The Annals of Probability
1977, Vol. 5, No. 6, 875-887

MARTINGALE INVARIANCE PRINCIPLES

By PETER HALL?
Mathematical Institute, Oxford
Let {(Snj, Fnj), | =Jj < kn} be a square-integrable martingale for each
n=1,2,3,.--. Define Xn;j = Snj — Sn,j-1 (Sno =0), U:J- = sz=1 X:i,
U, = Uy, and for each z€ [0, 1] let £u(z) = U;* Dhn, Xa; (U, U S 2)
and 7a(2) = Dkn, X (U, ;= 2); &n and 7, are random elements of
D[0, 1]. Sufficient conditions are given for £, to converge in distribution

to Brownian motion and for . to converge to a mixture of Brownian
motion distributions. We give several applications and examples.

1. Introduction and summary. Let {(S,;, & ,;), 1 < j < k,} be a zero-mean,
square-integrable (forward) martingale for each n = 1, 2, ..., and define S, =
Snk”’ an = Snj - Sn,j—l (S'»O = 0)’

Uy = ZiaXh, U=UL . V= DL EXL|F ) and
V'n2 = ’Ifk .
{(Snjs F nj)s 1 £j =< k,yn = 1} is called a triangular martingale array.

In recent years a large body of central limit theory has been developed for
triangular martingale arrays. The objective has usually been to study the con-
vergence

(L.1) S, —, N, 1)
and it has been found necessary to impose a normalisation condition on some

estimate of the variance of §,. Brown (1971) and Scott (1973) impose the con-
dition

(1.2) Vo, 1

while McLeish (1974) uses

(1.3) U2 —,1.

McLeish has shown that if

(1.4) lim,_ limsup,_ . P(V,>2) =0

and if the conditional Lindeberg condition

(1.5) forall e>0, X,E[XLI(X,,|>¢)| Fn;u]l—,0
is satisfied, then

(1.6) max;g, (Uz; —V3)—,0.

That is, the variance estimates Uy; and V7, are asymptotically equivalent.
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876 PETER HALL

Section 2 contains our invariance principles. Let us discuss their more famil-
iar one-dimensional analogues. In the theorem we use McLeish’s techniques to
show that (1.3) can be relaxed if we consider the convergence

1.7) S,/U, —_, N, 1)

rather than (1.1). There appears to be little published work in this area.
Blackwell and Freedman (1973) and Freedman (1975) have shown that if S, is
considered as occurring at time V,? rather than at time n then the process S,
resembles Brownian motion. Hence it is natural to study the convergence of
S,/V ., and in view of (1.6) this is usually equivalent to studying the convergence
of §,/U,. Chatterji (1974) and Eagleson (1975) have proved results on conver-
gence to mixtures of normal laws. They give conditions under which

(1.8) S, —, O,

the distribution with characteristic function E exp(—4#*T), where T is a random
variable. Their results are largely contained in our corollary. In a different
approach to the problem, McLeish and Drogin (1972) have shown that normali-
sation conditions like (1.2) and (1.3) may be avoided if instead of (1.1), we con-
sider the convergence

S,, —. N, 1),

where v, is a random variable.

Instead of condition (1.3), we ask that it be possible to approximate to U,’ by
a variable u,* which does not depend very much on the nth row of the array.
Our theorem is stated for “near martingales” rather than martingales, and spe-
cialised to martingales in the corollary.

Section 3 is devoted to examples, while Section 4 contains some proofs of
results in Section 2.

Finally, let us give some definitions and notation. Ife,, 8,andy, (1 £ n < o)
are random elements of D[0, 1], we will understand the condition

(an’ ‘Bn’ Tn) _).9 (a‘n’ 1800’ rw)

to mean that for all «_-, .- and y-continuity sets 4, B and C, respectively,
Pla,e A, p,eB,1,eC) = Pla,e A4, . eB,r.€C)

(see Billingsley {1968), Theorem 3.1). J(A) denotes the indicator function of
the set 4, and A4 denotes the complement of 4. Almost sure (a.s.) convergence,
convergence in probability and convergence in distribution (weak convergence)
are denoted by —, ., —, and —_, respectively. The variables X, are “o(1) in
probability” if X, —, 0 as n — co. The variables S, are said to be adapted to
the o-fields .<,; if each S,; is &, -measurable. If & and ¥ are o-fields, let

.4V & denote the smallest o-field generated by > u <.

