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QUADRATIC VARIATION OF FUNCTIONALS OF
" BROWNIAN MOTION

" By ALBERT T. WANG

The University of Tennessee
The quadratic variation of functionals F(f) of n-dimensional Brownian
motion is investigated. Let I, = {f1%, £5%, «++, ]y} witha =1 < " < - .-
< f}iny = b be a family of partitions of the interval [a, b]. The limiting
behavior of QF, I.) = L4™~* (F(t}, ) — F(ts")? as n— co, assuming
[|IIL4|| — O, is studied. And the existence of this limit is obtained for a fairly
general class of functionals of Brownian motion.

0. Introduction. Let (Q, .5, P) be a probability space and F = {F(f),a <
t < b} be a stochastic process defined on Q. Let II, be a sequence of parti-
tions of [a, b], given by a=1t"<t," < -+ <1}, =b. Let QXF,IL,) =

Vw1 (F(tr,,) — F(2;"))* If the limit of Q*F, II,) exists in some sense, when
||IL,|| = max, (¢, — ;) — 0, it is called the quadratic variation of F.

The quadratic variation of a process was first studied by P. Lévy in the case
of Brownian motion, and later on was pursued in the case of Gaussian processes
and martingales by many other people. In [2], Brosamler studied the quadratic
variation of F(f) = p(X(¢)), where p is a Green potential on a Green domain
D < R* with n = 2 and X(¢) is a Brownian motion on R" stopped at the Martin
boundary of D.

We study the quadratic variation of F(f) = f(X(¢)) and F(f) = f(t, X(¢)) for
a class of functions f. Our results are stated in Theorem 1.3, 2.1 and 2.3. We
also derive a result on the quadratic variation of potentials p(X(?)), originally
due to Brosamler [2], as an application of our theorems. Our proof of Theorem
1.3 relies on Corollary 1.1, which is a generalization of one identity given in
Berman [1].

Tanaka [6] proved that a continuous (homogeneous) additive functional A(f)
of one-dimensional Brownian motion X(7) has the following representation:

A1) = fiX(1)) — f(X(0) + §§ 9(X(u)) dX(u),
where f is a continuous function on R and g € L,'°(R). In Ventcel [7], a similar
répresentation was obtained for continuous additive functionals of higher di-
mensional Brownian motion. We study the quadratic variation of a class of
continuous additive functionals of Brownian motion and our conclusions are
Theorems 1.4 and 2.2, which include Theorems 1.3 and 2.1 as special cases.

1. One-dimensional case. Let (,. ", P) be a probability space. Let {X(),
F .} 0 <t < oo, be a standard one-dimensional Brownian motion with
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P(X(0) = 0) = 1 and (X(f) — X(s)) independent of &, whenever s < ¢. Let
O, = {t t,* t,", -+, 1},,} be a family of partitions of interval [a, b] where
a>0, a=t"< < - <}y, = b and lim,  ||II| =0 with [|IL|| =
max, (1, — t,). We put
(1.1) n" = X(t,) — X(.")
(1'2) Tt = .

Let F(t, w) be a stochastic process adapted to -7, and defined on [a, b] X Q.
We let :

(1.3) B(F, IL) = 4™ Ft") () »
(1.4) R(F, L) = TL41 F(6)(z,) -
When [ is a real valued function defined on R,

(1.5) B(f(X), IL,) = 287 X" (0") »
(1.6) | R(f(X), IL,) = Zi8~ AAX(5M)(z4") -
We let

(1.7) Afit = fX(14) — AX@)
(1.8) OY(f(X), IL,) = 227 (Af")
(1.9) Mf(x) = suprﬁ {5+ | A dy -

We use I, to denote the indicator function of set 4. We will use Q*(f(X)) to
denote lim,_,,, Q*(f(X), IL,), when the latter exists in a certain sense.

Since f = g a.e. implies B(f(X), IL,) = B(g(X), IL,), R(f(X), I1,) = R(g(X), II,))
and Q*(f(X), II,) = Q*g(X), I1,) a.s. and in L, (Q) (when one side is in L,(Q)),
we will replace a Lebesgue measurable function by its Borel measurable version
in discussing these summations.

