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Let X(¢) be a stationary Gaussian process with continuous sample
paths, mean zero, and a covariance function satisfying (a) r() ~ 1 — Clzj«
ast—0,0 < a <2and C > 0;and (b) r(t) log t = o(1) ast — oo. Let {t4} be
any sequence of times with #, 1 co. Then, for any nondecreasing function
[, one obtains P{X(¢) > f(tx) i.0.} = 0 or 1 according to a certain integral
test. This result both combines and generalizes the law of iterated loga-
rithm results for discrete and continuous time processes. In particular, it is
shown that any sequence ¢, satisfying lim sups—c (tn — fa-1)(log 7)//® < 00
captures continuous time in the sense that the upper and lower class func-
tions for the law of the iterated logarithm of X{(t,) are exactly the same as
those for the continuous time X(z).

Analogous results are obtained for Brownian motion.

1. Introduction. Let {B(f),t = 0} denote standard Brownian motion.
Khintchine’s law of iterated logarithm for Brownian motion states

(1.1) lim sup,_,, B(f)(2tloglog )=t =1 a.s.

Lévy [3, page 88, 226 ff] discusses this result in terms of upper class and lower
class functions and states that the best results are due to Petrowsky and
Kolmorogov. The theorem communicated to Lévy by Kolmorogov is equiva-
lent to the following.

THEOREM A. For any monotone increasing positive function f{(t),
(1.2) P{B(t) > t¥f(t) i.o. for some sequence t,— 0} =0 or 1

according as the integral
(1.3) K(f) = s:f(ti)exp(_fﬁ(t)/z) dt <o or —=oo.

Now f belongs to the upper class of B(?) if there exists a #,(w) for each sample
path o such that B(f) < r¥f(¢) for all t = ¢,. According to Theorem A, this oc-
curs if and only if the test integral converges. Since a proof was not given by
Lévy, Sirao and Nisida [12] give a proof of this theorem using the direct method
of Feller [1 and 2].
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Feller’s result for sums S, of independent identically distributed random vari-
ables [1 and 2] stated for the Gaussian case where S, = B(n) becomes P[B(n) >
ntf(n) i.o.] = 0or 1 as

5 M exp(— ) < 0o or = o

Since this series is finite if and only if K(f) < oo, the upper and lower class
functions for the discrete time B(n) are identical to those for the continuous
time B(t).

Similar results have been obtained for stationary Gaussian processes. A recent
result is given in Pathak and Qualls [6].

THEOREM B. Let {X(t), t = O} be a stationary Gaussian process with continuous
sample paths and EX(f) = 0. Suppose that the covariance function r(t) satisfies

(@) r(t) =1 — Clt|* 4 o(|#|*) as t — O, for some a with 0 < a < 2 and some
C > 0; and
(b) r(t)logt = O(1) as t — co.

Then, for any nondecreasing positive function f(1),
(1.4) P{X(t) > f(t) i.0. for some sequence t,— oo} =0 or 1
according as the integral

(1.5) J(f) = & (@)Y gp(f(1) dt < 00 0or = o0,
where ¢(x) = (2r)~ix~! exp(—x’/2).

Condition (b) is the conclusion of a sequence of improvements beginning
with Watanabe [13]; see [9]. Condition (a) has been generalized in Qualls and
Watanabe [10] where C is replaced by a slowly varying function H(r). However,
for the purpose of comparison with the result of this paper we keep the simpler
condition (a) as stated. There are analogous results for discrete parameter
stationary Gaussian processes. Improving results of Pickands [7] and Qualls,
Simmons, and Watanabe [11], we cite the theorem from [6].

TueoreM C. If X(1) of Theorem B satisfies condition (b), then
(1.6) P{X(n) > f(n) i.0.}=0 or 1 according as the integral
(1.7) I(f) = 2 ¢(f())dt < 0o or = oo.

Of course, the local condition (a) is not needed.

There were two observations that motivated the present paper. The proof of
Theorem B mainly consists of approximating the continuous parameter X()
by X(¢) restricted to a particular sequence of time {z,} chosen to be more and
more closely spaced as t — co. The “law of iterated logarithm” was then proved
for {X(z,)}. (Note that we continue to say “iterated” even though Theorem B
implies

lim sup,_., X(f)(2log )"t =1 a.s.)
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So, the upper and lower class functions for this discrete time X(z,) are identical
to those of the continuous time X(r). On the other hand, Theorem C is on the
evenly spaced sequence {n} and has a different integral test so that it is possible
for a given f to belong to the upper class for X(n) but belong to the lower class
for the continuous time X(f). The question becomes what is the result for arbi-
trary sequences of times and which sequences recapture the continuous time
result of Theorem B? The main result of this paper, Theorem D of Section 2,
answers this question; and Theorems B and C will be corollaries.

