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MAXIMA OF PARTIAL SAMPLES IN GAUSSIAN
SEQUENCES!

BY YASHASWINI MITTAL

Stanford University

Let {X», n = 0} be a Gaussian sequence with EX; = 0; V(X;) = 1 and
EX; X; = rij. Define M, = maxo<;<x Xi and my,,; = max (X;; i € G,) where
Gn=(t1, -, ta)isasubsetof (0, 1,2, - - -, n) and n’ = [n/k] for some integer
k =1, [x] being the integral part of x. We show that P{ca(Myu—mn 1) < x}—
(1 + (k — 1)e~=)"tas n— o for all x =0 where ¢, = (21log n)t, if the sequence
is ““moderately dependent,’”” namely if
) (i) supijlriil <o <1

(if) |rijl < p¢ —j) for |i—jl > No suchthat p,logn=o(1).
Somewhat surprisingly the same result holds even though the sequence is
“strongly dependent,”” namely it
2) (1) rizj=r@—j); rn convexfor n=0 and r,=o0(1)

(i) (r(n) log n)~1 is monotone and o(l).

1. Introduction. Let {X,, n = 0} be a Gaussian sequence with EX, = 0;
V(X,) = 1 which will be called “standard sequence” from now on. Define
M, = max,, X; and m,, = max (X;;ieG,) where G, = (1), ---, 1(n")) isa
subset of (0, 1, ..., n) and n’ = [n/k] for some integer k > 1, [x] being the in-
tegral part of x. We assume that

(1.1) (i) sup;; |EX;X;|<o<1
(i) |EXX;| £ (i — j) for |i — j| > N, such that
o, logn =o0(1).

By Berman (1964, Theorem 3.1), ¢, (M, — b,) converges in distribution to X
where ¢, = (2logn)}; b, = c, — log (4 log n)/2¢c, and P(X < x) = e~ for
—o0 < x < oo. Throughout the paper log n denotes the natural logarithm of
n. It is easy to see that for large n, M, and m, , will be approximately the same
in size. In Section 2 we show that ¢, (M, — m, ) converges in distribution to a
truncated logistic distribution under condition (1.1). (The word “truncated” is
used rather freely here. In fact this distribution is the same as the logistic dis-
tribution on the positive axis while the mass of the negative axis is pooled into
an atom at the origin. All references to the truncated logistic distributions
should be interpreted in this manner.)

In Section 3 we deal with “strongly dependent” Gaussian sequences but require
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them to be stationary. Instead of (1.1) we assume there
(1.2) (i) EX,X;=r(i—j); r, convexfor n>0 and r, =o0(1)
(ii) (r(n)logn)~' is monotone and o(1).

(These requirements easily imply (1.1)(i).) It is shown via a rather long proof
that under (1.2), ¢, (M, — m, ;) has the same truncated logistic limit distribution.
This fact seems counterintuitive at first and is much harder to prove. The be-
ginning of Section 3 has some comments in this direction.

The problem arose from some practical considerations of collecting air pol-
lution data. Air pollution standards are generally in terms of the maximum
concentrations. Various practical difficulties (cost of sampling or missing data)
are at times responsible for having only a partial sample available for making
inferences. The behavior of the difference of two maxima considered here can
thus be used to retract information about the original maximum via the maximum
of only a partial sample.

I want to thank my colleague, Paul Switzer, for suggesting this problem.

2. Asymptotically independent sequences. The basic result is given by
THEOREM 2.1. Let {X,, n = O} be a standard sequence with r;; = EX; X, and
M, and m, , as defined in the beginning of the last section. If (1.1) holds then

1 - <*, < i} exp{—e*(1 + (k — 1)e™")}
(2 ) P{Mn mn,k = Cn m‘n,k = b”yk + c/,,, - 1 + (k — l)e_x

as n— oo where ¢, = (2logn)}; b,, = (2log(n/k))? — log (4 log n)/2c, and
0 x< o0; —c0 < z< oo.

