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CONVERSION OF SEMIMARKOV PROCESSES
TO CHUNG PROCESSES!

By ERHAN CINLAR
Northwestern University

Structure of semimarkov processes in the sense of Cinlar (1975) will be
clarified by relating them to Chung processes. Start with a semimarkov
process. For each attractive instantaneous state whose occupation time is
zero, dilate its constancy set so that the occupation time becomes positive;
this is achieved by a random time change. Then, mark each sojourn in-
terval of an unstable holding state i by (i, k) if its length is between 1/k and
1/(k — 1); this is “‘splitting” the unstable state i to infinitely many stable
states (7, k). Finally, replace each sojourn interval (of the original stable
states i plus the new stable states (7, k)) by an interval of exponentially dis-
tributed length. The result is a Chung process modulo some standardiza-
tion and modification.

1. Introduction. Our object is to give a rectification of Lévy’s assertion in
[7] concerning the qualitative structure of semimarkov processes compared with
that of Chung processes. The assertion was that the two are the same since there
exists a continuous strictly increasing random time change which converts the
given semimarkov process into a Markov process. The details of this conversion
were carried out by Yackel [12] under certain restrictions on the transition laws
involved.

Evidently® Lévy’s original objective in introducing semimarkov processes was
to replace the exponential laws governing the sojourns of a Markov process at
stable states by arbitrary laws, and thus to achieve a class of processes which
includes both continuous time and discrete time Markov processes as special
cases. From that point of view, the assertion mentioned serves admirably well
in characterizing the sample paths in question. '

However, Lévy [7] introduced a much more fundamental definition of semi-
markov processes by requiring only that they enjoy (what is now called) the
strong Markov property at their times of discontinuity. Such processes possess
significant structural differences from Markov processes, especially by admitting
“unstable holding states” which have no parallels in the theory of Markov proc-
esses. Then, the conversion from a semimarkov to a Markov process requires,
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in addition to a random time change, splitting each unstable holding state into
infinitely many stable holding states.

Our object is to give a careful account of this conversion process. For the
definition and basic properties of what we call a semimarkov process we refer
to Cinlar [4]. The results here supplement [4] and clarify the structure of semi-
markov processes vis & vis Chung processes. The remainder of this section is a
brief description of the most relevant aspects of such processes and the results
to be obtained here.

Let X be a semimarkov process in the sense of Cinlar [4] with discrete state
space E. Let K, be the constancy set for i, that is, K, = {t: X, = i}. A point
i e E is said to be a holding state if K, is a countable union of intervals almost
surely. A holding state i is stable if and only if K; n [0, ¢] has only finitely many
component intervals for every ¢ almost surely; otherwise, i is called unstable and
between any two component intervals of K, there is a third. If i is not a holding
state, it is called instantaneous, and the interior of K, is almost surely empty.
An instantaneous state i is called repellent if K, is discrete (every point isolated),
and attractive if K, is perfect (no isolated points): one or the other holds a.s.
Finally, an attractive state is heavy or light according as the Lebesgue measure
of K, is a.s. positive or a.s. zero.

A Chung process is, according to [4], a Markov process with discrete state
space, standard transition function, and right lower semicontinuous sample paths
(see Chung [1] for these terms). Every Chung process is a semimarkov process.
If the semimarkov process X is a Chung process, then every holding state is
stable and every instantaneous state is heavy attractive. Unstable holding statés
never appear in the theory of Markov processes. But light attractive and repel-
lent states do appear in the theory of Markov processes on general state spaces,
and in the boundary theory of Chung processes, where a sticky boundary atom
(see Chung [2] for the term) behaves like a light attractive state and a nonsticky
boundary atom like a repellent state.

The following are the main results of this note. More precise versions of these
will be stated and proved in the remaining sections.

Let D be the set of all unstable states, put D=Dx {1,2,3, ...}, and let
E = (E\D) U D. Define a “projection” mapping z: £ U {¢} — E U {¢} by

(1.1) ay=j if i=(j,keD,

=1 otherwise.
(1.2) MaIN ResuLt. There exist a strictly increasing continuous process A
and a strong Markov process X with state space E such that, for every t > 0,
(1.3) X, ==n(X,) as.

Moreover, X is a semimarkov process; and, considered as such, it has no unstable
and no light attractive states. :

The time transformation (4,) does not alter the qualitative structure of X
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because A is continuous and strictly increasing: the succession of states being
visited remains the same, and for each state, the properties of being stable, at-
tractive, or repellent remain invariant. So, the only qualitative structural dif-
ference between X and X is due to the space transformation effected by z: each
classj = {(j, k): k = 1,2, - .-} D is lumped into one state je D. Each state
(j» k) € D is a stable holding state for X, and the lumped state j € D is an unstable
holding state for X.

On the quantitative side, differences between X and X are due to the time
change: the constancy sets K, of some attractive instantaneous states i of X lose
their Lebesgue measure and become light for X, and the stable states of X lose
the exponential laws which govern the sojourns in them.

If X has no repellent, light attractive, or unstable states, then the above the-
orem reduces to that proved by Yackel [12], who insured this state of affairs by
requiring that the transition semigroup of (X, S) be “strong.” In fact, if there
are no repellent and no unstable states, our first step in Section 3 leads to a
semimarkov process to which Yackel’s theorem applies. Otherwise, especially
in the interesting case where there are unstable states, our step in Section 4 leads
to a process which is (roughly) semimarkov in the second sense of Jacod [6],
which is in general not semimarkov in the strict sense employed by Yackel [12].

Returning to the process X, suppose its state space E is given the discrete to-
pology and let ¢ be the point at infinity if £ is infinite (which is necessarily the
case if X has any attractive or unstable states). The process X is very close to
a Chung process: the sample paths of X behave exactly as those of a Chung
process except at instants ¢ where they are in a repellent state. Thus it is easy
to modify X to obtain a Chung process.

(1.4) REesuLt. If X has no repellent states, then Xisa Chung process with
an appropriate state space E° C E. If X has repellent states, then putting

(1.5) X, (0) = X, (o) if X,() isnot repellent,
=¢ if X,(w) is repellent,
for every ¢ > 0 and o, yields a Chung process X".