The second observation follows. The Markovian B(r) and the family of sta-
tionary Gaussian X(f) perhaps come closest to each other in the Uhlenbeck-
Ornstein process X(r) whose covariance function is r(f) = exp(—|¢|). In fact
we may write B(r) = t1X(4log ). Noting that P{B(r) > tif(f) i.0. 1] c0} =
P{X(5) > flexp(2s)) i.0. s T co}, we obtain Theorem A as a consequence of the
case « = 1 in Theorem B. Now can the discrete version of Theorem A be ob-
tained from Theorem C? The answer is of course not, since S,/nt = X(4 log n)
and the sequence of times #, = 4 log n are not evenly spaced. One needs Theorem
D. The law of iterated logarithm on arbitrary sequences for Brownian motion
is a consequence of Theorem D and is given in Section 3. Most proofs are in
Section 4.

2. Statement of theorem and discussion. Before the main theorem of this
paper can be stated, it may be necessary to thin out the sequence of increasing
times #,. We let 7, = ¢(n), where ¢ is a change of time function such that
¢(f) T oo ast 1 co. Beginning at an arbitrary j, where ¢(j,) = b, choose the new
®(Jo) = ¢(jo)- Now inductively choose ¢(j) for j > j, to be the first ¢(n;) greater
than ¢(j — 1) + m(log (j — 1))~"* where m > 0 is arbitrary for now but will
be specified if the occasion arises. Without any loss in generality both ¢ and ¢
can be taken here and in the following as strictly increasing continuous func-
tions on [j;, co). In any case the new E(j) =@(j + 1) — @(j) > m(log j)~v=
for j > j,.

THEOREM D. Let {X(t), t = 0} be a stationary Gaussian process with mean zero,

continuous sample paths, and covariance function r satisfying

@ r()=1—C-|t]*+ o(|t|*) as t — 0, for some a with 0 < a < 2 and some
C > 0; and
(b) r(t)logt = o(1) as t — co.

Let () be an arbitrary positive, increasing, continuous function on some interval
[a, oo) such that t,, = ¢(n) 1 oo; and f(t) be an arbitrary positive nondecreasing func-
tion on [a, co) with b = ¢(a). Let A(n) = ¢(n + 1) — ¢(n). Then

2.1 P[X(z,) > f(t,) i.0.] =0 or 1

according as the integral

(2.2) I(fo ¢) = Sf ¢(fo ¢(t)) dt < co or = co,
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where the thinned function $ is defined above, and
d(x) = (2m)~tx~texp(—x?*/2) .
Two particular subcases hold:
Case 1. If liminf,_ A(n)(log n)« > 0, then
(23)  Kfeg)<oo ifandonlyif Kfog) =17 $(f(1)dp) < oo
Case 2. If limsup,_,, A(n)(log n)V* < oo, then
(2.4) I(f o ¢) < © if and only if I(f o ¢) < co,

where ¢(7) = t(log £)==.

Since ¢ is somewhat inaccessible, Cases 1 and 2 are appealing. When Cases
1 and 2 overlap, the integral tests are equivalent; this could be obtained from
Proposition (c) below. The convergence of I(f o @) is independent of the choice
of (m, j,) in the definition of ¢. If lim inf A(n)(log n)”* > 0 then no thinning is
necessary and ¢ can be chosen equal to ¢ for all sufficiently large ¢.

The following propositions answer several questions about Theorem D, and
they are used later.

PROPOSITIONS.
(@) I(fo9) = 3 (f o 9(t) dt = (3., $(f(2)) dg(2), for g = ¢, ¢ or ¢.

(b) I(f o ¢) < coif and only if 3= ¢(f o p(k)) < oo.
(c) The integral I(f o ¢) < oo, where ¢(t) = t(log t)=V* if and only if

{2 (2log t)=¢(f(1)) dt < oo and
(d) I(f o ¢) < oo if and only if
J(f) = 12 (f()"*d(f(n)) dt < oo .
Proors. (a) and (b) are easy since ¢ is monotone.
(¢) Now D,¢7Y(t) = 1/¢'(¢~'(t)) and
¢'(s5) = (log 5)™*(1 — (alog 5)7) = @(s)(1 — («rlog 5)~")/s .

Consequently D, ¢~'(t) = L/{t- (1 — (alog ¢=(£))~")/¢~!(t)} ~ ¢~'(t)/t as t — oo.
Now in addition, for ¢ sufficiently large,

(2.5) t(log Ve < ¢-1(1) < <1 + 2/ ‘ﬁi‘o’o_g’;o’_’>”“ . t(log £y~ .