2. Invariance principles. Let T > 0 be a variable with distribution F, let W
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be standard Brownian motion on [0, 1] and let 7" be a copy of T, independent
of W. Define W, = (T"){W, a random element of C[0, 1].

THEOREM. Suppose the square-integrable variables S,,, S,,, - - -, S, are adapted
to the o-fields =, ;, where 2, C &, S --- & &, (1= 1). DefineX,; =S,; —
S, Ui= i, X2 and U, = Usi,. For each z €0, 1] let

7.(2) = 25 X (U, 7055 < 2)
and §,(2) = U, "y,(2). &, and v, are random elements of D[0O, 1]. Suppose that
Y i 174

(2.1) lim,_, E(max,g, X3;) =0
and that there exist variables u,’ adapted to the o-fields &, such that
(2.2) v —u—,0.

If

(2.3) lim,_, lim inf,_ P(U, > d) = 1
and

(2.4) 2 [EXa; 1 & 5)l =5, 0
then

(2.5) &, oL W.
(Condition (1.7) is a corollary.) If

(2.6) U, max;g, X3, —,0,
(2.7) Ur—-_,T

and

(2.8) Ut 25 |E(Xa | Z 5201 =5 0
then

(2.9) (s U?) = Wi, T') -

(Conditon (1.8) is a corollary.)

CoroLLARY. Let {(S,;, #,;),1 £ j < k,,n = 1} be a zero-mean, square-inte-
grable triangular martingale array, and define X, ;, U, &, and 7, as in the theorem.
Suppose (2.1) holds,

(2.10) Uur—,T,

and either

(2.11) T is measurable in (3., 5 .

or

(2.12) k, 1T oo and i © F gy forall j<k,.

Then (2.9) holds, and if T > 0 a.s., (2.5) is true.
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If (2.3), (2.4) and (2.6)—(2.8) hold simultaneously, then of course (2.5) and
(2.9) can be combined, so that (£, 5,, U,}) —_, (W, Wy, T"). The processes £, and
7, can often be approximated by simpler processes. For example, suppose the
triangular array is derived from a martingale {(S,, % ,), n = 1}, in the sense that
S,;=c,”'S, for constantsc,. Let X, =S5,—S,_,, 9,*(z)=c¢, 11 X,;1(c,%c;’< 7)
and &,* = U, %c,n,*. Ifc,? X2 X?—,. T > O0a.s. then||§, — £,*||and ||, —
7.*|| —, 0, where || || denotes the uniform norm on D[0, 1].

3. Some examples. This section is devoted to examples of the invariance
principles in Section 2.

ExampLE 3.1. Let X,, n > 1 be martingale differences, S, = } 7 X, and

U, = Xt X;*. Supposec,—E(max;g, X;)—0andc,*U; —,T > Oa.s. Deﬁne
77”(2) =c,! Z X; [(U;?U? < z2) and €, = Uple,n,. Then (§,, 7,,¢,7’U;) >,
W, Wg, T). ThlS example may be applied to prove new central limit theorems
for stationary sequences, as in Scott (1973).

ExaMpLE 3.2. Suppose {(S,;, F ,;)» 1 < j< k,,n = 1} is a triangular mar-
tingale array. This example shows that (2.1) and (2.10) are not sufficient for
either (1.7) or (1.8).

Let W(#), t = 0 be standard Brownian motion and define

t,; = 1/n if 1<j<n,
= I(W(1) > 0)/n if n+1<Zj<2n,
T.; = 2iytu = W(T,;) and & ,; = (o-field generated by S,,, ---, S,;),

1< 2n = k For each n, {(S,;, % ,;), | £j < 2n} is a martingale, (2.1)
and (2.10) hold, and S, = S, ,, = W()I[(W(1) < 0) + W(2)I(W(1) > 0). The
distribution of S, is not a mixture of normals and S,/U, does not converge
weakly to N(0, 1).

ExAMPLE 3.3. This example shows the need for a condition which restricts
the amount of dependence between U,’ and the differences X, X,,, - - -, X, .

