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ON THE LAW OF THE ITERATED LOGARITHM:!

By R. J. TOMKINS
University of Regina
Let Xi, Xz, - -+ be a sequence of independent random variables, each
with zero mean and finite variance. Define S, = X7_; Xi, a2 = E(S»?),
tn? = 2log log s»? and A = lim SUpn—co Sn/(Snta). Suppose that |Xa| < cnsn
a.s. for all » and some real sequence {c.} and that s, — oo, and let v =
lim supn—.e tncn. By Kolmogorov’s law of the iterated logarithm, A =1
if y = 0. Egorov proved that 0 < A < oo, in every case. In this paper it
will be shown that, if v < oo, then 0 < A < 1 + X7_;07-2/j!. A similar
result for certain classes of unbounded random variables will also be
presented.

1. Introduction. Let X, X, - .- denote a sequence of independent random
variables (rv), each of which has mean zero and finite variance. For n > 1,
define S, = 317, X, and s,* = E(S,?); throughout this article, it will be assumed
that

$, — 00 .

Suppose, in addition, the existence of a real sequence {c,} such that

(1) |X,|/s, < ¢, almost surely (a.s.),

and define

(2) v = limsup,_,, (2 log log s,%)tc, .

This paper is concerned with the value of the constant A which satisfies
A = lim sup, ... (2s,2 lo; ’llog 5,2)}

By Kolmogorov’s renowned law of the iterated logarithm (LIL) (see Loéve
(1963), pages 260-263), A = 1 whenever v = 0. In fact, Egorov (1969) proved
that 0 < A < oo, no matter what the value of v may be. But it is known that
A need not equal one when v > 0 even if v is close to zero. Indeed, Marcin-
kiewicz and Zygmund (1937) produced a family of examples in which v > 0 but
A < 1, while Weiss (1959) and Egorov (1972) have concocted situations in which
v > O0but A > 1. Theorem 5 of Teicher (1974) presents some interesting asser-
tions in the same vein. .

This article was motivated by the aforementioned result of Egorov (1969);
its purpose will be twofold. First, it will be shown that A is, in fact, positive
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ify < oo. Second, an upper bound on the value of A will be established. More
precisely, the following theorem will be proved in Section 2.

THEOREM 1. Suppose that (1) holds and that v, as defined in (2), is finite. Then

S,

3 0<li "
( ) < limsup, (25,,2 log lOg Snz)i

<14 X ,vi ! as.

To see that A >0, notice that Chebychev’s inequality implies
S,/(2s,? log log s5,?)* — O in probability as n — co and, hence, this convergence
holds a.s. on some subsequence. Furthermore, Egorov’s proof that A < o
gives no inkling as to the actual value of A. For these reasons, techniques dif-
ferent from Egorov’s are required to prove Theorem 1. Both of the inequalities
in (3) will be established using methods of Kolmogorov, appropriately modified.

Section 3 contains a theorem, similar to Theorem 1, which is valid under
conditions less stringent than (1).

2. Proor of THEOREM 1. Note that (3) is true when v = 0 by Kolmogorov’s
LIL, so assume hereinafter that v > 0. First, let us show that A > 0 when v < «
using the result of Egorov (1969) in conjunction with one of Kolmogorov’s ex-
ponential bounds, which is stated below in a slightly unusual form.

LeEMMA 1 (cf. Loéve (1963), pages 254-257). Assume that (1) holds. Lett = 0
and n = 1. Then, for any y > 0, there exist positive numbers ¢, and », such that
P[S, > ts,] = exp{—(1 + 7r)t}/2}, provided that tc, < 7, and t = ¢,. Further, it
may be assumed that

7 = ko7 + 7))
where g and h are defined on (0, 1) as follows:
g(x) = (1 4+ 2x + x¥/2)/(1 — x)? and h(x) = x*(1 — x)/[8(1 + x)*].

The preceding statement can be checked by carefully perusing the proof of
Lemma 1 given by Loéve (1963).

Note that 0 < A(x) < 1 for all 0 < x < 1, and that g is strictly increasing,
so its inverse g~! is well defined.