This proposition, while useful in simplifying the arithmetic involved in ancient
quests concerning the transition functions and generators, is nevertheless a step
in the wrong direction from the point of view of one watching the sample paths.
For, each repellent state is indeed a honsticky atom of the entrance boundary
of the process X’, and by expunging such a state i the strong Markov property is
lost over the time-set K,. The following achieves the computational desirability
of a Chung process without sacrificing the repellent states.

(1.6) ResuLt. There is a Chung process X and a strictly increasing left con-
tinuous process B such that

(1.7) X, =n(%;) as.
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If i is attractive for X then it is instantaneous for X; if i is repellent or stable
for X then it is stable for X; if i is unstable for X then there are infinitely many
stable states j of X such that =(j) = i.

2. Initial process. In this section we describe the process which we take to
be given. Our notations and terminology will follow [4] very closely. For gen-
eral terminology we follow Dellacherie [5]. The following are a few special
conventions.

Let (Q, .#, P) be a complete probability space. By a history 5 on (Q, #')
we mean an increasing family 52° = (5£)),cg, (Where R, = (0, o)) of sub-o-
algebras 57, of _#"on Q. A history 57 is said to be complete if 22, = \, 22,
is complete and each 57 contains all the negligible sets of 5#,. A history 5~
is said to be right continuous if 52, = (>, %, for every t. If X = (X)) is a
stochastic process defined on (Q, _#'), by the history generated by X we mean
the history 52 where 2%, = ¢(X,, s < ) and 5#, = o(X,, s = 0). By the right
continuous complete history generated by the history 5% we mean the history
& where &, is the completion of 57, and, for each ¢, &, is the s-algebra gen-
erated by 57, = (,»>: 5%, and all the neglibible sets of <.

If 27 is a history and T is a stopping time of 57 we write T e st57, that is,
st is the set of all stopping times of 57. If & is a g-algebra, we write p. &~
(resp. b.5") for the set of all positive (resp. bounded) .5 -measurable functions.

We take the following as given. A complete probability space (Q, #; P); a
family 6 = (0,),c , of “shift” operators,: 2 —Q; a random variable S,: R —>R,;
and a stochastic process X = (X),eg X: Ry x @ — E where E is a countable
set with the discrete topology, and E = E if E is finite and £ = E U {¢} is the
one point compactification of E if E is not finite.

For each w € Q, let M(w) be the set of all e R, such that the path X(w) is
either not continuous at ¢, or else is continuous at 7 and is equal to ¢. The set
M(w) is called the discontinuity set of X(w). It is closed in R,; therefore, its
complement is a countable union of open intervals, which intervals are said to
be contiguous to M(w). For each w € Q and 1 e R, we let S,(w) be the time since
the last discontinuity of X(w) before ¢; more precisely,

(2.1 Sy(w) = Sy(w) + ¢ if 0,¢]]nN Mw)= @,
=t —sup (0, ] N M(w) otherwise.

Let F,° = 0(S,) and & ,° = o(S,, X,, u < 1) for t > 0; and define & =
(-7 )ier, to be the right continuous complete history generated by & °.

Finally, we take it as given that the objects (R, 4, P), & = (F)ieg,, 0 =
(0)iery> (X5 8) = (X, Sy):e g, satisfy the following

(2.2) ConpiTiONs. (a) Regularity axiom (2.2) of [4] holds, and the regulari-
zation (2.14) of [4] is already achieved.

(b) ForallreR,andueR,, Sy0 0, = S,and X, 00, = X,_,.

(c) Forevery te Ry, P{X, = ¢} = 0.
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(d) Xis progressively measurable with respect to 5.

(e) (X, S) enjoys the strong Markov property at all T e 5st.% such that X, ¢ E
a.s. on {T < oo}.

Then X is a strict semimarkov process in the sense of [4]. The net effect of
the regularity axioms mentioned in Condition (a) is the regularization of the
constancy sets
(2.3) Ki(w) = {te R,: X,(w) =i}, ickE,
so that each one is right closed for almost every w € Q, and that a state is either
instantaneous or holding or absorbing. Conditions (b), (c), (d) are self-explana-
tory. By (e¢) we mean the following: For any (j,a)e E x R, whose hitting
time by (X, S) is finite with a positive probability, there is a probability measure
P ., such that
(2.4) E[Wo0,| 5] =E;..[WI] as.on {X;=j,8 =a, T< o}
for any Te st and We b .

(2.5)  Remark. We may, and do, suppose throughout this paper that E is
minimal in the sense that every ie E is hit by X with a positive probability.
Then, if / is not unstable and if T is the first hitting time of (i, 0) by (X, S), we
have X, =i and S, = 0 almost surely on {T < oo}, and the strong Markov
property there implies the existence of a probability P, , with which (2.4) holds.
If i is unstable, there is no stopping time 7" such that X, = i and S, = 0, and
therefore there may be no such probability P, ,. However, since unstable states
are holding states, for each such state i there is some positive number 8, such
that (i, a) is hit with positive probability for every ae [0, 8,), and therefore,
there exist probabilities P, ,, for all ae (0, 5;).

3. Dilation of light states to heavy. The object of this section is to transform
X into a new semimarkov process having almost the same sample paths as X but
without any light attractive states. This will be achieved through a random time
change using a clock (C,) which is continuous and strictly increasing. Therefore
the qualitative structure of the paths X(w) will not be altered; but on the quan-
titative side, Lebesgue measure of K,(») will go from zero to something positive
for each light attractive state i.

Let i € E be a light attractive state. Then its set of constancy K, is almost
surely right closed and perfect, and is progressive relative to the history & (see
[4] for details). For any T e st% such that® [T] c K,, we have X, = i and
Sy = 0a.s. on {T < co}. The strong Markov property applied at such times
implies that (Q, &, 6,, K;, P) is a regenerative set in the sense of Cinlar [3]. The
following lemma is merely Theorem 4.35 of [3].