Lemma 1.1 (Wong and Zakai). Let E{(F()*} <M ‘ forall te [a, b], where M
is a constant. Ther
lim,_, E{[B(F,1I,) — R(F,IL,)]’} = 0.
Proor. From (1.3) and (1.4),
E{[B(F, I,) — R(F, IL,)F}}
= E{[ 27 F(t")(0") — @))%
= E[ 27 (F(t") (") — =)’
+ E[ X Ziws FOMFE)((07) — ) (@2;")* — 73] -
Since [(7,")* — 7,"] is independent of .%,» the second summation in the right
vanishes. Further,

E[ 287 (F(5) (") — ")
(1.10) = LI E(F(6") E(")" — ©")*
< 2M DU () < 2M(b — a)|IT
Hence lim, ., E{[B(F, II,) — R(F, TL,)]*} = 0.

W — 0 as n— oo.
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THEOREM 1.1. Let F(t, ), t € [a, b], be uniformly integrable. Then

lim, ., E|B(F,11,) — R(F,11,)| = 0.
Proor. Let
Fyu(t, 0) = F(t, 0) if |F(t,w)| N
=0 othewise.
Let F¥(t, w) = F(t, ) — Fy(t, w).
E|B(F", I,) — R(F¥, IL,)| = 2 E[FY(6M)((0")* — ")
2T E[FY (M) E (") — T
2(b — a) sup,cigim—1 EIFY (") -

A

Given ¢ > 0, we choose N big enough to make
E|F7(1)| < ¢/4(b — a) for all re]a, b].
For this fixed N, we take § < ¢/4N(b — a). Then ||IL,|| < 4, by (1.10), so
E|B(Fy, IL) — R(Fy, IL)| < 2N(b — a)i < ¢/2..

THEOREM 1.2 (Wong and Zakai). Let F(t) be continuousin L,(Q, P) fort € [a, b],
i.e., lim,_, E|F(t) — F(s)| = O for all t ¢ [a, b]. Then

lim,_, E|R(F, IL,) — (¢ F(f)dt] = 0.
Proor. Define F, (f) = F(t,”) for t,» < t < t7,,. Then
ER(F, IL,) — §} F(t) dt] = E|\; (Fo,(t) — F(1)) dt] _
= G EF () — F()|dt—0  as |IL[]|—0.
The following corollary is an extension of a lemma in Berman [1].

CoroLLARY 1.1. Let fe L,(R); then the family f(X(t)), a < t < b, is uniformly
integrable and is continuous in L,(Q, P). Furthermore,

lim, .. E|R(f(X), IL,) — §o f(X(1) dif = O
and
lim, ., E|B(f(X), IL,) — {2 (X(#) dif| = 0.
If fe L™*(R), then instead of convergence in L,, we have
lim, ., R(f(X), II,) = (& f(X(?)) dt in probability
and
lim,_., B(f(X), IL,) = (¢ A(X($)) dt in probability .
Proor. Let f'e L,(R), then

Sirxensa | X)) AP < (2ra) 2§ 15w | f(Y) dy — 0
independent of r as N — co.

For fe Cy, lim,_, E| f(X(f)) — f(X(s))| = 0 by the bounded convergence theo-
rem. For general fe L,(R), there exists a sequence of functions f, € C; such
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that f, — fin L,(R). Hence

E|f(X(1)) — fX())| = E|fIX(0) — fulX ()] + E|f(X(1)) — fu(X(5))]
+ E|fu(X(5)) — fIX(s))]
= 2(2za)7H|fo — fll: + E|fa(X()) — fu(X(5))] -

Given ¢ > 0, we can find N such that
2@2ra)|fy — flla < ¢/2-

Then the L,(Q) continuity of f,,(X(#)) will take care of the other part. So, for
f e L(R) the family f(X(¢)), a < t < b, is unifomly integrable and is continuous
in L,(Q). The rest is easy.