REMARK. As pointed out by the referee, this theorem can be proved as
follows. Let £, = max,., X; and §,’ = max;.q . X;. We are looking for the
limit of the joint distribution of the properly normalized Z, and &, where

Z,=0 if £/ <é,
= En, - En if En’ > Sn

and this is equivalent to finding the limit of the joint distribution of properly
normalized &, and &,”. If r,; = 0 for 0 = j then &, and &,’ are independent and
each converges to double exponential distribution after proper normalization.
When r,; satisfies above conditions we can compare the joint distribution of &,
and &,’ to the independent case by Berman (1971, (4-5) page 932) and show that
the error term tends to zero. This approach is very direct and clear. Unfor-
tunately, however, it cannot be extended to the strongly dependent case for
reasons to be discussed in the beginning of Section 3. The following approach
to the proof, even though long and cumbersome, is directly extended to the
strongly degendent case.

Proor. Let usdenote,, = b,, — g(n)/c,andy,, = b, , + z/c,. We choose
g(n) — oo such that {max (p, log n); log log n/(log n)tje*s” = o(1). We know by
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Berman (1964) that P{m,, , < 7,,} = o(1), hence the probability in (2.1) can be
replaced by

(2'2) P{M —mnkéz‘"vtjn—- n,ké’]:,n}‘

n

Define m}, , = max {X;;jeG,; j # #(i)}. Then

{%,n =m,, = 7/z,n} = U, {m; < Xowys Mon = Koy = 7, n
= :’;1 Az , say.
Now P{Ur, 4;} = Yn_, P(A,) since the intersection of any two of the above

sets, e.g., 4, N A,, is a subset of the set {X,,;, = X,;,}. But thisset has probability
zero unless X, and X,, have correlation 1 and for i/ = j this is impossible by
assumption (1 1) (ii). Thus the probability in (2.2) is equal to

(2.3) ?;IP{MnD =X, + =5 My = Xoays o = Xy = n}

where M,? = max {X,,ueS,}; S, = {#,0 < u < nbut ugG,} is the maximum
of the sample having deleted about n/k variables. Conditioning on X, , we get
the quantity in (2.3) to be equal to

(2.4 LS P {Mn" =y+ ci sy <y X = y} ¢(y) dy .

Note that ¢(y) = (27)~* exp{—)*/2} is the standard normaldensity. Let us define
V) =(Xu| Xey =y) — sy )/l = 1)t u=0,1,...,n, u=1ti). We
know that Y,* are standard Gaussian with

Two — e To,t) =i, say.

(I = ris)(l = riw)?
The probability in (2.4) is equal to

EY,Y, =

. 1 —r, .\ X ; 1—r ¥
2.5 P{Yu‘§y<—M_@)> X ues,vi< <___L“Q>,vesi}
#) L+ 7 Ca ? ’ L+ 1
where S, = G, — {#(i)}. The absolute difference of (2.5) and the probability in
(2.5) when the variables Y’ for all u such that |u — (/)] < n* (1 > a > 0) are
excluded from consideration is at most

. 1 —r,,.\* .
2.6 I—P{Y,fg <ﬁu<_w>;u_—n <n"}
.6) (e’ = )

1 -4
<1-— P{maX,u_mnw"‘ Y )’< 1+ 5) }

The last inequality follows because looking at (2.4) we see that only positive
values of y need to be considered and by (1.1)(ii) (1 — r,.)/(1 + ruew) =
(1 — 0)/(1 4 8). The r.h.s. of (2.6) is at most 2n*(1 — ®(y((1 — 9)/(1 + 9))*)),
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where ®(y) = (., o(«) du. Thus if we delete X, for |[u — #(i)] < n* from con-

sideration in (2.4) the absolute difference will be bounded above by

w20 e (1 - <I><y <1 — 5>%>> o(y) dy

1+0
A
= (ot (1= @ (. (1575)) 0 = @)
n'te Ton f
< t. — :
< o) £ o 2,

< (const.) exp{(l + a — T%) logn + 2g(n)} .