This may be checked since ¢ is monotone. So now
(2.6) D,p~(t) ~ (log t)V= as t— oo .
The proof of (d) will be delayed. []

CoroLLARY DI1. Let X(t) satisfy the conditions of Theorem D except that
(a) is replaced by (a') r(0) = 1. Suppose the sequence t,1 co satisfies
lim inf,_,, A(k)(log k)? > 0. Then for any nondecreasing sequence of positive a,,

(2.7) P{X(t,) > a, 1.0} =0 or 1
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according as the sum

(2.8) DiwaP(a,) < o or = oo.
In particular, this result applies for any subsequence {n,} of the positive integers,
since A(k) = 1.

Proor. Note that if X(¢) satisfies condition (a) with &« = 2, then Corollary D1
is Theorem D, Case 1. However, every covariance function does satisfy
1 —r@)
t2

lim,_, = (=, AF(dA) >0,

where F is the spectral distribution function and its second moment is possibly
infinite. This implies 7(f) < 1 — Cr* for some C > 0 and all sufficiently small z.
One can now verify that the proof of Theorem D, Case 1 (in the particular case
a = 2) applies here; we only require upper estimates of r(f) near t = 0 in that
proof. Now use Proposition (b) to obtain the test (2.8). []

ReMARK 1. If X() does satisfy condition (a) with a < 2, then Theorem D
describes the larger class of sequences {¢,} that are admitted into Case 1.

Proposition (d) suggests Case 2 of Theorem D can be used to prove Theorem
B, the continuous parameter law of the iterated logarithm. The proof of this
will also be delayed to Section 4.

CoRrOLLARY D2. Theorem B is a consequence of Theorem D.

REMARK 2. The functions ¢(f) = #(log )=#* where 0 < 8 < 2/a includes the
discrete parameter case at one extreme (8 = 0) but captures the continuous pa-
rameter case at the other (8 = 2/a). The intermediate cases 0 < 8 < 2/a fill
the gap between Theorem C and Theorem B.

ReMARK 3. The function ¢(f) = § log ¢ is clearly Case 2, which answers the
question about S, raised in the introduction.

ExampLEs. Case 1. For ¢(f) = t(log t)=#%, B < 2/a, and t, = ¢(k), we have
(2.9) lim sup, _., (a(t)HX(1,) — (a(t,))}}/log, 1, = 1 a.s.,
where
a(t,) = 2logt, + (1 4+ B)log,t, + --- + 2log,_, t,) »
and log, # denotes the pth iterated logarithm.

Cask 2. For all changes of time go(t)' satisfy Case 2 of Theorem D, we have the
Khintchine type result (2.9) where in the definition of a(t,) we replace 8 by 2/a.

OUTLINE OF PrOOF OF 2.9. The changes of time ¢(f) = #(log )=#*for § < 2/a
satisfy Case 1 of Theorem D. For functions

f(t) = 2i(logt + (3 + BJ2) log,t + logyt + --- + (1 + 0) log, 1),
I(f o ¢) < oo for 6 > 0 and = oo for § < 0. This follows from the fact that
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t(log 1)** < (1) < (1 + e)t(log t)?* for all ¢ sufficiently large. This family of
upper and lower class functions for X(z,) imply the Khintchine type result (2.9)
as follows. For almost every sample path w, consider the subsequence of {z,}
(also called #,’s) on which

(a(ty) + 21og, 1)t < X(t,) < (a(ty) + 2(1 + 9) log, 1,)?, 0>0.
The rest is algebra with the main step being
(a + b)t — at = b/[(a + b)t + at] ~ b|2a} when bja—0.

Next, for 8 = 2/a, ¢(f) = t(log t)~#* also satisfies Case 2 of Theorem D. Since
in Case 2 the integral test is independent of ¢ and so the upper and lower class
functions for X{(z,) are independent of ¢, the Khintchine result is (2.9) with
B = 2/a for all ¢ satisfying Case 2. [J

REMARK 4. Letting Z, = max,,, X(t,), one can see that Khintchine type
results like (2.9) apply equally to Z,. We note here that under the conditions of
Theorem C, Mittal [4] also obtains the lim inf behavior of Z, = max,_,_, X(k).
Mittal and Ylvisaker [5] also study the a.s. asymptotic behavior of Z, when
condition (b) of Theorem C is violated.

3. Theorem for Brownian motion on arbitrary sequences. Write B(f)/tt =
X(% log 1), where X(s) is the Uhlenbech-Ornstein process with covariance r(f) =
exp(—|7]). For an arbitrary sequence ¢,, we wish to apply Theorem D with time
change function Z'(k) = } log 1, and A(k) =  log (t,,./t)-

REMARK 5. From Theorem D one can see that Cases 1 and 2 for Brownian
motion can be decided by the asymptotic behavior of log (7,.,/1,) log k as k — oo.
However, by using the inequality x/2 < log (1 4+ x) < x, for 0 < x < 1, with
x = At,/t, where Az, = t,,, — t,, we see that Case 1 and Case 2 can be decided
by the asymptotic behavior of At,/t, log k instead. The possible exception where
Az,/t, > 1 on an infinite subsequence can be ignored since both limits equal oo
on such a sequence.