For fe L**(R), knowing P{|X(#)| > N for some t ¢ [a, b]} —» 0 as N — oo, we
can disregard a set of small measure and treat f as a L, function on a compact set.

THEOREM 1.3. Let f be a locally absolutely continuous function, i.e., there exists
a point ¢ such that

f(%) = fle) + §2 f(w) du
‘ fqr\uall x, and let f' € L,(R). Then
m, ., E|Q(f(X), TL,) — § (f(X(t)))*dr] = 0.
Proor.
Af) = (ke f1(u) duy
(1.11) (m)*(l 5 ket ) du)
< (" (MP (X)) -
Let A, ,, = {|X(t")] > N}. Remember that ||Mf||; < C||f’|l, < o (see [5]).
Then, by (1.11),
E| S0 (A Ly ] £ E DU 00V (MPPX (6 a0
= Si0 B E(MP Y (XD, )
< (b — a) supg E(MP (X5,
< Cymay Sy U7Y0) dy =0

independent of n as N— oo.

Nmnk)

We can also show E|>L™~! (Af,,”)zlANm,'HJ — 0 is independent of n as N — co.
Further, let 4, = {|X(#)] > N, for some ¢ in [a, b]}. We know P(4,) — 0 as
N — co. And

E o (fP(X(n) dr = 2za)~t (o || ']l dt < oo
Hence E(1,, {5 (f')(X(r)) df) — 0 as N — oco. Then
limy_, E|Q*(f(X), IL,) — Q*((fTi-y.»)(X), IL)| = 0,
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and
limy_, E|§ (f)(X@) du — §8 (f' -y, )" (X(0)) d] = 0.,

independent of n. Thus we can assume, without loss of generality, that f
is a function of compact support. By using Ergorov’s theorem we have
(f() — f(xX)/(y — x) — f'(x) uniformly as y — x except on a set B of small
measure. Clearly, f’e L, implies m{x||f’(x)] > N}—>0 as N— co. We let
G = B° n {x||f"(x)| < N,}, where the measure of set Band number N, are prop-
erly chosen, to satisfy

(1) Voo |f' ()] dx e,
(i) Jor (M) dx < e.
We can find ¢ and ¢’ such that (iii) and (vi) hold.
(iif) |y — x| < ¢ and x € G implies
JO) = /=) f(x) .
y—x IO <

This in turn implies

I(f) = f2)) = (') — 1) <ely — x)*.
(iv) 0 < t < ¢’ implies
E[(X(1) T, (|X(OD] < et .
Clearly,
0¥/, L) = o= L(X(t) Ey (A
+ T LX) s (DA + TS LX) A
= I(n) + II(n) + III(n) .
EI(0)| < E $19 oy (17D A
< E 240 Iy oI (M (X (1) (by (1.11)
= B4 Bl (D0 TEMP (X (8)
(b —a , ,
< Qoo Ml when ILJ| < &'
Similarly,
E|IH(n)| < E S48 LX) (M) X (1)
< Ti B BB (M)
< (b — @) Supyegq.y ELLeo(MP1(X(2)

b—a ..
< (aray e by (ii) .

To deal with /(n), we define
I(m) = ZR& L(X(6") o, o) (1" D (X(BT)) ")
I'(m) = Xt L(X(6M)(f (X6 -
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Then
(1.12)  E|i(n) — I'(n)] = E T4 LX) o (0 De(ri?)? by (i)
<eb—a),
and
E|l'(n) — I'"(n)| < E 42 T oo (2" DO (X(5") ")
(1.13) Z“”’ “HE[ I o0 (") (0" IE(f (X(87)))
<G I/lke  when |ILJj <7
Further
E|I"(n) — B((f")% IL)| = 287 EL(X(4")(f'(X(5.")7:")?
(1.14) = ZETVE[(f) Tee)(X (1) E(p,")?
b— a, ;e b — a, .
S a0Vl < Grsie BY ().