Now, for brevity’ssake, let#,=(2loglogs,’)!. Let A-=limsup, .. (—S,/(5,%,))
a.s.; then 0 < A~ < co by Egorov (1969), in view of (1). Also, observe that
there is no harm in assuming thatv > 1, for, if v < 1, one can take any number
b > 1 and set ¢,* = bc,/v; then, trivially, (1) remains true with ¢, * in place of
Cpe

In view of the preceding remarks, one may choose d satisfying 0 < § <
h(g=(»*))/v. Define y =1* — 1 and 5, = A(g~'(+*)). Clearly dv < 75, so one may
choose ¢ > O0sosmall that 0 < ¢ < dand d(v + ¢) < 7, Finally, pick a number
¢ > 1 s0 large that

4) v +e)c(c* — 1)t <y and e > A-.
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Define n, = 1. Since s, — oo, there is a sequence {n,} of subscripts such that
Spy = CSny_, > 8y, ;- Since v < oo and f, — o0, ¢, —0 so, in view of (1),
E(X,?) = o(s,’) or, equivalently, s, ~ s,_, (that s, 5,/5,_, — 1) as n — co. There-
fore s, g~ G ~ctand 1, ~1, ask— co.

Now let u,ﬁ = s‘;‘,k — Sh for k = 1. Then s} /u}® — ¢*/(c* — 1), which fact,
together with (2), (4), and the knowledge that 7, — oo and that A(x) < 1 on 0, 1),
ensures the existence of an integer k, > 0 such that for all k > k, one has

(5) 0t,, Cop S, W™ S 75 ovs, <u,  and 0t,, S, W' = &,

where ¢, is the number corresponding to y = 1* — 1 in Lemma 1.
Applying Lemma 1 for k > k, implies
P[Snk - Snk_l > 5snk "‘k] Z exp{_(l + T)st:k tikuk_z/z}
= (log sf,k)‘1 by (5).
But log 57~ (21log c)k and the rv {S, — Sa,_,» k = 1} are independent, so
D P[S,, — Sa,_, > 05,1, ] = oo,
which is tantamount to
(6) P[S,, — Sp,_, > 05,1, i0]=1
by the Borel 0-1 Law.
Finally, since cc > A~ by (4), clearly

P[—S, _ > ces, ¢ i.o.] =0

Me—-1 "k—1
by the definition of A-. But ¢s, ln, = €€, 1, SO
k k=1 "k-1
(7 P[—S,, >es, 1, i0]=0.

(6) and (7) together imply

P[S, > (3 —e)s, 1, Q0]=1;

"lk "lk
now it is evident that
A z limsup, ., S, [(S,,1,) =0 —e >0 as.

Now turn to the proof of the right-hand inequality in (3). Flrst, consider the
following minor generalization of an exponential bound.

Tk "k

LEMMA 2 (cf. Loéve (1963), pages 254-255). Suppose (1) holds and that § > v
where v is defined by (2). Then there exists an integer N = N(f) such that
(8) E(exp(tnsn/sn)) é exp{tn2 Z;_o=2 aBj_z/j!}
foralln = N.

Proor. Choose N so large that ,c, < 8 when n > N. Then, using (1) (cf.
page 255 of Loéve (1963)),

E(exp(t, Xifs,)) = 1 + 6’E(Xi)s, ™ L5 p7Y!

forallk < n, provided n = N. Now, in view of the inequality 1 + x < e* and
the independence of {X}, X,, - - -, X,}, (8) is immediate. ]
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Now, take any 8 > v, and choose d > 1 + 2255 7%, Lete > 0and choose
¢ > 1 such that ¢(0 + ¢) < 0 + 2¢. Define the corresponding integral sequence
{m} exactly as in the first part of the proof. Note that there exists an integer
k, > 0 so large that, if k > k,, then

9) fC, <B and 2 >2.