Let Y,, Y,, - .- be mutually independent symmetric +1 variables and let m(n)
be an integer between 1 and n. Define I, = I(Y,_puys1 + --- + Y, > 0),
X,; =Y;n} if 1<j<n,

=Y,Int if n41<j<2n,

= Y, X,,and &, ; = (o-field generated by S,,, S,;, - -+, S,;), | £ j< 2n =
k,. For each n, {(S,;, & ,;), 1 <£j < 2n} is a martingale and U,’ = U, ,,
1+ I,. If m(n) =1or m(n)— oo then U2 —_1 4 I where [ is a symmetric
0—1 variable, but in no case does U,* converge in probability. Condition (1.7)
holds if and only if m(n)/n — 0, and when this is the case, (1.7) may be obtained
from the theorem by setting &, = &,V (o-field generated by U,?) and
ll,,‘2 = Uﬂ2.

ne

ExaMPLE 3.4. We begin by constructing a linear martingale {(S,, %), n = 1}.
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Then we define a triangular array which satisfies the conditions of the theorem
but for which there do not exist constants ¢, and a nonidentically zero variable
T such that U %/c,*—_T.

The martingale {(S,, &), n = 1} is built up in blocks of differences X, =
S, — 8,_,, with & = (o-field generated by X, X,, - .-, X,). LetY,, Y,, ... be
mutually independent symmetric +1 variables. The first block is of size 2:
X, =Y, X,=Y,I(Y, > 0). Suppose we have defined N blocks and the nth was
of size s(n). The (N 4 1)th will be of size

S(N + 1) = 2[ XV s(n)]* = 2¢(N)?, say,
and is defined as follows. Let I,; = I(Y, vy, cxy > 0) and
Y, =X, if y(N)<n< t(N)+ t(N)?,
=X, I, if #(N) + t(N)* < n < t(N) + 2t(N)*.
If(N) <n < t(N+ 1)let X,;, =n-tX,,
u = nN = DI+ L) + 07 Do X/
P(N) = t(N — 1) + «(N — 1),

g(N) = t(N) + #(N)’ and &,; = &, V (o-field generated by Y, ,, and Y ).
The theorem implies the invariance principle (2.5), but in this case there do not
exist constants c, and a nonidentically zero variable T such that U,%c,* —_ T.

ExaMpLE 3.5. Finally, an example of an infinite martingale {(S,, %), n = 1}
for which S, /U, -_ N(0, 1). It is constructed in the same way as the infinite
martingale in Example 3.4, except that here I,,, = (3 'S %* Y, > 0). In this
case, S,/U, does not converge in distribution at all.

4. Proofs.

PRrOOF OF THEOREM. We will prove only that (2.1), (2.2), and (2.6)—(2.8) are
sufficient for (2.9). First let us prove:

LeMMA. Suppose {(S,;, ;) | < j < k,}is a martingale and &, is a sub-o-field
of F,, such that E(X,,|<,) = 0. If u,is &,-measurable then (2.1), (2.2), (2.6)
and (2.7) are sufficient for (2.9).

Note that (2.9) is equivalent to the pair of conditions:

for all sequences 0=z, < 7z < -+ <z, <1 and real numbers
4.1) tytyy ooyt

P’

limnqoo |E exp[i Zk tk(n'n(zk) - 77*»(216—1)) + iSU'nZ]

— Eexp[—4T X ,%(2 — z4—y) + isT]| =0,
and

4.2) the sequence of random elements {»,, n = 1} is tight.

PROOF OF (4.1) IN LEMMA. Suppose first that for some 2 > 0, P(T > 2) = 0.
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u, can be chosen such that P(u,* > 21) = 0 and (2.2) is satisfied. Fix 6 > 0,

define
u,(0) = ol(u, < 0) + u,I(u, > o)

(then u, = u,(0)), and for each real z let

7710,(5’ Z) = Zj an I(un(a)—zU'rzt,j-—l § Z) .
For fixed 4, »,'(d, +) restricted to [0, 1] is a random element of D[0, 1]. Since
u,(0) is &,-measurable and E(X,,| <,) = 0 then sequences like

Ppp = D™ X, Hu, ()02 ,_, < 7)

nm n,j—-1 =
and
Qun = D7 X, (2, < u,(0)*U; ;- £ 2,)

are zero-mean martingales with respect to the g-fields &, (1 < m < k,,).
LemMma A.
4.3) Forall ¢>0 and ze[0,1],
lim,_, lim sup,_,, P(|9,(z) — 2,/(0, 2)] > ¢) = 0.
PRrOOF OF LEMMA A.
U702 — u,(0)7*02 1] < U7X, + |u,(0)*0,2 — 1|
and so on the set
F,={U,"max,,, X;; < A/2;u,(0)*U,* — 1| £ A/2)
we have the following inequalities for all j and z:

