|{m>—s},
wer=wr[{wr(l) < ¢,
Wy = Wy|{my > —¢}.

The above processes are all Markov by virtue of the followmg lemma which we
state without proof i

(1.5) LEMMA. Let Y be a Markov random function of C[0, 1]. Let A be a Borel
subset of C with Q(A) > 0. Let m, , (my,,11) be the projection map of C[0, 1] onto
C[0, ] (C[t, 1]). If for all 0 < t <1 there exist sets A, and B, such that A =
Tin A, N ity B,, then Y| A is Markoy.

The main results of the paper are organized as follows. In Section 2 we show
that We'= W*ase | 0. In Section 3 we present an alternate proof of this result.
In Section 4 we show that W,* — W,* ase | 0. In Section 5, W= W,*as¢ | 0.
(Throughout this paper when considering tightness and convergence, “c | 0” and
“e > 0,” shall in reality correspond to a fixed sequence of numbers tending to
0; see footnote, Billingsley (1968), page 84.) In Section 6 the results of Sections

2 and 5 are used to obtain the distributions of M+ and M,*.

2. Convergence of conditioned Brownian motion to Brownian meander. This
section is devoted exclusively to proving

2.1) THEOREM. W¢= Wt ase | 0.

Let {W(f): t = 0} be standard Brownian motion defined on the probability
triple (Q, &, P) with o-fields &, = o{W(s) : s < 1} and shift operators {6, : t = 0}.
The symbol P*{4} means P{4| W(0) = x} and E* the expectation with respect to
P*. When x = 0, the superscript is omitted. To facilitate the proof of (2.1) we

break it into three lemmas. Define fore > 0,s, = inf{s > 0: W(s) =¢, W(u) > 0
fors<u=<s+1}andfor0 <t <1 Z(f) = W(s, + t). The first step is

(2.2) LEMMA. Fore >0, s, < oo a.s.; slsoandp( Z)—0as.ase 0.
Proor. Fore > 0,lett” = —1land ¢* =inf{r = ¥ + 1: W(f) = ¢}. Since
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Pv{t! < oo} = 1 for all y, an induction argument shows
P{t}* < oo} = E[PP* (11 < o0); t* < o0] = Pt < oo} = 1.

Now if W(¢) has no zero in [z, t* 4 1], then s, < . so P{s, < t.*|s. > 7} =
P{W(t) >0forall0 < ¢ <1} > 0and hence P{s, < o} = 1. For0 <d <,
s, Ssup{t < .. W(t)=20}sos, | as ¢ 0. To see that s, | 5,, note that y =
inf {r — sy — 1: > 50 W(t) = 0} > 0, 50 835, 1¢,) — S0 = &7, forall0 < & < 1.
Since W has continuous paths and Z,(t) = W(s, + 1), s, | s, implies p(Z,, Z,) — 0.
(2.3) LemMA. For ¢ > 0 the random functions Z, — ¢ and W have the same
Sinite-dimensional distributions and hence induce the same probability measures on
C, ©).

Proor. Let 0 1, < --- <1, £1; let 4;, ..., 4, be Borel sets of [0, c0),
and F ={xeC: x(t;,)e A;;i =1, -.., k}. Define the first entrance time ¢, =
inf {t > 0: W(t) = ¢} < s5.. Decompose {Z, € F} to obtain

(2.4) P{Z,eF} = P{Z,eF,s, =1} + P{Z,eF,s, > t}.
Since ¢, is a stopping time and W a strong Markov process
P{Z.eF,s, =t} =EP{Z eF,s =1t|F,}}
= E{P¥*{WeF,m > 0}}
=P{WeF,m>0}=PWeF —¢,m> —¢},
where F — ¢ = {f — ¢: fe F}. If 5, > t,, then W(s) = O for some se (¢,, t, + 1].
Letr, = inf{s: se (1, t, + 1], W(s) = 0}, where r, = + oo if the last set is empty.
Clearly, s, > 7, on {s, > t,}. Proceeding now with the second term of (2.4) we
have

2.5) P{Z,eF,s, >t} =P{Z,eF, 1, < o}

= E{E{l z,ep) | F .} 7. < o0}
On the set {r, < o}, (5,5 = ¢ - 0, for some &, measurable ¢. Thus from
(2.5) and the strong Markov property we get

P{Z,cF,s >t} = E[E¥"9[$}; r, < o}
(2.6) = E$} Pz, < o)
= P{Z, e F}[1 — P{m > —¢}].