In order to apply Theorem D, we may require the sequence ¢, to be thinned.
Writing 7, = ¢(k), begin with ¢(j,) = ¢(j,). Thereafter define ¢(j + 1) to be
the first o(n,,,) greater than ¢(j) exp(m/log j) for some m > 0. We have the
following theorem.

TueoreM E. Let {B(t), t = 0} be standard Brownian motion. Let ¢(t) be an ar-
bitrary positive, increasing, continuous function on some interval [a, co) such that
t, = ¢(n) 1 oo, and f(1) be an arbitrary positive nondecreasing function on [b, o0)
with b = ¢(a). Let A(n) = ¢(n + 1) — ¢(n). Then

3.1) P{B(1,) > t,}f(t,) i.0.} =0 or 1
according as the integral
(3.2) [(fo@) = 2¢(feog(t)dt < oo or =oo,

where the thinned function @(t) was defined above.
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Two particular subcases hold:
Case 1. If liminf,_, (A(n)/t,) logn > 0, then

(3.3) I(fod) < co ifandonlyif I(fo¢)< co.
Casg 2. If lim supn_,;o (A(n)/t,) log n < oo, then

(3.4)  Ifo@)< oo  ifandonlyif K(f)= g:f_zt(’_) G(f(1)) dt < oo .

Proor oF THEOREM E. We have already indicated in the introduction how
Theorem D applies; it only remains to derive the integral tests for Cases 1 and
2. The time change is &(r) = 4 log ¢(f) and the other function to be used in
Theorem D is fo ¢ o &' For the Case 1 test, the composition function is
fopo&™1o& = fo¢and the test is unchanged by the time change &(r). For
Case 2, the integral J(f) = = f%(#)¢(f()) dt in Theorem D modified by Propo-
sition (d) becomes J(f o ¢ o &) for Theorem E. Now &~(r) = ¢~ o ¢ and

J(f o e¥) = §= fAe*)p(fe™)) dt = §= fAO)P(f(1)) di2t = FK(f) - 0
The following propositions give equivalent integral tests.
PROPOSITIONS.
(e) K(f) < oo if and only if {= (log log t)¢(f(¢)) dt/t < co.
(f) K(f) < oo if and only if I(f o ¢) < oo, where ¢(t) = exp{2t(log )~}

Proor. Rather than prove these directly, we derive them from Propositions
(c) and (d) by the change of time argument. []

REMARK 6. Notice that the sequence of times ¢, must be quite sparse, say
o(t) = exp{2t}, before it fails to capture the continuous case result for Brownian
motion. Since ¢(f) = exp{log ¢} = ¢ is Case 2, this again explains why the con-
tinuous parameter B(f) and the discrete parameter B(n) = S, have the same
integral test. Since the integral test for Case 1 of Theorem E is unchanged from
that of Theorem D, the upper and lower class functions for B(z,)/t,* are derived
from those for X(z,) with « = 1 by composition with &(¢) = } log .

ExampLEs. Cask 1. In particular for ¢(f) = exp{2t(log#)=#?}, g < 2, and
t, = ¢(k), we have

(3.5) lim sup, _., (a(t,,))i{t,,—!B(t’k) — (a(ty))t}log, t, =1 a.s.,
where a(t,) = (21og, ¢, + (1 + B)logst, + --- + 21log,_, ;).

Cask 2. For all changes of time ¢(7) satisfying Theorem E, Case 2, we have
the Khintchine result (3.5) where in the definition of a(#,) we replace 5 by 2.

4. Delayed proofs. We shall first prove Theorem D, Case 1. For this purpose
we shall need the first five lemmas that follow.

LemMMA 1. Let {I,:n =1} be a sequence of random indicators such that
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2.7 El, = co. If for some A, 0 < A < oo, Var (X 71,) < A(X T ELL)? for all
sufficiently large n, then
(4.1) PIE? L= ool 2

1+ 4

Proor. The proof is based on a lemma of Paley and Zygmund and is given
in [6].

LEMMA 2. Suppose X,, X, are distributed according to the standard bivariate nor-
mal probability density n(x, y; p) with covariance p. Then

(4.2) PIX, =2 x, X, 2 x] = 29(0){1 — @(x((1 — p)/(1 + 0)))}

where ¢(x) = (2m)~tx~'exp(—x*/2) and ® is the standard normal cumulative dis-
tribution function.

Proor. This is Lemma 2.3 in Pickands [8].

LemMA 3. Let I, and I, be the indicators of the events [X, = x] and [X, = y],
respectively, where the random variables X,, X, are described in Lemma 2 above.
Then

(4.3) |Cov (1, L) = le|n(x, y3 le]) -
Proor. This is a special case of Lemma 1.5 in Qualls and Watanabe [9].