Combining (1.12), (1.13) and (1.14), we conclude

lim,_, E|Q*(f IL,) — B((f")* IL,)| = 0.
Applying Corollary 1.1, we get
lim,_, E|Q*(f, IL,) — §2 (f")"(X(#)) dtf| = 0.
COROLLARY 1.2. Let f be locally absolutely continuous and f' e L,'**(R); then
QX (f(X)) = §& (f")¥(X(?)) dt in probability.
The proof is easy, hence omitted. We have the following theorem concern-

ing the quadratic variation of a class of additive functionals. We put Q*4) =
lim,_ . i1 (A(t,1) — A(t,™))?, when the latter exists in some sense.

THEOREM 1.4. Let A(t) = f(X(1)) — f(X(0)) + §& g(X(u)) dX(u) with
(i) f locally absolutely continuous and f' e Ly(R) (or f' e L,'**(R)),
(i) g€ Ly(R) (or g € L*°(R)).
Then
Q(A) = §a (f)(X(w)) du + o g*(X(w)) du + 2§z (f'9)(X(u)) du
in L,(Q, P) (or in probability) .
Proor. Let G(t) = {{g(X(n)) dX(u) and Ag,” = St’”“g(X(u)) dX(u). Then
0¥ 4, II) = Q(f(X), IL,) + 2 X3im~ (Afi™)(Ag™) + Q*(G IT,). By Theorem
1.3, Q%(f(X)) = §2 (f")(X(w)) du in Ly(Q, P). From [9] QXG) = {; g¥(X(x)) du
in Ly(Q, P) We only need to show
m,.. Zifi7 (A)(A0) = §e (f'9)(X(w) du in Ly, P).
(1.15) EIZL‘L’ LAf)(Ag) — 9(X (1))
= ZIETE|(AfM g — 9(X(6M)mem)
= ZiET [EQfS)EBgy” — 9(X(5)m") ]
= (ZERT EQfMU TN E(Agy™ — 9(X(1M)m"))* -
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By Theorem 1.3, lim,, . 314"~ E(Af,")* = E {2 (f")}(X(#)) du, hence Y1L*) = E(Af,")?
is bounded independent of n. If g e C,, then

2T E(Ag — Q(X(tk”))vf”)z
= TEHTE § i (9(X() — g(X(5,))* d
= i R (W) — g(X()y du— 0 as (|| 0,

by the bounded convergence theorem and the compactness of [a, b]. For general
g € Ly(R), we use an approximation procedure similar to that given in Corollary
1.1 to conclude lim,,_, L™~ E(Ag," — 9(X(t,"))7™)? = 0. Thus

(1.16)  lim, ., E| X% (Afi")(Ag") — X8~ (Afm9(X(6M) 7" = 0 .
On the other hand

E| 3 (Aftg(X (@M — (X @M) 1 g(X(5) ")

(1.17) < ZIETH(ERSf" — (X)) E(9(X () 7))
S (TR EQAS" — 1@ )N E(9(X(5") ")) — 0.

Since
lim, ., 2027 E(g(X(5,") ") = lim, ., 31127 E(g*(X(1,")) 7" = E §; 9°(X(w)) du
by Corollary 1.1, 3§~ E(9(X(t,"))n,")* is bounded independent of n. And
we can show the other part goes to zero by the same procedure as we did
in Theorem 1.3, namely, by splitting Af,* into Af,"To(X(8™) 0,5 (17:"])s
Af M I X (8" 5,00 (Jm"]) and Ioo(X(8,")Af,».  (1.16) and (1.17) give us (1.15).
Note that it is still enough to consider f as a function of compact support.

CorOLLARY 1.3. In Theorem 1.4, let g = — ", then Q*(A) = 0 in L(Q, P) (or
in probability).

REeMARKS. The probability measure P we used here is frequently denoted by
P°, to indicate that X(0) = 0 with probability one.

By the same kinds of arguments, we can show that all of our statements hold
for any P®, where P* corresponds to the Brownian motion starting at x. In
particular, the additive functionals studied in Corollary 1.3 have Q% 4) = 0 in
a suitable sense for all P*. In [8] we show that any continuous additive func-
tional A(f) of one-dimensional Brownian motion X(#) satisfying P*{A(f) is of
bounded variation in any finite interval} = 1 for all x has a representation

A(N) = fIX(0)) — AX(0)) — §i f'(X(w) dX(x)

with f"'(x) = dp, where p is a locally finite measure.