3.1 LEMMA. There is an increasing continuous perfectly additive process
(C)ier, adapted to F~ such that the set of right-increase of the path CY(w) is equal
to K,(w) for almost every w. Moreover, C;' < e* for all t.

3[T] is the graph of T; [T] c K; means that T(w) € Ki(w) for almost every w € {T < oo},
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(3.2) REMARK. By “perfectly additive” we mean that
(3.3) Ci, (@) = C(®) + C,(0,0)

for all r and u for every w € Q\Q, where Q, is a negligible set (independent of ¢
and ). The regenerative sets of [3] are exactly the same as those of Maisonneuve
[8] except that the latter are defined on a canonical space of sawteeth-shaped
functions. The lemma above also follows from the results of Maisonneuve [9],
but the transformation needed from our Q into his canonical space of right con-
tinuous paths introduces difficulties.

Let A be the set of all light attractive states (in E). Let (p;);c, be a family
of strictly positive numbers p; with 3] p, = 1. Define

(3.4) Clw) =t + LieapiCl(@)
3.5) t(w) = inf {s: Cw) > t},

for all e R, and w € Q. The following lemma summarizes the facts we will
need on (C,) and (7).

(3.6) LEMMA. For a.e. o, the path C(w) is strictly increasing, is continuous,
and satisfies
(3.7) Ciiul0) = Cyo) + C (0, )

foralltandu. Each <, is a stopping time of & . For a.e. o, the path t() is strictly
increasing, is continuous, and satisfies
(3-8) Tesa(@) = TU®) + 7,0y @) 5 LueR, .

ProoF. The convergence of the series on the right side of (3.4) is uniform
over intervals [0, ]. So, the almost sure continuity of C follows from that of
Ci for each i; see Lemma (3.1). Similarly, the perfect additivity (3.7) follows
from that of C¢. It is obvious that C is strictly increasing for all w.

Each C* and therefore C is adapted to %#. So, C is a continuous additive
functional of (X, S). Thus, each r, is a stopping time of .%. The remaining
properties of the paths r() follow from Lebesgue’s theorem on time changes
(see Dellacherie [5], page 91), and the properties listed for C(w).

Let Q, be the exceptional set for the first statement of the preceding lemma.
Redefine C(w) for w € Q, by putting C,(w) = ¢ identically. Then, the statement
concerning the paths r(w) holds for every w € Q.

For each t ¢ R,, define ‘

(3.9) X,=x, S=S8, F.=F,, 6,=9.,,

and set &, = F,, 0, = 0,. The following is the main result of this section.
(3.10)  THEOREM. The objects (Q, #, P), &, 0, (X, §) satisfy Conditions (2.2)
except possibly for (2.2¢) which now holds for (Lebesgue) almost every t. Each

ie E\A has the same classification with respect to X as it does with respect to X.
Each i e A is heavy attractive for X.
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Proor. Condition (2.2a) for X follows from that for X, since r(w) is strictly
increasing and continuous for all . Condition (2.2b) holds for X because it
holds for X and because r has the additivity property (3.8). Condition (2.2d)
follows from Lemma (3.6) and Theorem T57 in Meyer [10], page 73. By the
same Theorem T57, for any T e st.% such that X, e Ea.s. on {T < c0}. U =
tpest¥ and X, = X, e E as. on {U < oo} ={T < o}. Since &, = .& .,
this implies the strong Markov property (2.2¢) for (X, §) via that for (X, S).

There remains to show the replacement for Condition (2.2¢), and the remain-
ing assertions on the classification of states. First note that the constancy set
K(w) of i e E for X(w) is equal to the set of all C,(w) such that ¢ ¢ K;(w). There-
fore, by theorems on the Lebesgue measure of the range of an increasing func-
tion, for every w (we write K,(0) = {t: X (0) = i}),

(3.11) leb Ky(0) = (g, 4Cy(®)
= leb Ky(®) + Xjeap; §x,0 dCH (@) ,
where “leb” denotes “Lebesgue measure.”

For i = ¢, for almost every », Condition (2.2 ¢) on X implies that leb K ,(») = 0,
and by Lemma (3.1) the measure dC,#(w) does not charge K ,(w). Hence, K (w) =0
for a.e. w, and by Fubini’s theorem, P{X, = ¢} = O for (leb) a.e. ¢.

Similarly, if ie E\4, leb (K(w) N B) = leb (K,(w) N B) by (3.11) for every
B = [0, b] for a.e.  since dC/(w) does not charge K,(w) for any je A, This
and the fact that 7(w) is strictly increasing and continuous imply that each i e
E\A has the same classification for X as it does for X. Finally, if ie A4, the
preceding reasoning shows that i is still attractive, but by (3.11)

leb (Ky(w) N [0, Cy(w)]) = p;Ci(w) ,
which shows that i is heavy for X.

4. Splitting the unstable states. T hroughout this section we are working
with (Q, #; P), 7, 0, X, §, M obtained in the preceding section, but we will
omit the bars over &7, §, X, etc. altogether. Although X satisfies only a weaker
version of Condition (2.2¢), all the results of [4] still hold. Also, this section
will not use the fact that X has no light attractive states, and hence all the results
below hold for all semimarkov processes X.

Roughly speaking, these results show that the unstable states can be dispensed
with, but at the cost of replacing each by infinitely many stable states and losing
some strength in the strong Markov property. The situation is similar to that
of Jacod [6], who showed that semimarkov processes in his first sense are also
so in his second sense, but that the converse is not true in general. Incidentally,
our processes are less restricted than Jacod’s, and his results do not carry over.
The reason for this is the weakness of Condition (2.2e) here, which requires
the strong Markov property at a stopping time T to hold only on the set {X, ¢ E,
T < oo}. This leaves the set {X,, = ¢, T < oo} free for “pathologies,” and since
{X, = ¢} may have positive probability for some fixed ¢, we do not even have
the simple Markov property.
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" Let D be the set of all unstable states, and let R = inf M, that is, R is the time
of first discontinuity for X (see Section 2 for M). For every te R, = (0, o)
define

(4.1) Rt:‘Roat, t=t+Rt;
and
42 Y, =X, on {X,eD},
1 1 1 :
() frensne(b ] e

The state space of Y is contained in the set (E\D) U D where

D= {(j, %):jeD,keN+}.
For each i ¢ D putt

., , 1 , 1 1 o .1
4.3) mi=j, 21_7, P=r—a 7 if z_<],?>.