LEMMA 4. Suppose that X(t) satisfies Theorem D, and for Case 1 that the con-
clusion (2.1) (where I( f o ¢) = oo) holds under the added restriction: for all large t,

(4.4) Ut = foo(t) = v(n)}
where u(t) = 2logt — log logt and v(t) = 2logt + 2Aloglogt, A > L. Then the
conclusion of Theorem D Case 1 when I(f o ¢) = oo holds without this restriction.

Proor. The proof is similar to that of Lemma 1.4 in [9].

LEMMA 5. Let A, and B, be two sequences with B, | co as n | co. Define a, =
A, — Ay, A, =0 and b, = B, — B,_,, B, =0. If limsup,_, a,/b, < C then
limsup, ., 4,/B, < C.

Proor. Easy.
The last lemma is needed in the proof of Theorem D and Theorem B.

LEMMA 6. Fora >0,y > 0,and 27%* < b < 1,

P[X(0) = x — 7/x, MaXyg,cq,-2/a X(1) > X] < M(C, a,
¢(x) N

where M(C, a, 1) is a finite positive constant.

(4.5) lim sup, _,,, 7) >

Proor. This is Lemma 2.4 in [10].

Proor oF THEOREM D Cask 1. In Case 1, suppose I(f o ¢) < co. Let I, be
the indicator of B, = [X(¢(k)) > f(¢(k))]. Since 1 — O(x) ~ ¢(x) as x — co, we
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have ¢ EI, = 37 P(B,) < oo if and only if 3¢ ¢(f o ¢(k)) < oo. According
to Propositions (a) and (b), I(f o ¢) < oo implies 35 EI, < co; and the Borel-
Cantelli lemma says E(};7I,) < oo implies 37/, < oo a.s. SoP[X 0], = o0] =
PLX(¢(k)) > o p(k) i.0.] = 0.

Now we suppose I(f o ¢) = co and by the above argument 333 EI, = co. The
proof consists of using Lemma 1 as a converse to the Borel-Cantelli lemma by
showing lim,,_,, Var (3" I,)/(X3" EI)* = 0. We first deal with several little-oh
terms in the computation of Var (3] I,).

(4.6) Var (30h_; 1) = 2=, Var [, + 2 3n= et Cov (I, ) -
Since Var I, < ElI,} = EI, and }}7 EI, — co, we have
4.7) 2t Varl, = o(X7 EL) as n— oo.

Without loss of generality, we invoke Lemma 4 for the remainder of the proof
of Case 1. We also note A(k) > m(log k)~¥* for some m > 0. We now need
the following claim.

CramM 1. Suppose A(j) = o(j + 1) — ¢(j) = m(log j)~V*. Then for all p, k
such that o(k + p) — ¢(p) < B, a constant, we have lim,__ k/p = 0.
Proor or cLamM. Notice
Bz o(p+ k) — o(p) = 5L AG) = k - m(log (¢ + k)™,
so that k/u < (B/mp)(log (1 + k/p))¥=. Considering this graphically, we see

that 0 < k/p < x, for fixed p > 1, where x, = (B/mp)(log p(1 + x,))V*, and
that it suffices to show x, — 0 as 4 — oo.

Since (x 4 y)* < Cy(x* + y*) and log (1 + y) < y for x, y, a > 0,
log (14 x,) = 7‘1(_ log (1 + x,)* < _clv_ [log C, + x,*].
Consequently
B\ B \* 1 1
«— (Y log (1 g<_> [1 Jiogc, + 1 }
X, (W) [log ¢ 4- log (1 4 x,)] = ) [[O8#F B Cat o,

which in turn implies x,* — 0 as ¢ — oco. []

Consider that portion 3} of ==l >i»=#Cov (I, I,,,) where o(y + k) —

1=y

¢(¢) < 6 and 6 > 0 is arbitrary but chosen small in the following. By Lemma 2
4.8)  Cov(ly Luye) = EL T, = 2¢(x){1 — @(x((1 — p)/(1 + 0))h)}>

where x = fo ¢(p); and 1 — p(p(p + k) — ¢(p)) = A4,9) - C- |p(pr + k) — p(p)|"
by condition (a) of Theorem D, where 4,(3) > 0, for ¢ sufficiently small. Now

for Case 1, ¢(y + k) — p(u) = mk(log (s + k)~ and
(4.9)  x((1 = p)/(1 + p))t = (Ay(9) - C)2(mk)**f o p(p)(210g (1 + k))~E.
By Lemma 4 and Claim 1,

(4.10) [Pop(p) o 2logp —loglogp ¢ 0 1, .
Zlog (1 + k) = 2log (1 + k/p)
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Since fo p(#) - oo and ¢(x)(I — x~?) < 1 — D(x), we have O(f o o(p)) <
(1 + ¢)EI,, and
Z(i) COV (Iy’ 1{(+k)
(4.11) = 2Ti, Lizt 2(1 + ©)EL{1 — ®((A4/ C)¥(mk)=*)}
= G (m)- 2=, El, = o(X3, EL), as n— oo,

where G (m) = 2(1 + ¢) 317 {1 — ®((4,/C)¥(mk)*?)} < o0, and 0 < A/ < A,(9).