According to Corollary 1.3, if A is an additive functional of this form, and
if the function f is locally absolutely continuous with f’ e L,'°°(R), but if ("’ is
not a locally-finite signed measure, then 4 would not be of bounded variation
but would still have Q*(4) = 0. For such f, f(X,) is not a semi-martingale.
However its quadratic variation is still given by {3 (f')X(X(u)) du.
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2. Higher dimensional and space-time case. For the simplicity of notation,
we shall only present our theorems in the case of R?. The arguments, however,
apply to the general case.

Let ((X(t), Y(#)), ) be a standard two-dimensional Brownian motion with
P((X(0), Y(0)) = (0, 0)) = 1, where &, is a two-parameter family of o-fields
such that &, < &, , whenever s < u, t < v. Further, we have X(¢) — X(s)
independent of F for any u and Y(f) — Y(s) independent of &, , for any u,
whenever ¢ > 5. Let {IL,} be a family of partitions of the interval [a, b] with
a > 0 as given in Section 1. We put

@.1) Z(t) = (X(9), Y(1))

2.2) wh = X(th) — X(17)

2.3) &7 = Y1) — Y(1,) -

Let f be a real-valued function defined on R?, then

(2-4) Afit = f(Z(t)) — f(Z(17) »

(2-3) ADfr = f(X(1510)s Y(1340) — fIX(87), Y(8240)) 5
(2-6) AP = fIX(1B"), Y(1242) — fIX(5"), Y(47)) -

Clearly, Af," = AVf» + A®fim

We let Q%(f, IL,) = YILm=* (Af,"), f, = of)ax and f, = df/dy. We use F(s, f)
to denote a stochastic process adapted to &, ,. Just as in the one-dimensional
case, we have the following propositions:

PRroPOSITION 2.1. Let E{(F(s, t))’} < M for all (s, t) € [a, b]*, where M is a

constant, then

m, o, E{[ 2L F(4", )((") — )P} =0
and

m, ., E{[ 287 F(S 668 — @)= 0.
PROPOSITION 2.2. Let F(s, 1), (s, t) € [a, b, be uniformly integrable, then
e E| TV F(8” (") — 7)) = 0

o E| S, 50 — 7)) = 0.
PROPOSITION 2.3. Let F(s, 1), (s, t) € [a, b)*, be jointly continuous in L (Q, P),
ie., lim, ..., E|F(u, v) — F(t, 5)] = 0. Then

m,_. E| T4 B, t)e — 8 F(r, ) di = 0

and

and
lim,_ E| 3™~ F(t, 67, — (L F(t, ) dt = 0.

PROPOSITION 2.4. Let f e L,(R?) and F(s, t) = f(X(s), Y(t)). Then the conclusions
of Propositions 2.2 and 2.3 hold. Furthermore,

e IS ), V(27— §2 X0, Y(0) di] = 0
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and
lim,_, E} 33027 A(X(5,7), Y(5,") () — Ve f(X(0), Y(2)) di| = 0.
The proof is similar to Corollary 1.1 and is left for the reader. Before we goto

Theorem 2.1, we prove an easy result concerning a kind of maximal function.
We define

2.7) (M, f)(x, y) = S“P'x‘rl‘\ 2+ | fu, y)| du
(2.8) (M, f)(x, y) = suprl—jl- §3+7 | fx, )| du .

If fe Ly(R?), then f(., y) are in L,(R) for almost all y, hence

§20 § %0 (M fP(x, p) dx dy = §2., (§2 (M f)X(x, y) dx) dy
= %0 (e §20 (N 9) dx) dy < €|f [z, -
Similarly, ||M, ||, < €| lzy0m)-

THEOREM 2.1. Let f be a real-valued function on R* which is locally absolutely
continuous along almost all lines parallel to the axes. Let |grad f| e L(R?%. (Or
|grad f| e L,°(R?). Note that grad f exists a.e.) Then

lim,_, E|Q*(f(Z), IL,) — §; |grad f[*(Z(u)) du|] = 0
(or Q*(f(Z)) = §. |grad f|*(Z(n)) du in probability).