Combining (2.4), (2.5) and (2.6) yields
P(Z,e Fy= P(WeF —e,m> —¢} + P{Z, e F)[1 — Pim > —e¢]]

or
P{Z,eF}=PWeF —¢|m> —¢}.

2.7 LEMMA. The finite-dimensional distributions of W* converge to those of
W+ase|O.
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Proor. We shall compute the transition probabilities of W:. From the re-
flection principle P{m > —e} = 2N,(0, ¢) ~ &(2/r)? as ¢ | 0. Using the Markov
property for W we obtain, for 0 < r < 1,

P{W(f) edy, m > —e} = P{W(t) edy, m(t) > —e}PVim(l — 1) > —e¢}
(2.8) =g(t,e,y +¢) - 2N,_,(0, y + ¢) dy

~ (2m1)7H2e(y[1)e"] - 2N,_ (0, y) dy
ase¢ | 0. Hence

W) edy} = (0,0, 1, )) dy = g(t, &, y + o) 2=y + 9
N0, ¢)
(2.9) — t~iye~v"*2N,_,(0, y) dy
= P{W™*(t) edy},

ase | 0. For0<s<t<1andx >0, by the Markov property of W

POW(1) € dy| W(s) = x)

= [P{W(s) e dx, m(s) > —e}P*{W(t — s) edy, m(t — 5) > —¢}

(2.10) X P¥{m(1 — t) > —&}]/[P{W(s) edx, m > —¢}]

— 906 x4+ e)g(t — 5, x + &,y + €)2N,_(0, y 4 ¢) dx dy
9(s, & x + €)2N,_,(0, x + ¢) dx

N,_,(0, y)
— gt — s, X, =)/ g
g( > y) Nl—s(o’ x) y

= P{W*(t)edy| W*(s) = x},

as ¢ | 0. (These transition probabilities are derived in [13] from distribution
functions rather than using differentials, dx’s and dy’s.)

Convergence of the transition densities imply convergence of the finite-dimen-
sional densities, which in turn implies convergence of f.d.d.’s, completing the
proof of (2.7).

Lemmas 2.2 and 2.3 imply that W*= Z;as ¢ | 0. The finite-dimensional sets
are a détermining class (Billingsley (1968), page 15); therefore, convergence of
the finite-dimensional distributions of W*to W+ implies W* — W+ as ¢ | 0; see
also Billingsley (1968), page 35.

3. An alternative proof of Theorem 2.1. Verification of weak convergence of
probability measures on function spaces usually involves two steps: namely, (i)
convergence of finite-dimensional distributions and (ii) tightness. In this section
another proof of (sequential) tightness of {W*, ¢ > 0} is presented; when combined
with convergence of f.d.d.’s (Lemma 2.7) this will provide an alternate proof
of Theorem 2.1. The proof is based on a characterization of tightness of random
elements of C[0, 1], namely

(3.1) THEOREM. Let {X,,n=1,2, ...} be a sequence of random elements of
C[0, 1]. Define random elements Y, , of C[s, 1]as Y, , = m(, ;0 X,. If (i) for any
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s>0,{Y,,,n=1,2, ...} induces a tight family of measures on C[s, 1], and (ii)
lim, , lim, P{supos“s, |X.(®)] > &} = 0 for all § > O, the family of measures in-
duced on C[0, 1] by {X,, n = 1,2, ...} is tight.

Proor. The modulus of continuity of an element x of C is w,(d, a, b) =
SUP,<,.150:0—t1<s | X(8) — x(f)|. By Theorem 8.2 of Billingsley (1968) it will suffice
to show that for each positive ¢, lim, ,lim,_,, P, {x: w (3,0, 1) = ¢} = 0. Clearly
{w.(0,0,1) = ¢} C {w,(9,0,5) = ¢/2} U {w,(d, s, 1) = ¢/2}. Thus it suffices to
show that, given » > 0, there exist 5, > 0 and 6 > 0 such that

(3.2) lim, . P,{x: w,(5, 0, 5) = ¢/2} < 7/2
and
(3.3) lim, ., P.{x: w,(3, sp 1) = ¢/2} < /2.

Clearly w,(s, 0, 5)' < supy<.<, |*(#)|; consequently by assumption
lim, , lim, . P,(x: w,(s, 0, 5) = ¢/2} = 0.