Now consider that portion 3 of ¥; 37 Cov (I,, 1,.,) where 6 < o(p + k) —
¢(¢) < k*d, where the positive integer k* is arbltrary now but will be chosen
large later.

Again by Lemma 2

(4.12) Cov (L L1i) < 2¢(f o p(p)){1 — @(x(1 — p)i(1 + p)~H)},
where x = fo ¢(y); and 1 — p > some r > 0, since (i + k) — o(p) > 0. We
also know k < (Bk*/m)(log (¢ + k))¥=, which is equivalentto 1 < k < b, where
b, = (6k*/m)(log (© + b,))V*. Consequently,

I COV( 1,4)
(4.13) 1Zie k=1 2(1 + S)EI “P(f o o(p) - (£/2))

= 25,2(1 + 9)EI, - 7 " (log (1 + b 4(f o o(p) - (£[2)})
o(X5, EL) as n— oo, forevery k*>1,

since (10g (: + b,))* exp{—1} - [0 p(s2) - £/2} < (log (1 + b,))"(log )"~/ —> 0
as ¢ — oo by Lemma 4 and Claim 1.
It is somewhat easier to obtain lower bounds on Y] and 9,

—(Z + D) Cov Iy L) < (£ + T “)ELEL,

S /I—Jo Zk 1 ET EI/4+k

= X5 EL(b, - EI) = o(X3 EL)
as n— oo, since b, - EI, —» 0 as pt — oo by Lemma 4 and Claim 1.

It will be necessary to consider the sum Y7 I, in blocks. Consider the block
of times {¢(k): di < ¢(k) < di + 8} for a small & > 0 to be chosen below. Write
k; = first integer > ¢~%(di) and m, = k,,, — k,, so that the block of times —
{o(k), k; < k < k,,,} and contains m, points. Define L, = Z#_ol Lyypand M, =
2ii=iym; if m; = 0, take L, to be empty. Consequently, for M, , < N < M,,

(4.15)  Var (X [;) = Var (51 L)
= 2i, Var (L) + 2 32} vzt Cov (L, L)
is to be compared to (3" EL;)*. Note that L, may be incomplete, but that this

does not affect the following proof. Now the results for 31 and 2.1 obtained
earlier can be summarized by

(4.16) 1o Lo Cov (Lyy Lyyy) = o(X" EL,)? as n— oo

t—to

for each fixed k*.

(4.14)
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In the remaining sum

(4.17) ! S1cie Cov (Lys Lyyy)

= ik MRtk it Nvig Cov Do Dy v)
we note o(kyyy + v) — ok + 1) Z p(kip) — oy — 1) = (k — 1) = (k* —
1)d. Since k = k* and k* can be chosen arbitrarily large, Lemma 3 and con-
dition (b) of Theorem D imply

|COV (L, 4> Ty )l = || - (X, p5 |1])
where x = fo p(k; + 1), y = fro p(kysr + v), and [r] = [r(p(k; + ) — @(kpwr +
v))| £ Mj21log k6 < 0, for any M > 0. Now

. M T xt — 2lr|xy + y”}
4.18 . s Vs < . —
( ) Irl - nCes 3 Irl) = 2logkd 2m(l — 9%} exp{ 2(1 — r?)

110

1 Mxy
= T =) 2logks exp{2lo k5}¢( 90 -

Since k;,, +v < k,,, for k < n — i, and
Mxy - Mf?o p(kyp1) o MV(kyin)

2logkd = 2logkd = 2logkd
define
(419) ak” — Mv(kn+1) CXP {M’U(k%_'_l)} ,
2log ko 2.log ko

where v is given in Lemma 4. Note also that EJ, , = ¢(x)(1 — x7%) = (1 — €)¢(x)
for x = fo ¢(k; + p) sufficiently large. Consequently (4.17—4.19) yields

2 ekt

’) = 2 2 i="]:)
(I — e)%(1 — o}
+ o(L"EL).

We now use the L’Hopital type result, Lemma 5, for the ratio of Var (X" L)),

or rather its upper bound in (4.20), to (3" EL,).

CramM 2. Let 4, = 3728 3i%ch f(i, k) and B, = (X1, h(i))*. Then

L=lo
a A, — A,y Pz fli, n — i)

b, B,—B,, 2h(n){2zo h(i)} — k¥(n)
Proor. Easy.