I, (3) U,y < 7 — D) £ HU,U; < 2) < Hw,(0) UL, < 7 + A).

ni-1 =
Hence on F,,
[74(2) — 2.'(9, 2)]
= |2; X {I(U, U5 < 2) — 1w, (0)7°U5 ;- < 2)}
< MaXogp cmysk, | 227 2me1 Xai l(Z — A < u,(0)2U2 ;) < 7 4 Q)|
S 2maX,g |27 X, (2 — A < u(0)*U; ;o < z + D).
On the set G, = {|U,> — u,’| < A u, < 9},

[7775(2)[9 [74"(9, z)[ = max,, <, |Z;'n=1 anl
= maX,g, |27 X, (U; ;.. < A+ 0%
Therefore
P([74(2) — 7. (9, 2)| > ¢)
é P(maxmsk,, IZ;LI X'njl(z - A < u’n(a)—zUij—L é z + A)l > 5/2)
(4'4) + P(maxm§k,, IZ;Ll X’nd(U:,:i—l é A + 52)' > 5/2)
+ P(F,nG,)
= P(U, " max;g, X5, > A2) + P(JU,* — u,?| > A)

+ P(ju,(0)°U, — 1| > AJ2; u, > 0) .
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(2.2) and (2.6) imply that the first two terms on the right-hand side are o(1).
The last term does not exceed
P(U,? — u,? > Ad%2) —» 0 as n-—oco.
Hence
(4.5) P(F,nG,) =o(1).
Apply Kolmogorov’s inequality to the martingale {(Q,,, & ,.), 1 < m < k,},
to prove that
P(maxX, g, |27 X,;1(z — A < u,(0)7*U; ;_, < z 4 A)] > ¢/2)
S 4eE[ Y, X0 H(z — A < u,(0)7?U2 ;, < 2+ D))
< 87 E[u,(0) 3 ; X l(z — A < u,(0)°U; ;. < z + A)]
< 8¢7MAE[2A + 67'max;g, X
(4.6) = 167224 4 o(1) ..
Similarly, applying Kolmogorov’s inequality to the martingale {(P,,, ¥ ,.)
1<m<k,):
@.7)  P(max,g, |T7, X, I(U2, < A+ 0] > ¢/2) < 4e(A + &) + o(1) .
Combining (4.4)—(4.7), we obtain the inequality

P(|7,(2) — 1,/(0, 2)| > ¢) < 16e724A + 4e=*(A + 8%) + o(1) .
Let n — oo and then A — 0 and 6 — O to establish (4.3). []
In view of (2.2) and (4.3), (4.1) will follow if we show that

(4.8) lim,_,lim sup,_., |Eexp[i 3}, t.(./(0, z,) — 7'(9, z,_,)) + isu,?]

— Eexp[—3T 3. t%(z, — z,,) + isT]| = 0.
Define

n,j—1 = L3

; Ay = A0) = X,; St d(Zeey < ,(0)2U2,_ < 2z) 1<j<k
an
B =B 0) = X, An; = 5; X2 Dtz < u,(0)7*U3 ;1 < z,)
Note that
25 Aa; = Za a0 (0, 2) — 1,/(9, 2,)) = C,, say.

The A, ; are martingale differences. We can write ¢'* = (1 + x) exp(—4x* 4 r(x))
where [r(x)| < |x]® for |x| < 1. Define

I, = I,(0) = exp(iC, + isu,?),

T, = T,n(5) = Hj (1 + l'AM-) s

W, = W,(0) = exp(—38," + 225 1(Aq;) + isu,?)

w, = exp(—3u,’e® + isu,’)
where

o' = 2 (2% — Zi) »

x = Eexp(—3Ta® + isT) .

and
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Let t = max, |#,|. The term within modulus signs in (4.8) equals
E(T,W,) — x = ET,(W, —w,) + ET, — l)w, + E(w,) — x.

Since U,? —»_ T, U,* — u,’ —, 0 and the functions f(x) = exp(—30’x) and g(¥) =
exp(isu) are uniformly bounded and continuous on [0, co[, then E(w,) — x as
n — oo. Therefore (4.8) will follow from the condition

4.9) lim,_, lim sup, ., E|T,(0)(W,(0) — w,)| = 0.
First let us prove

LeMMmA B.
(4.10) Forall ¢>0, lim,_, lim sup, ., P(|W,(0) — w,| > ¢) =0.