Let 5, be a value such that lim, __, P,{x: w(s, 0, 5) = ¢/2} < /2 for s < 5,. Now
pick 0 < s, such that (3.3) is satisfied. This is possible, again using Billingsley
(1968), Theorem 8.2, because by assumption {Y,,,n=1,2, ...} is tight for
5, > 0. This completes the proof.

In Sections 4 and 5 we shall have occasion to use the following variations of
Theorem 3.1:

3.4) THEOREM. The random elements {X,,n = 1,2, - ..} of C[0, 1] when re-
stricted to C[0, 1 — s] form a tight family and lim, ,lim,__ P{sup,_,.,<, |X,(¥)| >
§}=0, for § >0. Then{X,,n=1,2,...}is tight.

(3.5) THEOREM. The random elements {X,,n = 1,2, ...} of C[0, 1] when re-
stricted to C[s, 1 —s] form a tight family and lim, lim, ., P{SUPyg, <, 1-ssus1 | Xa(¥)|>
§}=0, for § >0. Then{X,,n=1,2, ...} is tight.

We now proceed with the proof of tightness of {#*, ¢ > 0} using Theorem 3.1.
It will suffice to prove two lemmas:

(3.6) LEMMA. {W(t),d <t < 1}, ¢ > 0, induces a tight family of measures on
C[d, 1] for all 6 > 0.

ProOF. Let W* = m(, ,; 0 Weand W+ = n(, ;; o W*. Giveny > 0, there exists
a compact subset, K, of C[d, 1] such that P{(W*e K} > 1 — 5/2. Note from
equations (1.2)and (2.10) that for 0 < d < s < t < 1, pi(s, x, 1, ¥) = p*(s, x + ¢,
t,y +¢). Thus, P(W:cK — ¢| W(0) = x — ¢} = P[W* e K| W*(@) = x} for
almost all x. Define K* = (Jy<.<; (K — ¢))7; K* is compact by the Ascoli-Arzela
theorem ([2], page 221). For e < 1

P(WeeK*} = P(W e K — ¢}
= (= P[W:ec K — ¢| W(6) = x}p*(0, 0, §, x) dx
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= (¢ P(W* e K| W*(d) = x}p'(0, 0,6, x — ¢)dx
— {¢ P{W* e K| W+(d) = x}p*(0, 0, §, x) dx
=P{(WreK}>1—9/2,
where the convergence is justified by Scheffe’s theorem ([2], page 224). Thus,
there exists ¢, such that P{W* e K*} > 1 — yfore < ¢,. As mentioned in Section
1, we are interested in sequences of r.f.’s. For any fixed sequence of ¢’s tending
to 0, the corresponding r.f.’s, W,*, will be tight.
3.7 LEMMA. For n > 0, lim, ,lim, , P{sup,g,<, |W(s)| < 7} = 1.
PRQOF. First note that it suffices to prove
lim, ,lim, , P{M(d) <9} = 1.
Using the definition of W¢, the Markov property of W. and generalization of
(11.10) of Billingsley (1968) gives
Pfsupy.,., W(s) = 1}
= P(M(d) < 7, m > —&)/P(m > —¢} »
_ §7, P{;e < m(8) < M(d) £ 9| W(d) = z}n,(2)P*{m(1 — 8) > —e¢}dz
Pim > —¢} ‘
=2, D [1:(z + 2k(n + ¢)
— ny(z + 2k(n + ¢) + 2¢)]N,_,(0, z + ¢) dz/N,(0, ¢) . '
Using dominated convergence, it is possible to take the limit as ¢ — 0. Then
Fubini’s theorem justifies changing order of summation. Then evaluation of the
term corresponding to k = 0 shows that this term converges to 1 as  — 0. The
remaining terms (k # 0) can be bounded by quantities whose sum converges (by

monotone convergence) to 0 as d — 0. For details see [13].
Combining (3.1), (3.6) and (3.7) proves the tightness of {W*, ¢ > 0}.

4. Convergence of conditioned Brownian meander to Brownian excursion. Our
goal in this section is to prove that tied-down Brownian meander is Brownian
excursion. We shall prove
4.1 THEOREM. W, t = W,*ase | 0.

We begin by showing that the finite dimensional distributions converge.