(4.20) Var (X1, L et oy"EL,EL,,,

By this claim and Lemma 5, it suffices to study the ratio
2/(( — oy — &) - 3o e EL,EL,

(*+21) 3EL (3, EL) — (ELy

S 0o = it G- ELJ D3 EL -

This study reduces to estimating a7_; defined in (4.19).
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Divide the sum in the numerator of (4.21) into two parts, for z = k,, .,
(@) isk, =k;<0,-zor
(b) i20,-z< k; < k,_4 < k,,, = z (possibly empty),
where §, = 1 — z77(log z)~* and 7 satisfies 0 < 26 < 7 < 1. Let p denote the

integer such that k, < 6,z < k,,,. For part (b), we have M/2log é(n — i) < 0,
for n — i = k* and k* sufficiently large, so that

(4.22) _Z_;’_‘fl%% < 5v(2) exp[0v(2)] %
Now
NP EL < T mg(f o (k) < O(f o p(k,i)) Dpzk m,
S O(f o plkpyn))z — 0,2],
while

L EL =z Xt (1 = emip(f o p(kisn) 2 (1 — P(f o ok, i)l - 7 — ki ] -
Consequently, using Lemma 4,

S®ar_ EL, < 9v(2) exp[6v(2)](z — 6,2)
Z@WEL, T (1—9b,-z— k]

(4.23) ~ 2_15}& [z*(log 2)2‘4"][2‘7'(10g 7)Y
—¢
50 as z=ky,— co.
For part (a),
(424)  on—dizon+ 1) —0(p+ 1) Z p(kps — 1) — p(kysa)
= Zia A 2 (2 — 1 — 6,2)m(log 2=,
where z = k, ;. Sincelog ((z — 1 — 6,z)m(log z)~"*) ~ (1 — y)log zas z — oo,
Lemma 4 yields lim sup, ., az_, < (M/(1 — 7)) exp(M/(1 — 7)) for part (a), and

Var (57 ,) _ 1 M M
(CVELy S —p(l—apl—7 P15

In fact we may let § — 0, y — 0;°¢ — 0 in (4.25), so that, from Lemma 1 and
under the restrictions of Lemma 4,

(4.26) P[>r I,

(4.25) lim sup,_,,

1
= e — 0
T M ep )

Now condition (b) of Theorem D allows one to take M = 0. []

PRrooF oF THEOREM D FOR ARBITRARY SEQUENCES. Recall the thinned sequence
{p(k)} < {¢(k)} satisfies Case 1. By Proposition (b), we have I(f o ¢) < oo if
and only if Y ¢(f o ¢(k)) < co. Further, if / = min (f, v o ¢~%) with v(¢) =
(3 log ), then

(4.27) SeP(fod(k)) < oo -ifandonlyif 35 ¢(fo @(k)) < oo .
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This follows easily from the facts that ¢(f o @(k)) < ¢( f o B(k)) < ¢(f o ¢(k)) +
¢(v(k)) provided f'is unbounded and & is sufficiently large, and that Y}y ¢(v(k)) <
oo. If fis bounded, then both sums are infinite.

Suppose 35 gb(fo @(k)) < oo. Define the intervals I, = [¢(k), ¢(k + 1)) and
Ji = [@(k), @(k) + d(k)), where d(k) = m(log k)~"/*. Note that J, C I, but that
every ¢(i) € I is also in J,. Consequently, we have

(4.28) A = [SUPyyer, X(9(F) > fo (k)] c [sup,c,, X(2) > fo (k)] = A,
c [SuPteJ,, X(@0) > fopk)] = 4,.

By stationarity of X(¢),

(4.29) P4, = P[supyz,<aun X(t) > f o ¢(k)]

< P[SUPocican2/a X(2) > x],  for x = fo@k).
This last statement follows from x = f o ¢(k) < v(k), so that log k = 3-'x* and
d(k) < ax~%= where a = m3"*.
Since
[SUPp<tcan—2/a X(F) > X]
C [X(0) > x — y/x] U [X(0) = x — 7/x, SUPy<i<an-2/a X(f) > X]

for any y > 0, and since ¢(x — y/x) ~ e"¢(x) as x — oo, we obtain from
Lemma 6,

(4.30) lim sup, _.. P[supostéa:b_(z/; X(r) > x] <er 4+ M(C,a,7) < .
x

Consequently
(4.31) Y P4 < Yp PA, < Yy PA, < const. times Y17 ¢(f o @(k)) < oo .

The Borel-Cantelli lemma now shows
O = P[4, i.0.] = P[X(e(i)) > fo ¢(i) i.0.].

For the second half of the proof, suppose I(f o ¢) = co. Since [X(¢(k)) >
fo @(k)i.o.] C [X(e(k)) > fo ¢(k)i.0.], an application of Theorem D Case 1
to the event on the left yields probability one for both events. []

Proor oF THEOREM D Case 2. Here there exists m* > 0 such that A(k) <
m*(log k)=« for all k. Suppose the sequence {¢(k)} is thinned to {@(k)} as
discussed preceding Theorem D with m = m*. Then m*(log j)~¥* < A(j) <
2m*(log j)=v=.