Proor oF LEMMA B. If max,g, |4,; <1 then

|25 7(An)l = 25 [Auil® = B2 max;g,, [A,)]
= U max;g, |X,;| —,0 as n-—oo.
Since max;g, |4,;] —,0, then
(4.11) 21 1(4,;00)—,0 as n—oo.
On the set F,,
Dt 2 Xz + A< UUL, < 7, — A)

(4.12) < B}

=2t 2 X}ij (2, < un(5)‘”U3,,-_1 < z)

< Tt Y XL Iz, — A < U,U2, < 7, + A).
In view of (2.6), for each z ¢ [0, 1],

D,z) = U, 5, X3,I(U, U2 < 2) —, 7.
If z> 1 then D,*z) =1 and if z < 0, D,*(z) = 0. If A is so small that each
Z,, + A < z, — A, the inequalities (4.12) can be rewritten as

2k DXz — B) — DXz, + )]
< U, B, < S, 4D,z + A) — D, Xz4y — B)].
Hence on the set F, N {max,_,, |D,Xz, + 8) — (z, = A)| < A},
o' —4pr’A L U,'B< o* + 4pt5A ,
and so on the set F, N {max,g, |D,z, + A) — (z, £ )| < A} n {U,? < 23},
U — 8pr*Ad < B,* < U,%* + 8pt*Ad.
Let ¢ > 0 and choose A so small that 8pr?A4 < ¢. Then
P(B; — UjoY > & F,) < P(maxyaug, DXz, + B) — (2 + )] > 8)
+ P(U,2 > 22).
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Let n — co. Since U,>—_ T < 2 a.s. then P(U,? > 22) — 0, and so for all suf-
ficiently small A and all 4,

(4.13) lim,_, P(|B,}0) — U,%? > ¢ F,(6,4)) = 0.
On the set G,, U,? < A 4 ¢? and so
|B,? — U,je% < 20U, < 20(A + 6% .
Choose A and d so small that 2¢%(A + 0%) < ¢. Then for all n,
(4.14) P(|B,* — U,%* > ¢ G,(9,4)) =0.
Combining (4.5), (4.13) and (4.14), we see that for all sufficiently small A and 9,
P(B,} — Ud"] > ¢) = o(1)
Together with (2.2) and (4.11), this is sufficient to establish (4.10). [
Finally let us prove (4.9). Let e > 0.
ET (W, — w)| < (BT % + Siyouyisn [Tl — )| P
The last term does not exceed
Siwpmwp>er (1al + [ Tuwa]) dP < (W, — w,| > ¢)

+ (ElTnzl)éP(lW'n - wni > 8)‘3 .
Hence for all ¢ > 0,

(4.15) EIT (W, — wa)| = (EITSDHe + P(W, — waf > ¢)})

+ P(|W, —w,| >¢).
Let J, = max {j < k,|u,(0)7*U, ;_, < 1}. Since 4}; < £*X}; then

E|T,) = ET[;(1 + 43;) < Eexp(?U, ; _)(1 + X3 ;)
=< Eexp(fu,(9)’)(1 + £ max;, X3))
< exp(24°)(1 + rPE(max;g, X3)))
— exp(24¢%) as n— co.
(4.9) now follows from (4.10) and (4.15).
This completes the proof of (4.1) in the lemma when for some 2 > 0,

P(T > 2) = 0. Now let us consider the case of an arbitrary T. Let2>0bea
continuity point of T and define X,; = X,; /(U2 ;_, < 2), S,;, = Ni, X, U

ni

L X, U=, a2 = u,ﬁI(u,, < z) + (u} > 2) and T = TIT < z) +
JI(T > A). Since X2 < X,
@.1y lim,_., E(max,, X2)=0.
|0, — @, < |U,* — u,’| + max,., X2, and so
@.2y U2 — a2 —,0.