Proor. Let H = {(x, y)|f(+, y) or f(x, -) is not absolutely continuous}. Since
P{X(1,") € H for some #,"¢Il,} = 0, we can disregard H in our computation
below.

Qf(2), ) = T~ (M) = Ao (Af,2 + AWfy
= T (A 4 2 T AOLARS) + DR ALy
= K(n) + 2II(n) + IIK(n) .
We can prove
lim, ., [I(n) — §2 (f)(2(1)) di| = 0,

and lim, ., E|Ill(n) — ) (f;)*(Z(?)) dtf| = 0, by an approach similar to that given
in Theorem 1.3. We shall show lim, _, E|II(n)| = 0.

To handle /I(n), it is enough to consider those f’s which are of compact
support. We define:

II'(n) = X057 AX@")s Y(2))n(A2f")
Ir'(n) = X247 A(X@")s Y(0 00 o X(87), Y(8,7)6,

IT(n) = LS AN YO (G0), Y (6)E" -

and

Clearly,
E|lI(n)| < E|IKn) — II'(n)| + E|II'(n) — 1I"(n)|
+ E|II"(n) — II"'(n)| + E|II"(n)| .
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By using Cauchy’s inequality several times, we can easily show
lim, ., E|II(n) — II'(n)| = lim,_, E|II'(n) — II"(n)| = 0.
Further,
E|II(n) — 1" (n)] = 087 (B(AX (1), V(1) — AR, Y(00)) (7))}
X (E(fA(X (1), Y ()"
= (D B, Y (7)) — AX@), Y)Y 00"))
X A(ZEET B W), Y(WM))E)) -
If f,eC,”, by using the dominated convergence theorem we can prove

THS E(AX(Y), Y(130) — A0, V()7 — 0. For general f,, we
can use C,* functions to approximate f; in L,(R? as we did in Corollary 1.1.
But the other term is bounded, hence lim, _,, E|II"(n) — II'’(n)| = 0. Finally,

E(IT" (n))* = E"XIW 1 (f(X(157), Y(BM)nfo(X (@), Y(BM))E!)
+ 2 Zsi E(A(X(H)s Y0 A X(0), Y(87)E")
X ([X (™), Y (80, fo(X(157), Y(1,1)E,") -

By conditioning, it is easy to see that the first summation is bounded by
2L =1 M(z,")? and the second summation vanishes. Hence lim,, _,,, E(/I(n))* = 0.
This completes the proof. ~

The following result is due to Brosamler [2]. We give another proof here as
an application of Theorem 2.1.

COROLLARY 2.1 (Brosamler). Let p(x) = §, g(x, y)u(dy) be a Green potential
on a Green domain D C R*, n = 2. Let v = inf {t| Z(t) € 0D} where Z(t) is an
n-dimensional Brownian motion on R* and 0D is the Martin boundary of D. Then,
in time interval [a A ©, b A 7] (a > 0),

Q*(p(2)) = (e |grad p[(Z(w)) du
in P* probability whenever x € D, = {x|p(y) < oo}.

Proor. Let p(x) = §, 9(x, y)p(dy) with the support of x being compact. Then
by the energy identity {, |grad p|(y) dy = ¢ {, p(y)1(dy) < co. By an easy ar-
gument one can show grad p e L,>°(D) for any bounded potential p. Further,
since p has all first weak derivatives, it has an almost everywhere equivalent
version p such that p is absolutely continuous along almost all the lines parallel
to the axes. We conclude p satisfies the conditions of Theorem 2.1. Let Z(7)
be a standard n-dimensional Brownian motion and ¢ = inf {t| Z(#) € D°}. Then
p = p a.e. implies

QY(P(Z(t A 7)) = Q¥ (p(Z(r A 7)) = (ans (grad p)(Z(w)) du
= V2t (grad p)*(Z(w)) du

- ant

in probability with respect to any P, x ¢ D. For general potential p, we define
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T, = inf{¢|p(Z(t)) = n}. Then for any xe D,