For each i, let K, be the constancy set of i with respect to Y, that is, K, =
{t>0:Y,=i}. IfigDthenK, ={t>0: X, =i}as before. Ific D then K,
is the union of those component intervals of the constancy set K, = {r: X, = =i}
whose lengths exceed 2i but not i 4 pi. Conversely, if je D, then K; = {r:
X, = j} is the union of all the X, with zi = j, ie D. In this sense, j is “split”
into states (j, 1), (j, %), - - -, each of which looks stable since it can be visited
only finitely often during a finite interval. However, not every state i € Disin
the essential range of Y, that is, K, might be almost surely empty for some i.
The following settles this matter. The probabilities P; ,, and numbers j; are

as described in Remark (2.5).

(4.4) PROPOSITION. The essential range of Y is the set £ = (E\D) U D (plus
the extra point ¢ if ¢ is in the essential range of X') where

(4.5) D ={ieD: i< B P[R < pi] > 0}.
For every j e D, there are infinitely many i ¢ D with zi = j.
REMARK. By (2.5), P, is well defined for any i ¢ D with i < 8,,.

Proor. To prove the first statement we need to show that K; = ¢ almost
surely if ie D\D. If ie D is such that 2i = B,,, this follows at once by the de-
finition of 8. Suppose that i e D is such that 2, < 8,; but P,[R < #:;] = 0. Then,
noting that

{Ki= @} =N.{Ro 0Qn > pi}

where Q,, Q,, - - - are the times of successive visits to i = (=i, 4i) by (X, S), and

4 Memory aid: = for projection, 4 for lower limit (for a sojourn length).
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applying the strong Markov property, we get
I — P[K, = @] < 5. P[R o0, < pi] < 5, P[R < pi]P[Q, < 0] = 0.
Hence, K; = @ almost surely again.

To show the second statement, let je D be fixed. For any ae (0, ), then
P; o[R > b] = n(j, a + b)/n(j, a) for some decreasing right continuous function
n(j, ») whose right-hand limit n(j, 04 ) is infinite; see [4], Definition (3.16). It
follows that

1 1 | o1
Pam[ RS 2g = = 1= () (0 5)

is strictly positive for infinitely many 'k e N. [J

Set &, = %, and, for te R,,
(4.6) G, =.,Val,).

If i ¢ D then K, is progressive relative to &% C & if ie D then K, is a count-
able union of stochastic intervals [T,, S,) where T,, S, € st&, and therefore is
again progressive relative to &. Hence, the process Y is progressively measur-

able with respect to &. Finally, note that Y, 00, = Y,,, for all re R, and
u ¢ R, because of the similar homogeneity of X, S, R.

4.7 PROPOSITION. Let T € st(&,,) and suppose that [T] C M n K, for fixed
ieD. Then, for any Ze b¥Z,,

(4.8) E[Zo0po0,|Zr,] = E[Z00,|R < pi]

almost surely on {T < co}.

Proor. FixieD, let Zeb¥,, and note that &, = & ... Pick n* such that
1/2»* < 2i, and for each n = n* define
4.9) T, =m2" on {(m—1)2" < T < m/2"},

= 4 o0 on {T = OO} .

Then, each T, € st(¥,), the sequence (T',) decreases to T, and therefore ¥&,, =
N. <r,. Hence, by the martingale convergence theorem, the first member of
(4.8) is the limit of the same conditional expectation with &, replacing <.
On the other hand, since every component interval of K; has the form [ ) with
length exceeding 2i, the hypothesis [T] € M n K, implies that T is the left end
point of such an interval and that the following hold on the set {T < oo} =
{T, < oo} (recall that T, — T < 27" < 2i):
(4.10) Y, =Y, =1, Sp,=T,— T, D, =Dyp;
(4.11) Opobr, =05, =0p,=0z00;.
Hence, a.s. on {T < oo},
(4.12) E[ZoaRoﬁTlg“_] = lim“E[ZoﬁkoaTWI?T”] .
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Let A be asetin ¥, and recall that Y, = ion{T, < oo}. Since T, is count-
ably valued, we have
E[Zo0z00,;An(T, < o]
(4.13) =Y E[ZobpobsAN|{T, =17Y, =i}]
= Y, E[Zo0,|R< pilP[AN{T,=1Y,=i]
= E[Zo0,|R < p]P[A 0 T, < oo}],
where the crucial step, the second equality, is justified below in Lemma (4.14).
Proof follows from (4.12) and (4.13).
(4.14) LemMA. Letie D, lette R,, and take Z ¢ b<Z,,. Then, a.s.on{Y, = i},
E[Zo0,00,|F,] = E[Z o 0,|R < pi].

Proor. Let 57 be the collection of all A e &, such that
(4.15)  E[Zo0,00;AN{Y,=i}] = E[Zo0,|R < p]P[A n{Y,=i}].
By the monotone class theorem, to show that 52 = &,, it is sufficient to show
that ¢ contains all sets of form I' n {¥, = j} with ' e &, and j e D, because
the latter generate &, up to negligible sets. Since {Y, = j} n {Y, = i} is empty
unless i = j, the lemma will follow once we show that (4.15) holds for A e ...

Let Ae &, note that Ze bZ,, = b7 ,, and recall that {Y, = i} = {X, = =i,
S, + Ro0,e (A, 2 + pi]}. Then, the ordinary Markov property yields
(416) E[Zo0y00,; An {y, = i}] = E[f(n'i, S, An {Xt = mi}]
where
(4.17) f(,a) = E; [Z o 0g Re (X, Ai + pi]l — a].

Next we evaluate f(j, a) forj = riand a < 2i. Note that R is a perfect terminal
time, and hence, R = 2i — a + R o 0,,_, on{R > i — a}; and further note that
(X3i—a» S2i_s) = (i, ) = i P, ,—almostsurely on{R > 4i — a}. Hence, by the
Markov property at i — a,

flmiy a) = E,, JE{Z o 043 R < pi]; R > i — a]
= E[Z o 04| R < pi]P[R < pi]P,, [R > 4 — a]
=E[Z o0y R < pilP,, JRe (AL, Ai + pi] — a].