It suffices to show under Case 2 that
(4.32) I(fo@)< oo if and only if I(fo @) < oo .

By Proposition (c), consider, instead of I(f o ¢), the following

(4.33) X" P(f(m)(2log (n — 1))V < §2 ¢(f(1))(2 log 1)« dt
= X7 ¢(f(m)(2log (n + 1))
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On the other hand by Proposition (a), we have
(4.34) X2 d(fm)[g7(n) — ¢7(n — D] < K[ o @)
= X7 (fm)p~H(n + 1) — ¢7X(m)] -

Whatever continuous increasing version of ¢ is chosen, we define k, = first
integer = ¢~*(n) and obtain

n—(n—1)z @k, — 1) — ¢(k,_;) = Thaz?_ A(j)
> (k, — 1 — k,_)m*(log (k, — 1))«
which implies

) — Hn — 1) S ky — (hyoy — 1) = (ky — 1) — kyy + 2
(4.35) < L (log (k, — ) + 2

1 -
< - (log g (m)" + 2.

Using the upper bound on A(j), we also obtain

s (08 (¢74(n — 1) = Dy — 2.

(4.36)  ¢7n) — ¢ (n— 1) 2

It then suffices to show (log ¢~*(n)/log n) — 1 as n — oo. Letting

T =¢7Y(n), lim,_, log ¢7X(n) _ lim, logr
log n log ¢(7)
Since
m* 35, (log j)™ < ¢( + 1) — ¢(jo) < 2m* 5, (log /)™,
one obtains

log ¢(v) ~ log (X (log j)~"*) ~ log z(log 7)~"

~ logr as 7-—o00. 0

It should be remarked that the proof of Theorem D for arbitrary sequences
is sufficient to prove Theorem B as well.

Proor orF THEOREM B. For the continuous parameter ¢, we select a discrete
sequence 7, = ¢(k) as follows. Begin at any #, = ¢(j,). Choose ¢(k) so that
A(j) = 2m*(log j)~** and choose @(k) = ¢(k). The sequence {¢(k)} is both Case
1 and Case 2 so that the integral test of Theorem B is identical to all those in
Theorem D, provided we can prove Proposition (d) below.

As in the discussion following (4.27), let J, = I, = [¢(k), ¢(k) + d(k)] where
d(k) = 2m*(log k)=V* and A, = [sup,.,, X(t) > fo ¢(k)]. We then showed in
(4.31) that 3}~ P4, < oo if I(f o ¢) < oo which in turn completes one half of
Theorem B.

Suppose J(f) = co. We now involve Lemma 1.4 of [9] for Theorem B, which
is analogous to Lemma 4 in this paper. Under the restrictions of this lemma,
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we can apply Theorem D, Case 1 to the event [X(z,) > f(#,) i.0.] C [X(#) > f(?)
i.0. as t 1 co] obtaining
1

. 0o — -~
(4.37) < 1 4+ MexpM —

= P[X(r,) < f(t,) i.0.]

< P[X() > f(t) i.0.as 1] oo],
where M is the implied constant of the condition () log t = O(1) as t — .
Now the condition that r(f) — 0 as t — oo, or even the ergodic condition
(1T) §§ r(t)dt — 0 as T — oo, implies a.s. invariant events have 0 or 1 proba-
bility. Since f is nondecreasing, we have

A=[X(t) > f(t) i.0.as t] o] C 4, =[X(t+ 7) > f(t) i.0.as t] o]
= [X(#) > f(t — 7) i.0.as 1] 0],
for any shift = > 0.
By stationarity,

P(A N A,)=PA,. — PA
= P[X(t —7) > f(t — 1) i.0.as ] 0] — PA
=P4A—-PA=0.
Consequently, (4.37) implies P(4) = 1. ]

Proor or ProrositioN (d). For the integral J( ) = \2 f(O)Y*¢(f(1)) dt, we
show J(f) < oo if and only if J(f) < oo, where f(t) = min {f(¢), v(t)}, v(¢) =
(2logt 4 241oglogt)t, A > 1/a + 4. The proof of this follows that of (4.27).
Now let f(r) = max {f(t), u(f)}, where u(t) = (2logt)t. We have shown else-
where [9, Lemma 1.4] that J(f). < oo if and only if this J(f) < oo. Finally,
we may without loss in generality take f(f) ~ (2log¢)* as 1 — oo, and obtain
J(f) < oo if and only if {2 (2log)V*¢(f(¢))dt < co. Now Proposition (c)
completes the proof. Note that the without loss in generality statement proba-
bly requires that we repeat the first two arguments of this proof for the new

integral (= (2 log t)V*¢(f(?)) dt. [
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