For k = 1, define S,* = max, . .<. S. and P* = P[S,* > (d + €)Sn, I, ]-
Ifk > kl, the version of Lévy’s inequality given on page 248 of Loéve (1963)
implies

W< 2P[S,, = (0 + €)Sn, tn, — 2%s, ]
< 2P[S,, > 0s,, 1,1 by (9)
= 2P[eXp(t,, S, /5.,) > exp(dn2,)]
< 2exp{—(4,/2)(20 — 2 T5., £/}
by Markov’s inequality and Lemma 2.
But 1=20 237, =200—-1—X2,8)+1>1 so P*<
2[(2log c)k]~* and, hence, 3}, P,* < co. By the Borel-Cantelli lemma, then,
P[S,* = (0 + ¢)s, ¢, i.0.] = 0. But then, by choice of c,

K9 ‘nk

0 < P[S, = (3 + 2¢)s,1, i.0.] < P[S,* = (6 + ¢)s, 1, i.0]=0

”k "lk
so that A < 6 + 2¢. A glance at the way in which ¢, 6 and 8 were chosen shows
that A < 1 4 3 %.,077%/j! as claimed. ]

REMARKS. 1. While the second inequality in (3) remains true, trivially, when
v = oo, the first inequality may be false, even if ¢, — 0. Consider the following
two examples.

First, suppose X, = X, = Oand that, forn > 3, P[X, = —1] = P[X, = 1] =
(1 —n~%)/2and P[X,, = +ni(loglogn)~t] = 1/(2n*). Then E(S,) = 0and 5,2 ~ n,
so that ¢, ~ (loglogn)=* —» 0 and v = lim,_, (2 log log n)tc, = . Now let
Y, = X,I(|X,| < 1), where I(A) denotes the indicator function of an event A.
Then P[X, + Y, i.0.] = 0 by the Borel-Cantelli lemma. Furthermore, E(Y,)=0
and Var (3., Y,) ~ n, so A = limsup, ., 315, Y,/(2nlog log n)t a.s. in this
example. But Kolmogorov’s LIL applies to the sequence {Y,}, so A = 1. There-
fore, it may happen that A > 0 when v = .

In the second example, suppose X, = 0 if n < 7. For n > 7, assume P[X, =
+a,] = } where a,” = {log log n — 1/log n} exp{n/log log n}/(log log n)*. Define
the function ¢(x) = exp{x/log log x} and ¢(x) = [¢(x)]*. Since a,’ = ¢'(n), itis
not hard to check that s, ~ ¢(n) = exp{n/loglogn} as n — co. Moreover,
5¢'(n) > ¢(n)/loglogn if n =7, so |S,| < i a, < X5, é(k)/(log log k)t <
(log log n)* 35%_, ¢(k)/log log k < 5(log log n)t 33, ¢'(k) ~ 5(log log n)ig(n) ~
5(log log n)ts,. Since t,* ~ 2 log n, it is obvious that A = 0 in this case. But
¢,’ ~ (loglog n)™* — 0 and t,’,* ~ 2 log n/loglogn, sov = co. (The a,’s in this
example diverge at a faster rate than in the examples of Marcinkiewicz and
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Zygmund (1937) cited earlier. In proving that A = 0, the above procedure is
suggested by the proof of Theorem 5(i) of Teicher (1974).)

2. The proof that A > 0 when v < co demonstrates that, in fact, A >
k(g='(v*))/v if v > 1, but this inequality is not a sharp one. The function
h(g=*(x*))/x attains its maximal value, which is less than .0027, when x* = g(a),
where «a is the unique root of the equation

at +10a® 4+ 19a* 4+ 2a —4 =0

satisfying 0 < @ < 1. Incidentally, « = .3764... while [g(a)]* = 1.456. ...

3. The right-hand inequality in (3) can be quite sharp, at least in the sense
that one part of Kolmogorov’s LIL (viz., the fact that A < 1 whenv = 0)isan
easy consequence of (3). It also sheds some light on the family of counter-
examples given by Weiss (1959). Weiss showed that, given any 7 > 0, a sequence
of rv {X,} exists which obeys (1) and (2) withv < 5, but A > 1. From (3), it is
evident that as v | 0, the corresponding values of A converge to unity.