Putting the result obtained into (4.16) and using the Markov property for

(X, §) once more, we see that the left side of (4.16) is equal to
E[Z o 04| R < pilP[{R o 0, (A, i + pi] — S,, X, = mi} n A],
which is equal to the right-hand side of (4.15). This completes the proof.

The following is the analog of Proposition (4.7) for stable and instantaneous
states i of X. Since X, = Y, on {Y, ¢ D}, the result below is stronger than (4.7).

(4.18)  ProPOSITION. Let T ¢ st(¥,,) be such that [T] © M n K, where ic
E\D = E\D is fixed. Then, for any Z e b¥,,
(4.19) E[Z00,]|Z,,.] = E;0[Z] as.on {T < co}.
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PRrOOF. Suppose i is instantaneous. Then, by Theorem (4.10) and (4.11) of
[4], for a.e. w, every € K,(w) is the limit of a decreasing sequence (1,) C M(w).
Hence, R, = 0 and D, = T almost surely. But for any U e st(&,,), Dy € st(F,)
and &, C &, (see Maisonneuve [9], page 18 for a similar result). It follows
that T e st.% and &,, = & ;, which imply (4.19) by the strong Markov property
for (X, S).

Next suppose that i is stable, let A € &, , and define Utobe Ton A n {T < oo}
and + oo elsewhere. Then, Ue st#(¥,,) also, and [U] ¢ M n K, again; and to
show that (4.19) holds, it is enough to show that

(4.20) E[Z 00, U< 0] = E;o[Z]P[U < oo].

Since i is stable, M n K; < U, [V.] where V,, is the time of nth visit to i by
X. Each V, is a stopping time of %, and by Lemma (4.22) below

(4.21) ?,,M = f,,” .
Define
u,=U on {U=V,},
= 4o elsewhere.

Since U, V, € st(¥,,), theset {U = V,} e &, .. Therefore, by (4.21),{U = V,} e

G v and U, e st.%# . Since U = inf U, and & is right continuous, this implies

that Ue st.%". Now (4.20) follows from the strong Markov property for (X, S).
Finally, if i is absorbing, the result is obvious.

(4.22) LeMMA. Let T be the time of nth visit to a fixed stable state i by X.
Then, &p, = F ,.

Proor. Consider the g-algebra &, ,,,_; see Dellacherie [5], page 52, for the
definition. Since &, = &, V o(Y,), L ;.. _ is generated by sets of form A, n
{T+¢>1tY, = jlwithA, e &, andje D astruns through R,. But each such
set is in &, V 57, where 57, is the g-algebra generated by the sets {Y,,, = j}
as j and « run through D and [0, ¢]. Hence,

(4’23) T+ = n8>0 (T+e)- c ne>0 (ﬁT+e \ %ﬂ)

Let A ¢ &, beasubset of [T < oo}. Sinceiisstable, R, > 0a.s.on{T < oo}.
So,
(4.24) A =1lim, A n {R, > ¢}.
By (4.23), Ae F,,. V 57,; and (R, > ¢} € F,,.. S0, A n {R, > ¢} belongs
to the trace of &, vV 5%, on the set {R; > ¢}; and the latter is simply the trace
of F,,.on{R, > ¢}, since {Y,,, =j, Ry >¢}= @ foralljeDandall u < e.
Hence, A n {R, > ¢}e & ,,,; and by (4.24) and the right continuity of 5", we
have that A € & ,. We have shown that &, ¢ % ,, and the reverse inclusion
is trivial. []

We end this section by giving a slight modification of the sample paths of Y.
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Let i be an attractive instantaneous state, and let L,(w) be the set of all t € K;(w)
such that (¢, t + ¢) N K(0) = @ for some ¢ > 0. For a.e. o, the set L(w) is
countable; if ¢ € L(w), then there is (#,) | ¢ such that X, (w) — ¢; and if t € L;(w)
and there is (#,) | ¢ such that X, (®) — j for some je E, then j is unstable (see
[4], Proposition (4.11)).

We now give E the discrete topology and declare the point ¢ to be the point
at infinity in the one point compactification of E. Then, it follows that, for
a.e. w, we have Y,(0w) — ¢ as s | t for every t € L(w). We now define, for every
weQ,

(4.25) Yy(w) =¢ if 1€ Uies L),
= Y, () otherwise,

where A is the set of all attractive instantaneous states. The virtues of ¥ are
summarized below.

(4.26)  PROPOSITION. For a.e, w, the path Y(w) is right lower semicontinuous
everywhere on R,\K(w) where B is the set of all repellent states (and K () =
Uies Ki(w)). All the results above remain true when Y is replaced by ¥ throughout.

PRrOOF. Pick o such that the regularity condition (2.2a) on Y(w) holds. If
t € K,(0) where i is stable or i ¢ D, then [t, t 4 ¢) C K,() for some ¢ > 0, and
hence Y(w) and ¥(w) are right continuous at z. Next suppose that ¢ € K,(w) where
i is attractive. If ¥, (o) = ¢, we must have ¢ € L,(®) and then ¢ is the only limit
from the right side by the discussion preceding (4.25). If ¥,(») = i then ¢ must
not be in L,(w), which means that ¢ is a right accumulation point of K,(w), and
further, by the regularity (2.2a) and the discrete topology on £, ¢ cannot be a
right accumulation point of any other K,(») with j e £. Hence, if t ¢ K(), then
¥(w) is right lower semicontinuous at 7.

To prove the second statement we only need to check the ‘“strong Markov”
property at stopping times T of (&,,) such that [T'] < L, for some attractive
state /, Let T be such; then by the proof of Proposition (4.18), T is in fact a
stopping time of %", But any T e st.% such that [T] c L, is a.s. equal to + oo
by Theorem (4.11) of [4]. So, the modification (4.25) does not affect the strong
Markov property. []

5. Conversion to a strong Markoy process. In this section we will add some
exponentially distributed random variables to the sample space Q, replace the
sojourns at holding states by these exponential variables, and show that the
resulting process is strong Markov.