PHIQH(p A m)(2), 1) — Q*(p(Z), 1,)| > O for some m}
< P(T,< 00)—>0 as n— oo, where D, = {x|p(x) < o}.
On the other hand, if gradp exists at point xe D and p(x) < n, then p is

continuous along the coordinate directions in a neighborhood of x, hence
grad (p A n)(x) exists and equals grad p(x). Then

P50t (grad p A n)X(Z(u)) du — (30 (grad p)*(Z(u)) du}

ant

< P(T,_, < o0)—>0 as n— oo.
Hence, for any potential p in the interval [a,b] (a > 0) Q%p(Z)) =
ont (grad p)(Z(u)) du in P* probability for all xe D,

LemMA 2.1. Let g = (9, ¢g®) be a function from R* to R*. Let
E§3 (99 (Z(u)))* du < oo (or P{§t (9" Z(u))*du < oo} = 1) fori =1, 2.

Define G(t) = \t 9g(Z(u)) - dZ(u); then in the interval [0,1t], Q%G) =
§619(Z(w))|* du in L(Q, p) (or in probability).

The proof is routine, and will be left to the reader.

THEOREM 2.2. Let f be a function from R® to R which satisfies the conditions of
Theorem 2.1. Let g be a function from R* to R® which satisfies the conditions of
Lemma 2.1. Define A(t) = f(Z(t)) — f(Z(0)) + i 9(Z(n)) - dZ(u). Considering
partitions in the interval [a, b] with a > 0, we have

Q*(A) = (. [grad f*(Z(u)) du + §5 |9(Z(u))|* du + 2 \; grad f(Z(u)) - 9(Z(u)) du
in L(Q, p) (or in probability).

The proof is similar to that of Theorem 1.4 and will be omitted.

THEOREM 2.3. Let f be a real-valued function defined on [a, b] X R such that
f(+, x) is absolutely continuous. Further, let f, e L,*([a, b] X R) and f, be con-
tinuous in [a, b] X R. Let X(t) be a standard one-dimensional Brownian motion,
and let F(t) = f(t, X(t)). Then Q*F) = (! (f,)%(¢, X(?)) dt in probability.

Proor.

Q'(F, IL) = Z&™ (frken X(154)) — f(0", X(1.7))?
= 287 ([, X(15) — flne, X(15.0)))°
+ 28 (s X(tr0) — [ X(47))
+ 2 28T ([ X(1) — S X)) (6" X(840))
— [ X(,"))
= I(n) + II(n) + 20I(n) .
Since P{|X(f)] < N for some t¢[a, b]} — 0 as N — co, by neglecting a set of
small measure we can restrict our attention to a compact set [a, b] X K, where
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K is compact in R. We still use f to denote f|[a, b] x K. Then
E|I(n)| < T B(§ 5 filw, X(1¢.2) duy
= DT E(fn — 1) St"“ (i)' (u, X(17,1)) du
= (b — gy maxigugy St"“ (S, X(17,1)) du
A hgiim-1 St"“ V7o (S1)'(4, v) du dv

b—a
—0 as [|IL||— 0

@
because f; € L,([a, b] X K).

Further, on [a, 6] X K, f, is uniformly continuous and bounded. Hence given
any ¢ > 0 there exists > 0 such that for all te[a, 8], |f(t,y) — f(t, x) —
fo(t, X)(y — x)| < ¢/(2M + 1) whenever |y — x| < d, where x and y are in K
and M = Max {|f(t, y); (¢, y) € [@, 6] X K}. Then |(f(t, y) — f(t, x))* — (f)X(*,
x)(y — x)’| < e. Hence
E|I(m) — Zi&™ (90" X(6) ")’

= 2T E[(f6 X(1) — f(02 X(07) — (fX(0" X(47) (7]
= ZEATE((0" X(1) — flnds XOM)) oo (2:7]) — (L0 X(0M) ()]
+ T E|(f(" X(1h)) — (05 X6 h wli7])] = A(n) + B(n) .