4.2) LEMMA. The finite dimensional distributions of W,* converge to those of
W,tase|O. ‘
Proor. Because W,* and W,* are Markov, it suffices to show that the prob-
ability transition densities converge. ForO<t< landy > 0.
2:*(0,0,1,y) dy
4.3) = P{W*(t) edy | W*(1) < ¢}

Ni—=y, =y + &) = Niyo(=y — & —y) .
1 — exp(—¢€¥/2)

= t7Y exp(—)y*[21) dy
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Using L’Hépital’s rule twice on the ratio above gives

. 2y — 1221 —
i p70:0, 1) = SR )

= po"’((), 0, t, y) -
ForO0<s<t<landx,y >0
pr(s, x, 1, y) dy
(4.4) = P(WH(t) e dy | WH(s) = x, WH(1) < )

Nd=), =y + ) =Ny —¢& —))

= t— s, X, d
R U A s w VA B ——

Divide numerator and denominator by 1 — exp(—¢*/2) and use the same applica-
tion of L’Hopital’s rule as in (4.3) to see that

lim, o p*(s, X, 1, ) = po*(s; X, 1, ))

which completes the proof.
Next we must show that the r.f.’s {W,*, ¢ > 0} are tight. We shall use Theo-
rem 3.5.

4.5) LEMMA. Given s > 0, define the random element W,* of C[0, 1 — 5] as
the projection of W+ onto C[0, 1 — s]; that is W,* = my,_y o0 W,*. Then {W,*,
e > 0} is tight.

Proor. Define W+ = r(y,_, ;0 W*. Define ther.f. W* on C[0, 1— s]as follows;
w*(0) = 0, P{W*(1 — s)edy} = p,*(0,0,1 — 5, y)dy, and P(W*ec A| W*(1 —
s) =y} = P(W+e A|W*(1 — 5) = y} for all y, for any Borel set 4 of C[0, 1 — s].
Given » > 0, there exists a compact subset, K, of C[0, 1 — s]such that P{W* ¢
K} > 1—9pf2.

P{We+ GK} = 880 P{We+ GKI We+(1 - S) :y}pe+(0’ 0, 1 — S,y) dy
= {7 P(W* e K| W*(1 — 5) = y}p,*(0, 0, 1 — 5,y) dy
— \¢ P[W+ e K| W*(1 — s) = y}p*(0,0, 1 — 5, y)dy
=PW*eK}=1— 92
where convergence follows from Scheffe’s theorem ([2], page 224). Given any

fixed sequence of ¢’s tending to 0, the corresponding r.f.’s W,* will be a tight
family.

(4.6) LEMMA. For y > 0, lim, ,lim, , P{sup, ,.,, |W.*(¥)| < 7} = 1.
Proor. Since W, *(¢) = 0 it suffices to consider
P{sup,_,cus1 W.H(u) < 7} = {3 P{SUp,_,gu50 W) < 7| WH(1 — 5) = x,

(4.7) wW+(1) < €}p*(0,0, 1 — s, x) dx
= (g h(x, s, €)p.7(0,0,1 — s, x)dx .
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By Lemma 4.2, lim, , p,* = p,*, thusiflim, ,k(x, s, €) = h(x, s)and |h(x, s, €)| < 1
for all (x, s, ¢) then by Scheffe’s theorem ([2], page 224)
(4.8) lim, |, § A(x, 5, €)p.*(0, 0, 1 — 5, x)dx = {J A(x, 5)p,*(0,0, 1 — s, x)dx .
In fact, using equations (11.10) and (11.11) of [2],

h(x, 5, €) = P{M(s) < 7| W(0) = x, m(s) > 0, W(s) < ¢}

_ - Ni(2kp — x, 2kp — x 4 €) — N,(2kn — x — &, 2ky — x)
B N(—x, —x 4+ ¢) — N(—x — ¢, —X)

= Lie—w 1/(2ky — X)[n/(—X) = h(x, 5)

ase¢ | 0 by dominated convergence and L’Hoépital’s rule. For details of the domi-
nation see [5].
Now consider

¢ h(x, 5)p(0, 0, 1 — x, x) dx = (7 h(x, s)u,(dx)

by (1.3) g, = d,, the measure with atom at x = 0, as s | 0. Thus by Theorem 5.5
of Billingsley (1968), it suffices to show that lim, ,_, A(x, s) = 1 to prove

(4.9) lim, , §7 A(x, $)p,*(0,0, 1 — 5, x)dx = 1.
When (4.7), (4.8) and (4.9) are combined they prove the lemma.