Let (Q, #; P), X, 0, ¥, M, etc. be as in Section 4. Throughout we will omit
the bar on ¥ and simply write Y. Let C be the set of all stable and absorbing
states of X; let D be as defined in (4.5); and set € = C U D; € will be the set
of stable states for the new process,

For eachie Candne N, = (1,2, ...} let ¥, be the time of nth visit to i
by Y; that is, V,, is the left end point of the nth component interval of K,.
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Then,
(5'1) Nz’(t) = 2lnen l[O,t) o Vin

is the number of visits to i by Y during (0, r); note that r — N,(¢) is left continuous.
Let 7 be the exponential law on (R, .Z2,) with parameter 1, that is, n(df) =
e~tdt, te R,. Define

(5.2) (Q, A", P) = [Lict Ry Fos DV
(5.3) Q, A4, Py = (Q, 4 P) x (U, _#", P);
and

(5.4) P,=P xP if ieD,

=P, X P if igD.

For every sequence n = (n,),.; of nonnegative integers n, define the shift 4’
on Q' by

(55) 0n,((wim)me N)ieé = ((wi,ni+m)me N)ief’ s
and for every @ = (0, o) e Q and re R, put
(5.6) ét@ = (0,0, 0yy,uo")

where N(t, w) is the sequence (N(t, ));. 4.
Finally, let W,, be the (i, n)-coordinate variable on Q’, and for ¢ > 0 and
& = (0, o) e put
(5.7) B°(@) = Xlict Linen M Win(@")l o,y 0 Vin(@)
where m; = i if ie D (see (4.3) for the notation) and m, is a median of the

sojourn distribution at i for X if i € C; (that sojourn distribution is L(i, E, +) in
the notation of (3.4) of [4]; also note that m; = oo if i is absorbing).

(5.8) LeEMMA. The process (B,°) is increasing and left continuous. For each
t, B,° is finite valued almost surely (P) on { > t} where { is the time of entrance
to absorbing states. For almost every & = (v, o')

(5.9) B}, (®) = B,°(@) + B,°(0,6)
for all t e M(w) and all u > 0.
Proor. That B° is increasing and left continuous is obvious. The finiteness
of B,° on {{ > ¢} follows by comparing
E[B>° | Ze X {D QN = Zim; 3y Loy 0 Via

with the total length of time Y spends in C:forieD, m; is less than any sojourn
of Y at i; and for stable i e C, m, is a median of the distribution of -the sojourn
of Y at i, and said sojourn lengths are independent and identically distributed.
To see the additivity (5.9), let @ = (v, ©’) be such that N(s, ®) < co for all
i e C and all rational finite s; (the set of all such @& is of full measure). Let
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te M(v) and u > 0. Note that
(5.10) Vin0,0) = Vi y,aren(@) — 1, neN;
(this is not true for t ¢ M(w) if X,(w) € C for instance). Hence,
Buo(éz@) = 21 Zinex M Wir(Ox e, 0®") 0,0y © Vin(0, @)
= 206 2 M Wi w00 +0(@) it 0 (Vi w0, 00 40(@))
= Zz Zn>Ni(t,w) mi Win(w,)l[t,t+u) ° ln(w) .

Moreover, by the way N, is defined, V;,(w) < ¢ for all n < N(t, w), and hence
the summation with respect to n can be taken over all N,. Then, (5.9) is
immediate. []

We now extend the definitions of X, S, W, M, K, etc. onto Q in the obvious
fashion, and denote the extended variables by the same letters as before; for
example, X,(®) is the old X,(w) if ® = (@, ’). Similarly, instead of &, x {@, Q'}
we simply write &, and let 52 be the right continuous complete (relative to
the P;) history generated on (Q, A ) by

(5.11) S =F, VoB,5ust); telR,.

The next proposition follows from the independence of the W,, from (X, S)and
from each other. We omit the proof because it is too long and without interest.

(5.12) PROPOSITION. Proposition (4.7) remains true with the new definitions of
M, K,, R, and with 57, 0, E and E replacing Z, 0, E and E, respectively. Similarly
for Proposition (4.18).

We are now ready for the transformation to a Markov process X: Define
(5.13) B, =By° +1t— (1Y, ds, teR,,
(5.14) r,=inf{lu = 0: B, > 1}, teR,.

It is clear that (B,) is an increasing process adapted to S#°°; therefore each r,
is a stopping time of (5#3) C S#. Moreover, the process (z,) is increasing and
right continuous. Define

(5.15) X =v,, teRy;

let % be the history generated by X; and introduce

(5.16) K(t, i, j) = P[X, 00, = j] if i¢D,
=P[R, 00, =j|R< pi] if ieD.

for i, je £ and t e R,. The following is the main result.

(5.17) THEOREM. The process X is progressively measurable with respect to Z.
For any stopping time T of (% ,,), any t € Ry, and any je E U {¢}

(5.18)  P[X;,, =j| F ] =P(Xpj) Pas.on (X,ek, T < oo},
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where

(5.19) P(i,j) = K(t,i,j) if ieB\C,

and if i e €,

(5.20) P, j) = I(i, j) exp(—t[m;) + §¢m," exp(—u/m,)K(t — u, i, j)du .

Proof will be through several lemmas. Throughout, M, Ki, etc. have the same
meaning relative to X as M, K, etc. did relative to X.

(5.21) LEMMA. The process X satisfies the regularity condition (2.2a). In fact,
fora.e. @, the path X(&) is right lower semicontinuous everywhere except on K (&) =
{t: X(®) € B} where B is the set of all repellent states of X.

Proor. For a.e. ® = (o, o’), the path B(®) is strictly increasing on R, \Kz(w);
Ky(w) is the union of countably many intervals of form [ ); B(®) has a jump at
the left end point of each such component interval [a, b), and remains constant
on (a, b). It follows that the qualitative properties of the path X(&) are the same
as those of Y(®), and the lemma now follows from Proposition (4.26) (recall
that we are omitting the bars).