IA

But

An) = TS Ele(") To,o (17 D] + 2087 Els (17" () (5" X (1) ()]
<eb—a) 4+ M%e(b—a) when [II]| <&,

where ¢’ is chosen such that 0 < t < ¢ implies E|(X(£))*]},...,(|X(1)])| < et; and

B(n) = XL EG S fy0,, w) dul, o (17,7)

X

= Zi‘lﬁ’ FEME ()l 0 (17]) S (B — a)MPe

Hence lim, ., E|TI(n) — i7" (f3)*(t" X(4,") (")} = 0. But f, is bounded and
uniformly continuous on [a, b] X K, so Fy(t, X(t)), t € [a, b], is a uniformly in-
tegrable family of functions and it is also continuous in L,(Q, P). By Theorems
1.1 and 1.2,
e B[S ()0 X(6) (") — 2 (L5 X(1) dif = 0.

Combining the above results, we conclude Q*(f) = | (f,)X(, X(?)) dtin L(Q, P)
when f is restricted on [a, 5] X K. This implies QXY) = {2 (f,)(t, X(f)) dt in
probability.

Obvious generalization of Theorem 2.3 holds for (¢, x) e R X R".

3. Remarks. So far, we restricted our attention to interval [a, 5] with a > 0.
If a =0, we define II, = {¢, t,", .. slmpsuch that 0 < 1" < 12 < -2 <
1, = bwithlim_ __t» =0 and llm,Hoo [|IL,|| = 0. We have some remarks:
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(i) The conclusion of Corollary 1.1 is not true for a = 0. For example, let
a = 0, b= 1,
f(x) = x~te=® when x =0
=0 otherwise
and
I, = {1n*, 1/n® + 1/n, 1/n® 4 2/n, ---}.
Then
lim,__ ER(f,II,) = oo, but E {3 f(X(2))dt < oo .
(ii) Let fe Ly(R)and |f(x)] < C for xe (—¢,¢) where ¢ > 0 and Cis a con-
stant, then in [0, 1]
lim,_., E[B(f(X), IL,) — R(f(X), IL,)| = 0
and
lim, . E|B(f(X), II,) — {3 f(X(#)) dt| = 0.
(iii) For any fe L(R), if we have nice partitions to eliminate the singularity
of (2rf)~te¥* as t—0, then we still have lim,_ . E|B(f(X), II,) —

R(f(X),IL,)| = 0 and lim,__, E|B(f(X), IL,) — §3 f(X(?)) dt| :W(o)o for any f e L,(R).
For example, let t," = k/n; then
E[B(f(X), IL,) — R(f(X), IL,)|
= E| e fXGMN((7") — 1) + E[ D egee XG0 — 70)]
= I(n) + Il(n) .

10) < S E |7 (X (X)) B + ) £ D @k U111 -

n

2\}
< Trew 20m) S S () (0 + DSl ~ edt a5 no oo
Given ¢ > 0, we can choose § small to make /(n) < }e, then we apply Corollary
1.1 to have II(n) < e. Similarly,

E[R(f, 1L,) — V3 f(X(1) dt| < E| T nes AX(6M)0:"| + E|§2 f(X()) dt]
+ E|thgaf(X(tk”))77k” — (G f(X(0) dt] .
Then we can prove each part goes to zero.
(iv) Let fbean absolutely continuous functionand f” € Ly(R) (or f” € L,*°(R)).

Either we require |f’| < C in (—¢, ¢) for some ¢ > 0 or we use nice partitions
as indicated in (iii). Then, in interval [0, b], we have

QU f(X)) = \§ (fH¥(X(n)dt in Ly(Q,P) (or in probability) .

Under either condition, Theorem 1.4 also holds. The proofs are easy modifica-
tions of Theorem 1.3 and Theorem 1.4. Let f be a function from R" to R. Let
|grad f| be bounded in a neighborhood of (x, y) and f satisfy the conditions of
Theorem 2.1, then Q% f(Z)) = \} |grad f|*(Z(x)) du in proper sense with respect
to measure P*%, Under this conditions, Theorem 2.2 holds too.
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