Thus consider
h(x, ) = Np_, "2kn — )
n, (—X)

=14 Yo, (2kn 4+ X)n,(2kn + x) — (2kn — x)n,(2ky — x) )
xn,(—x)

Let a,(s, x) be the kth term in the above summation. Then

_ (2kn)* + 4k77x:| + exp [_ (2kn)? — 4k77x}
2s 2s

CXP[_Q%W_Z:_M] — exp|:—(2k’7)22: 4k7;x:|

a,(s, x) = exp[

+ 2ky

X

For x < 7/2, the ratio in the above expression is less than 8ky| f’(c)| where f(y) =
exp(—y/2s) and ¢ = (2k»)* — 4kyx; furthermore, the second term dominates the
first so (for x < 7/2)

2kn)* — 4k 16k*,? 2kn)* — 4k
lag(s, x)| < 2 exp[—( 7) r nx:' + 2577 exp [—%_’E:l
< (2 + 8kMpPs~Y)e—ke

Since for ¢ > 0,

(4.10) T ek & <’fzf>* and o ke He < ¢ <%c>*
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it follows that (for 0 < x < /2)
Zialas x| < Sp7(2rs)t -0
as s | 0, completing the proof of Lemma 4.6.

When combined with Theorem 3.4, Lemmas 4.5 and 4.6 imply tightness of
{W.*, ¢ > 0} which together with Lemma 4.2 implies Theorem 4.1.

5. Convergence of conditioned Brownian bridge to Brownian excursion. This
section is devoted to proving

5.1 THEOREM. Wy = W * ase | 0.

The proof will follow the same pattern as the method of Sections 3 and 4.
First we consider finite dimensional distributions, then the assumptions needed
to apply Theorem 3.5.

(5.2) LEMMA. The finite dimensional distributions of Wy converge to those of
Wytase]O.

Proor. Because W and W,* are Markov it suffices to show that the transi-
tion probability densities converge. Using arguments similar to those previously
used the transition probabilities are derived.

— [1 = exp(=2e(y + ¢)/O][1 — exp(=2¢(y + o)/(1 = )],

Pf(0,0,1,y) = 1 — exp(—2¢) ya-(¥)

[1 — exp(—2e(y + e)/(1 — ))][1 — exp(—2(y + e)(x + )/(t — )]
I — exp(—2e(x + ¢)/(1 — 5))

xn(y=1=5%)

Pi(s, X, 1,y) =

for x,y > —¢ and 0 < s <t < 1; where u = (t — s)(1 — r)/(1 — 5). Use of
L’Hépital’s rule gives lim, , p = p,*, completing the proof.

(5.3) LEMMA. Given s > 0, define the random element Wy of C[s, 1 — s] as
the projection of Wy onto C[s, 1 — s]. Then {Wy, ¢ > 0} is tight.

Proor. The proof is similar to (3.6) and (4.5). Define the random element
W* of C[s, 1 — s] as follows: The joint distribution of (W*(s), W*(1 — s)) has
density p,*(0, 0, 5, X)p,*(s,. %, t, ). P{W*e A|W*(s) = x, W*(1 — 5) = y} =
P{(W* e A|W(s) = x, W*(1 — s) = y} for all x, y > 0 and for all Borel sets A
of C[s, 1 — s]. Note that, asin (3.6), P(W* e 4| W*(s) = x, W*(1 — 5) = y} =
P(Weed—e|Wi(s) =x —¢ Wi(l - ¢) =y — ¢} for almost all y and all Borel
A. As before, given 5 > 0, there exists a compact set K such that P{W* ¢ K} >
1 — /2. Define K* = (Uo<c<s (K — €)™ as before and show that lim, , P{W e
K*} = P(W* e K} = 1 — /2, following the proof of Lemma 3.6.