(5.22) LEMMA. The process X is progressive with respect to 7.

ProOF. Let B be the set of repellent states again. For i ¢ £\B, the constancy
set K, is progressive with respect to F by the right lower semicontinuity proved
in the preceding lemma; cf. Chung [1], page 162. For ic B, K, is the union of
the graphs of countably many (only finitely many in a finite interval) stopping
times of % . Hence K, is well-measurable (and in particular progresswe) relative
to & for each ie B. []

(5.23)  REMARK. Progressiveness of X with respect to .5 does not follow
from Theorem 57 in Meyer [10], page 73 as before in (3.10). That theorem merely
implies that X is progressive relative to (#7.,); whereas we have F, c s
and the inclusion is strict.

(5.24) PROOF OF THEOREM (5.17). The first statement is shown as Lemma
(5.22). Let Te st(éf"w). By the progressiveness of X, X, is Z, r+ Measurable;
and hence, for any i ¢ £, putting T, to be T on {X, = i, T < oo} and + oo else-
where, we obtain another stopping time T, of %, Clearly, it is sufficient to
prove (5.18) for T.

Accordlngly, let Te st , te R, and je £ U {¢} be fixed and suppose that
[T] c K, for some fixed i ¢ E.

Suppose i is instantaneous. Then, [T] < K, implies that [,] C K, and thus

(5.25) Rof,=0, X, =2X00,_,=2X00,00,

a.s. on {r; < oo} = {T < co}. On the other hand, by Propositionsv(4.18) and
(5.12) and the definition (5.16),

(5.26) P[X,00,00. |57, 1=Kt 1i,j) as.on {r; < oo}.
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In view of (5.25), (5.19), and the fact that &, c G ps (5.26) implies that
(5.27) PRy, =j|F 1] =Pf,j) as on {T<c}.

Next suppose that i is not instantaneous, that is, ie . Now [T] c K, implies
that [r;] © M N K, and that 7, is a time of jump for B, and thus

(5.28) R,=B, —T>0 on {T< w}.
By the definition of X,
(5.29) Xppe=1 on (R, > 1)

=X, 3,0z00.,) on {R, <1}

(note that (W;(0,))(®) = W0y @) = Wyg,u(0y©) = W, o (0,(w)). Since 57
is right continuous B, is in 57, , and obviously so is T. So, by (5.28), R, is
in 5,,. Now (5.29), Propositions (4.7) and (5.12), and the definition (5.16)
imply that
(5'30) p[X,TH =]|%T] = I(i’ j)1(§T>t} + K(t - RT’ i’j)liﬁrqp + U](ér=t) s
where the random variable U will prove immaterial very shortly.

On {r; < 00} D {T < o}, 7, is a jump time for B, and the jump is of size
MW yemer = mW; 00, . Using the “memorylessness” of the exponential

distribution (which W, has) along with the independence of W, from Y, we
obtain that

(5.31) PR, > u| F ;] = exp(—ujm)  as.on {T < o).

Taking conditional expectations of both sides of (5.30) given Fr +»> using (5.31)
on the right-hand side, and noting the definition (5.20), we obtain

(5.32) PXy,, =j|F ] =P(i,j) as.on {T< oo}.
The proof of (5.17) follows from (5.27) and (5.32).

The strong Markov property we have just shown does not yet imply that X
is a Markov process, because we do not yet know if (X, = ¢} is zero for all ¢.

We will settle this matter, and bring the tale back to the introduction in the
next section. Before leaving this section we merely point out the following.

(5.33) REMARK. X can be obtained from Y by a strictly increasing continu-
ous time change as well: Consider the path B(@) and let [a, b) be a component
interval of some K,(®) for some ie C. At a, the path B(@) jumps from its value
B,(#) to the right-hand limit B,,(®), and then remains constant over (a, b).
Modify the path B(d) on [a, b) by replacing it by a straight line from the point
(a, B,(@)) to the point (b, B,(d)) = (b, B, (®)). Let this modification be done
over each component interval of K(®) and for all ie €, and let B(®) be the
modified path. It is clear that B(a‘)) is strictly increasing and continuous, and
therefore, its inverse #(@) is continuous and strictly increasing. Moreover, the
alteration described does not alter the image of Y, and so, we also have

(5.34) X,=Y, Y, =1%.
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6. From strong Markov to Markov and Chung. Throughout this section we
are working on «Q, A P) by having all the processes, etc. of Sections 2, 3, 4
extended onto Q in the natural manner, and then drop the “~” over Q, 4 B).
Recall the succession of processes X, X, Y, ¥, X: By (3.5), (3.9), (4.2), (4.3),
(4.25) and (5.34) we have

6.1 X=X, X ==), Y,=Y, as, ¥,=X; .
So, if we put
(6.2) A, = B,,, t=0,

we obtain a strictly increasing and continuous process 4, and
(6.3) X, =n(X,,) as.

Let 4, B, C, D be the respective sets of all attractive, repellent, stable, unstable
states of X; then E = 4 U B U C U D. Recall the definition (4.5) of D and put
¢=cuDand £E= 4 U Bu C as before.

For i ¢ £ consider the constancy set K;; it is right closed (Lemma (5.21)), is
progressive relative to &, and for any stopping time 7' of Z such that [T] c K,
the strong Markov property applies; hence, K; is a regeneration set. By the
characterization theorem of Maisonneuve [8], then, Iei is the image of an in-
creasing Lévy process. Ifi¢ B, the Lévy process in question has a positive drift
rate (this is because leb K, > 0); process Z in question has drift rate equal to 1,
and therefore, its potential measure

G — {¢ P{Z,eG}dt = E[leb K, n G], GeZ,,

admits a continuous function ¢ — P,(i, i) as derivative, and moreover, P(i, i) — 1
as ¢ | 0; see Neveu [11], page 41. Now, the following is transparent.

(6.4)  PROPOSITION. Ler P, be as defined in Theorem (5.17). For eachic E\B,
t — P(i, i) is continuous strictly positive, and lim P(i, i) = 1 as t — 0.