3. A partial generalization of Theorem 1. In proving the right-hand part of
(3), good use was made of the assumption (1) to establish Lemma 2. Trying to
employ Kolmogorov’s exponential bound in its usual form would have restricted
the theorem, to, at most, values of v < 1.

There are, however, sequences of rv for which the exponential bounds are
valid but which do not satisfy (1); indeed, such rv may be unbounded. The
conclusion of the following theorem is weaker than (3) but applies to a wider
variety of sequences {X,} than does Theorem 1.

THEOREM 2. Suppose that a sequence of independent rv {X,} satisfies the following
condition: a positive real sequence {c,} and an integer N > 0 exist such that, for each
n = N,

(10) exp{(#/2)(1 — rc,)} < Eexp(1S,/s,) = exp{(£/2)(1 + tc./2)}
whenever 0 < tc, < 1. Let v = limsup,_.., (2 loglog s,*)ic,. If 2v* < 1 then

S, < n(w) <2t as.

1 0 < lim <
() < M S o TTog log 5.0 =

where r,(v) is the smaller positive root of the function
fi(x)=x"—1 —vx¥2.

REMARK. The condition (10) was introduced by Tomkins (1971, 1972) who
remarked that Kolmogorov’s exponential bounds are valid as stated on page 254
of Loéve (1963) when (1) is replaced by the weaker condition (10). With this
in mind, it is not hard to modify Egorov’s proof that A < co to show that
Egorov’s result remains true with (1) replaced by (10).

If (1) holds and 4v* < 1, then the middle inequality in (11) is a consequence
of a supermartingale theorem of Stout (1973; or see Theorem 5.4.1 of Stout
(1974)). Theorem 2 will be proved using methods similar to those of Stout.
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Proor. When v = 0, it is known that A = 1 (see Theorem 1 of Tomkins
(1972)), so assume 0 < 29* < 1. In light of the preceding remark, the proof
that A > 0 is virtually the same as the proof in Theorem 1. It remains to show
that A < ry(v).

Notice that f (v=*) > Oif and only if 0 < v* < %, and that f,/(v=*) > 0. There-
fore r,(v) < v=*. Note also that f,(1) = —v/2 < 0 while f,/(1) > 0so 1 < r(v).
Moreover, evidently f,(x) > 0 whenever r(v) < x < ry(v) where ry(v) is the
larger positive root of f,; in this connection, observe that f, has exactly two
positive roots if and only if 27v* < 16, so r,(v) and r,(v) are well defined under
our hypotheses.

The above comments allow the choice of § > 0 such that

0 > r(v), ov < 1 and 0 < ry(v).
Since f,(9) > 0 for such a 9, one can choose ¢ > 0 so small that

(12) (1 + o(v +¢)/2) > 1.
Now select ¢ > 1so close to 1 that ¢(d + ¢) < d + 2¢, and define the sequence

{n.} as in the proof of Theorem 1. It is apparent from the proof of Theorem 1
that proving

(13) Z?:l P[Snk > 5snk tnk] < co

will suffice to show that A < ry(v).
To this end, one need only choose m > 0 so large that

(14) n, =N, ot, c, <1, Ly Cu <V + ¢ and e, > 2

"k "k
for all k > m. Then the exponential bound (Lemma 1(i) of Tomkins (1972))
yields, for k = m,

P[S,, > ds, 1, ] < exp{—(2,/2)(1 — 1, ¢,,/2)}
< (log 57,)7'"/v+<® by (14).

But log s;, ~ (21logc)k and f,,(6) > 0 by (12), so (13) is true.
Finally, note that r, increases as v increases. Moreover, r,(27%) = 2%, so
r(v) < 2t when 20 < 1. ]

REMARKs. 1. Itis easy to check that ~,(v) | 1 asv | O so the second inequality

can be sharp.

2. If (1) holds then (10) holds, so that v = v; thus Theorems | and 2 overlap
when (1) holds and 2»* < 1. However, r,(v) > 1 4+ 3 7.,»7~/j! so that (4) is the
better result than (11) in such cases.

3. It is still true that A < r(v) when only the second inequality of (10)
holds.

Acknowledgment. The author thanks the referee for useful comments and
suggestions.
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