U, ?max;g, X2, < max (U, max,g, X,

(2.6) U, *max;,, X! —,0.

ap AT'max;g, X3 —, 0, and so
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Since 4 is a continuity point of T,
U=UMUS )+ AU2>AD)—,T.
U< U0, < U,? + max,, X2, and hence
2.7y 02—_T.
Define 7, for the martingale {(S,;, *,,), | < j < k,} in the same way that we

defined %, for {{(S,,;, & ,;), | = j < k,}. Inview of (2.1)",(2.2), (2.6)"and (2.7)’,
the proof given above establishes that
(416) limﬂ-*w |E exp[i Zk tk(i]n(zk) - ﬁ’n(zk—l)) + iSUn_2]‘

— Eexp[—3T* + isT]| = 0.
. = 7, and U2 = U,?on the set {U,2 < 1}, and so (4.1) follows from (4.16) and
the fact that lim sup,_, P(U,*> > 1) > 0as 1 — oo. []

PROOF OF (4.2) IN LEMMA. Suppose first that for some 2 > 0, P(T > 1) = 0,
and choose the variables u, such that P(u,* > 24) = 0. We will follow Brown’s
(1971) proof of tightness and show that

(4.17) forall ¢>0,
lim,_o lim sup, ... XJu<i P(MAXpc <irnn [72(2) — 7a(kh)| > €) = 0
(see Parthasarathy (1967), page 222). On the set F,,
max;g, |U,*Us; — 1,(0)7U; ;| < A
andsoon F,,

SUDPih<zservn 17a(2) — 7a(kh)|
= 2max,g, |27 X I(kh — A < u,(0)*U3 ;. = (k + Dk + D).

On the set G,
SUDPpn<zsck+ 1k |7a(2) — 7a(kh)| = 2max, o, |27, X,; I(Uz ;- = A+ 9.
Therefore

P(SUPuhcog k1o [7a(2) — na(kR)| > ¢)

= pu (s3Y)
(4.18) < P(max, g, |27 Xoj H(kh—A <u,y(0)7*U, ;o S (k+ 1)h+B)[>¢/2)
+ P(max, g, |27, X, I(Us ;o0 S A + 67)] > ¢/2)
+ P(F,n G,).

Apply Brown’s Lemma 4 to the martingale
M,, = 3™ X, I(kh — A <u,(0)°U; ;_, < (k + L)h) l<smgk,
with M, = M,, to prove that the first term in (4.18) does not exceed
(419) (€N s Mo dP < (147" Voo M| dP + (¢/4)7 {1, |M,| P
+ (/7 S epnicziny>en [Mal 4P
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where C is a large positive constant, ¢, > 0 and L, is the set
Ly = {lna(kh — B) — 2,/(3, kh — D) < &3
[na((k + DA + 8) — 2./(0, (k + Dh + B)] < &} .
A Chebyshev-type inequality bounds the first term on the right-hand side of
(4.19) by
(4/cC)EIM,|* = (4/cC)E[ X, X2, I(kh — A < u,(8)2U2,,_, < (k + Dk + A)]

< (82/cC)E[u,(8)* X0 ; X2, I(kh — A < u,(8)2U2 ;_, < (k + 1)k + A)]

-1 =
=< (84/eC)E[2 4 6 max g, X7] if k+hHhr+A<L2
= 164/eC + o(1).
The second term on the right-hand side of (4.19) does not exceed
(4/e)PL)EIM, )} < (4/e)(P(L,)42)! + o(1) .
M| = [7,/(9, (k + Dk + A) — 7,/(3, kh — A)|

< [7a((k + Db + A) — pa(kh — B)[ + 2¢,  on L,

= |M,’| + 2¢, say,
and so the third term on the right-hand side of (4.19) does not exceed

(4/e)(2¢, + S(0+2elz|M;,]>s/4—2sl; |M,'| dP) .

The finite-dimensional distributions of 7, converge to those of W,, and hence
lim, S(0+2elg|M;|>s/4—2e1> M| = E[Sf/iszlsl x dP(|N(O, T(h + 20) = x)

where T is held constant in the innermost integral on the right. (A slight adjust-

ment has to be made for the first and last terms, when k = O or (k + 1) = 1.)