Incidentally, so far we do not know that P,(i, j) are transition functions since
X is not yet known to be a Markov process. Otherwise, the above result would
have been standard. We finally settle this matter of Markovness.

(6.5)  PROPOSITION. The minimal state space of X is E° = E\B. Therefore, in
particular, X is a Markov process.

ProoF. We have already shown for the process X that P{X, = ¢} = 0 for
(Lebesgue) almost every 7; note that {X, = ¢} = {Y, = ¢}; and ¥ ,(w) differs from
Y(w), for a.e. w, only at countably many points. Hence, the Lebesgue measure
of {t: ¥,(w) = ¢} is zero for a.e. w, and since X can be obtained from ¥ by a
strictly increasing absolutely continuous time change (see (5.34)), we have that
the same is true for {r: X,(w) = ¢}. Therefore, by Fubini,

(6.6) PX,=¢}=0 ae 1.
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We next show that (6.6) is in fact true for all # > 0. Let P, be as in Theorem
(5.17). Pickie E% (6.6) implies that P,(i, £) = P,{X, + ¢} = 1 for a.e. . Now
pick ¢, 1 # such that P, (i, E) = 1 for each n. Then,

P(i,£) = P{X,., =i, X, ek}
= P, (i, )P, (i, E) = P,_, (i, i);
and hence, by Proposition (6.4),
(6.7) P(i,Ey=1, icE teR,.

Next let i ¢ B; since K () is countable for a.e. », by Fubiniagain, P[X, ¢ B]=0
for a.e. s. Hence, for a “good” s < ¢,

(6-8) Py(i, E) = X jep0 Pis )Po_o(j, £) = Py(i, E%) = 1

by (6.7). We have thus shown that P,(i, £) = 1 for all # > 0 for all i e £; and
now by the strong Markov property at ¢ we get

(6.9) P is k) = X3 Pi, )P, k), i,kek.

In other words, X is a Markov process, and (P,) is a transition function on £.
Since X is progressive, each function ¢ — P,(i, j) is measurable, and therefore
(see Chung [1], page 120) is continuous. Since P,(i, j) = O for a.e. r whenever
J € B, this implies that

(6.10) P(i,j)=0 icE jeB,teR,.

It follows that {P,(i, j); i, j € E} is a transition matrix, and that the minimal
state space is E°. []

The corollary below is immediate from the preceding proposition together
with Proposition (6.4).

(6.11) CoROLLARY. The matrix valued function t — [P (i, ); i, ] € E°]is a stand-
ard transition function. -

We summarize the facts concerning X below, and include the statement of
main result (1.2) as well. We have already proved this.

(6.12)  THEOREM. The process X (with its natural history &) satisfies Condi-
tions (2.2a, ¢, d, e); and hence is a semimarkov process in the strict sense. In fact,
Xis a Markoy process, and enjoys the strong Markov property at every stoppmg time
of & & such that X,eEas. on{T < o). The essential range of process X is £ =
A U B U C augmented by the point ¢ if the essential range of X includes ¢; every i
in A is heavy attractive, every i in B is repellent; every i in C is stable. The minimal
state space of X is E® = E\B. Finally, for every te Ry, X, = ﬂ(z"}At) a.s., where
A is defined by (6.2) and is strictly increasing and continuous.

The process X is almost a Chung process; to make it one, all that we need
do is to modify the paths so that the essential range does not contain any repellent
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states. So, we define

(6.13) X/(0) = X(0) if X(0)¢B,
=¢ if X, (0)eB.

(6.14) ProrosITION. X' is a Chung process.

Proor. The process X’ has E° as its minimal state space, and E° U {¢} as its
essential range. The transition function [P,(i, j)] on E° is standard; see Corollary
(6.11).

For a.e. w, the path X() is right lower semicontinuous at every ¢ ¢ Ky()
(see Lemma (5.21) for this); and X'(0) = X(o) outside K,(»). And for ¢ ¢ K (o),
by Theorem (4.10) of [4], the only possible limit X(w) has from the right side
is ¢ (since £ is given the discrete topology), and we have ¢ = X;/() for such ¢.
Hence, for a.e. , the path X’(w) is right lower semicontinuous. []

The preceding implies Result (1.4) of the introduction. If one’s point of view
is that probabilities are all that matter, then the preceding proposition is the
final result. However, from the point of view of sample paths and the strong
Markov property, the preceding result is a step in the wrong direction. For, we
have removed some states, and thereby lost the strong Markov property at stop-
ping times T of & with [T] K. Indeed, when studying the boundary behavior
of X’, each point b in B would be reintroduced as a repellent boundary atom.

Therefore, it would be desirable to obtain a process X whose minimal state
space contains B and which is still a Chung process. This can be achieved at
the cost of altering the looks of the sample paths radically: for, each ie B will
have to become a stable state for X. This is because each i is entered by X only
finitely often during a finite interval.

To obtain X from X all that needs to be done is to replace each point 7 ¢ K,
by an interval whose length has an exponential distribution with mean m,, where
these m; are so selected that

(6.15) 2iiesMiNi(f) < o0 a.s.

for all + < oo; where N(¢) is the cardinality of K, n [0, ¢].

Formally, this is achieved via a further random time change similar to that of
Section 5. In fact, X can be obtained directly from Y if we replace the set ¢
by 8 = B U C throughout Section 5, the only additional proof we require being
the finiteness of B defined by (5.7) (with B replacing C there). In other words,
we need to show how the means m; are to be selected in order to satisfy (6.15).

We end this note by describing this selection. For each i e B, the set K, (for
Y or for X or X, but we choose to work relative to X) is discrete; its points (T,?)
form a renewal process; and N;(¢) appearing in (6.15) is the number of renewals
occurring during (0, #]. Applying a well-known inequality concerning renewal
functions to the renewal function ¢ — E[N,(r)], we obtain the existence of a
constant ¢, such that E[Ny(r)] < (¢ + l)c;forallz. Let (i, i, - - -) be an ordering
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of the set B. Then, the numbers

mi” = 1/2“cin 'y n G N+ £
clearly satisfy (6.15).
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