5.4 LeEMMA. For » > 0,
lim, , lim,  , P{sup,g,<, |Wy'(?)] < 7} = 1 and
limuo limuo P{supl—s<t<1 |We(t)] < np=1.
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Proor. It suffices to consider
P{supyg,<, Wo'() < 9} = P{M(s) < 1}
= P{My(s) < n, my > —e}/P{my > —¢}.
By (11.40) of Billingsley (1968), P{m, > —e¢} = 1 — exp(—2¢?%. By the Markov
property, (11.10), (11.40) of Billingsley (1968) and the relationship between W
and W, : ‘ " ' ‘
P{My(s) < 5, my> —e}
= I PM(s) < 7, ms) > —e| W(s) =2)
X P{m(1 — 5) > —e| W(1 — 5) = z}n,_,(2) dz
= (L [ Diw [1(z + 2k(n + ©)) — n(z + 2k(y + ) + 2¢)]
X [1 — exp(—2¢(z + /(1 — $)Waon(2) d2)/n,(2) .
Using L’Hopital’s rule twice and the dominated convergence theorem givés
lim,  , P{M,*(s) < 7}
= 5 Dfmw 257Xz + 2k7) exp(—2k9(z + kn)[s)z(1 — 5)yq_(2) dz
The term for k = 0 approaches 1 as s | 0. The remaining terms are bounded by
C = 0 Do 2(5(1 — )7z + 2kn)zn,,_,(2) dz
= (5(1 — )™ §iasy 2°150-0(2) d2 — 0 ‘
as s | 0 by dominated convergence. The second statement of the lemma follows
from the first because of symmetry of W, on [0, 1].

Theorem 5.1 follows from Lemmas 5.4, 5.3, and Theorem 3.5 plus Lemma
5.2. ‘

6. The suprema of Brownian meander and Brownian excursion. In this section
the continuity theorem (Theorem 5.1, Billingsley (1968)) is used in conjunction
with Theorems 2.1 and 4.1 to derive the distribution of M+ and M,*, respectively.
Chung (1975, 1976) derives the distribution of M,* using a different approach.
Durrett and Iglehart (1977) derive the distribution of M+ as a corollary of a more
general theorem.

(6.1)  THEOREM. P{M* < x} = 1+ 2 Y5, (— 1)* exp(—k*%*[2), for x > 0.

Proor. Itsuffices to evaluate lim, , P{M* < x}. By definition of W*and (10.17)
and (11.12) of Billingsley (1968) we have

PIM*t* < x}=Pl—e<m<< ML x}/P{—e < m})
= Dtece (—1)EN(k(x + €) — &, k(x + ¢€) + €)/N(—¢, ¢) .
By L’Hépital’s rule and dominated convergence this quantity has the desired
limit.

(6.2)  THEOREM. P{M,* < x}=1+2 3 (1 — 4k'x% exp(—2k*x%), for x> 0.
PIEY ) exp(
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and (11.38) and (11.40) of Billingsley (1968), we have
PIMy¢ < x} = Pl—e < my < My < x}[P{—e < my}
= Yie—o [€Xp(—2K*(x + €)?)
— exXp(—2(x + k(x + €)))]/(1 — exp(—2¢%)
=14 X [2exp(—2(k(x + ¢))’) — exp(—2(k(x + ¢) — ¢)*)
— exp(—2(k(x + ¢) + ¢)))]/(1 — exp(—2¢’)) .
Multiplying numerator and denominator by ¢~* and using L’Hopital’s rule twice
on each shows that the kth term in the above expression converges to 2(1 —

4k*x®) exp(—2k’x"). Therefore, the sum converges to the desired limit by domi-
nated convergence; the numerator of the kth term in the above sum equals

exp(—2k*(x + ¢)))[2 — exp(—2¢&*)[exp (4ke(x + ¢)) + exp(—4ke(x + €))]]
which is less in absolute value than
exp(—2k’x") max (|2 — exp(—2¢’)[2], |2 — exp(—2&%)[2 — (4ke(x + ¢))?]))
= exp(—2kx*)[2 — 2 exp(—2¢®) + exp(—2¢&%)(4ke(x + €))*]
=< exp(—2k*x*)(4* + (dke(x + ¢))?) .
Thus since 1 — exp(—2¢*) = 2¢6* — 2¢* it follows that the kth term of the sum
in question is less in absolute value than 2 exp (—2k*x*)(1 4 (2k(x + ¢€)))/(1 — &)
which in turn is less than 2(1 + 16k*x*) exp(—2k®x*) for ¢ < x. By (4.10) the

above serves as a dominating series in application of the dominated convergence
theorem.

PRrOOF. Asabove it suffices to evaluate lim, |, P{M* < x}. By definition of Wy,
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