Kolmogorov’s inequality bounds the second term in (4.18) by (¢/2)7*(A + 6%) +

o(1), and by (4.5) the last term is o(1). Combining all the results from (4.18)
~down, we see that

lim sup,_.,, po < 162/¢C + (4/¢)(lim sup, ., P(L,)42)}
+ (4/e)E[§ 2%, x dP (IN(O, T(h + 24))| < x)]
+ (4/e)(A + 69 .
Let 6 — 0 and then ¢, — 0, A — 0 and C — oo, to prove that
lim sup, ... pu < (4/e)E[§5, x dP (N, Th)| < )]
= (4/e)E[(2/z)*(Th)* exp(—4(e/4)'T*h7)] .
Returning to (4.17), ,
Hm sup, .. Xincs Poe S (4/)(2[m)E[(T/R)! exp(—3(e/4)'Th7")] + 0,
where d, is a correction for the first and last terms in the series. The integrand
of the expectation on the right converges a.s. to 0 as # — 0 and is dominated by

(4/e)T < (4/¢)A. Hence the expectation itself converges to 0, and since 9, — 0,
this establishes (4.17).
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This proves (4.2) in the case where T is essentially bounded. A proof in the
more general case follows via a truncation argument like that used in the proof
of (4.1). ]

Now let us prove the theorem. Let Y,; = X, — E(X,;| %, ;=) Ta; =
XiaY., Vi, = Xi,Yhand V2= V2, . Let g, be the random element of
D[0, 1] defined by

ﬁ’n(z) = Zj Ynd(Vn_ayzj é Z) ¢
Condition (2.1) implies that
E(max;g, Yi,)—,0

and so the martingales {(T,;, Z,;), 1l <j < k,}, n = 1, satisfy the analogue of
.1).

U, "max; g, |Us; — Vil < 2U,7 (2 ; Xa )N (X, |E(X ;| Za, 501D
+ U, 5 |EX; | En i)

= 20, + 0,}
where 9, = U, (3 ; |E(Xp| Z, ;-0)|)¢. By (2.8), 6, —, 0 and so
(4.20) U, maxg, |Us; — Vil —,0.

In particular, U, — V,? —_, 0 and the analogues of (2.2) and (2.7) hold for the
martingales {(T,;, &,;), 1 < j< k,}. The analogue of (2.11) holds, and the
lemma gives the analogues of (4.1) and (4.2):
4.1y lim, ., |E exp[i 33; t(Ba(2k) — Ba(Zi-r)) + isV,7]

— Eexp[—34T 33, 6.2z, — 2,,) + isT]| =0,
and
(4.2) the sequence of random elements {8,}: is tight.

The theorem will follow from the result

(4.21) SUP;eto.11 [74(2) — Bu(2)] =, 0.
On the set {sup,g, |U,~*Uz; — V,7*V};| < 0} we have

SUP, e 0,11 [74(2) — Ba(2)| < SUP, wero,e-wiss [Ba(W) — Ba(2)]
+ Ut 55 1K, | Za i)
and so for any ¢ > 0,
P(sup,c 0,11 [74(2) — Ba(2)| > ¢)
(4.22) < P(sup;,—uiss 1Ba(W) — Bu(2)] > ¢/2)
+ P(U, X5 |E(X ;| Za )] > €/2)
+ P(sup;xp, U208 — V.7 Wa > 0) .

In view of (2.8) and (4.20), the second and third terms are o(1) as n — oo, and
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because of the tightness of {3,}y,

lim,_, lim sup, ., P(SUp,,_,s; |Ba(W) — Bu(2)| > ¢) = 0.
Hence (4.21) follows from (4.22), and the theorem is proved. []

PROOF OF COROLLARY. We will only prove that (2.1), (2.10), and (2.11) or
(2.12) are sufficient for (2.13). If (2.11) holds, apply the Theorem with &,; =

»;and u,? = T. (2.8) follows from (2.6), and so (2.9) holds. If (2.12)is true,
choose integers I, < k, such that /, 1 co and [, U, max,g; |X,; —,0. T is
measurable in the o-field generated by U, & i, = Un F 4y, Let &, = 5, .
For each ¢ > 0 we can find an n and a ¥,-measurable variable u? such that
P(IT — u* > ¢) < ¢. Hence we can choose a sequence {u,’} adapted to {&,} so
that (2.2) is satisfied. Let &,; = &, if j< [,; &, if j > I,. Then

U, D EX | G i)l = U Z;’;l |Xail < LU, max, g |X,;| —,0.

This proves (2.8), and (2.9) now follows from the theorem.

Acknowledgments. The author would like to express his gratitude to Dr. C.C.
Heyde for suggesting this problem and encouraging the research, and to Dr.
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Note added in proof. Since the preparation of this paper, related work due to
Rootzen (two papers, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 38 199-
216) has appeared. It contains NSC’s for martingale invariance principles using
functionals slightly different from our own, and a 1-dimensional version of our
corollary.
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