By choosing a < (1 — d)/(1 + 8) and noticing that g(n)/logn — 0, we see that
the r.h.s. above is o(n~*) for some 8 > 0. Finally, for [u — t(i)] > n%, |r, ;4| =
p(n®) and (1 — ry o )/(1 + Fu) Z (1 — p(n))/(1 + p(r)). Thus the quantity
in (2.4) is almost

, ‘ 1 — p(n“))i X,
2.7 7y §1zn P es0 Vi Sy (—B1 -
( ) i=1 S’?O,n {maxu SDO = )’ <1 + p(n"‘) + c,

R L

apart from error terms of o(n#). We note that §,° = S, N {[u — #(i)| > n*} and
S0 =S, n{ju — t,| > n*}. Define CM,” = max, s oY and cmi, , = max,es.o Y.
Since y is at least 3, , = O((log n)*), we can write

1 - P(n“)>’ —yp o) _ s

and let y + (x + o(1))/c, = y,. By Berman ((1971), 4.2, page 931) we can write
the expression in (2.7) as

(2.8) 71 $7en P{CM,? < y}P(Cm;, , < yide(y) dy + 21 Sen By o(y) dy
where

2.9 E <y sn Twl g {_(W =27 00 +yf)},
( ) I 1.,1/| = Zu—o v=0 (1 — ]’Z,& € P 2(1 — ]’Z,)

7%, is defined above (2.5). Also by Berman (1964, Lemma 3.1)

n

. 7t %
(2:10)  PCM,? S 1) = O] S B Buest sy exp{ =2

and

2.11 P{Cmi , < )} — D™a(yy)| < ol ey {__Lf
2.11)  |[P{Cm, . <)o} )l £ D 2uves? (T sy
Here n, = |S,°| is cardinality of S§,° and n, = |S,%|. Also n,/n — (k — 1)/k and
ny/n — 1/k. We notice that in the r.h.s. of (2.9), (2.10), and (2.11), y, and y,
could be replaced by y since y = O((log n)?). In the following we bound the sum
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in the r.h.s. of (2.9) by splitting it in two parts |u — v| < n* and |u — v| > n=.
It’s easy to see that the same bounds will work for the r.h.s. of (2.10) and (2.11).
Since for each i, [u — #(i)| > n*, i, < (r, + 0(n%))/(1 — p(n*)) = 7., say, and
[7w| < 0 < 1 for large nas well as |r,,| < (o(u — v) + p(n%))/(1 — p*(n*)). Thus
we rewrite (2.8) as

n

e12) ] sz omoneniem) a +
where
JE] < (const - §32 Tieo Biteo 1l xp{—yY(1 + 70)}0() &
@13) = (comst)n - Tig Koyl xp(—78u/(1 + 1N — D)
< (ONSL)er X Vs [l XP{—78,u/(1 + )}
X Bimsi [red XP(=78a/(1 + 120}

The first term in the r.h.s. is at most n'**d exp{—»i /(1 4+ 8)} which is o(n~#)
for some 8 > 0 by the same argument as before. For [u — v| > n%, |7,,| < 3p(n%)
and the second sum in the r.h.s. of (2.13) is at most

(const.)n*o(n) exp{—7, /(1 + 3p(r)))

< (const.)p(n®) log n exp { —2logn < L

1 + 3p(n%)

= (const.)p(n®) log n exp{o(n®) log n 4 2g(n)} .
Substituting in (2.13), |E| — 0 as n — oo via choice of g(n). It remains to show
that the first term in (2.12) approaches the right limit as n — oo.

1) |2 S5 @0 e0) &

~ et (b + 2L 0, 4 L) e TG gy

Using the definition of 4, ,, we see that

o <bn,k n X ;i— }’) — exp{nl logq)(b,,,k + X :— )’)}

n

— 1) + 2g(n)f

n n n

n

nlgo <bn,k + X :_ y>

n

~ expy{ —

bn,k+x+y

Thus for —g(n) <y < 2,

©" (b5 + XY exp{(k — D=+
C

n

= exp{(k — 1)e-=+w [1 — exp[—g_(n)_lzgﬂﬁﬂ} + o((log n)~%)

< exp{(const.) . g(n) log log em)} .
cn
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The r.h.s. above tends to 1 as n — co by choice of g(n). Similar calculations
show that

<% O (bn,k + X + )’> ®"2<bn,k + l) So(bn,k + y/cn)>(e—(k—l)e‘(“'H/)e—e_’/e-‘ﬂ)—l

Cn

n c’IL

tends to 1 as n — oo uniformly in y for —g(n) < y < z. Also the second term
above is integrable in y. Applying the dominated convergence theorem we see
that the 1.h.s. of (2.14) tends to

- —1)e"%)e" Y ,— 1 =) —u
Sz—ooe (HHk=De™e Ve ydy = m:‘x S(1+(k-1)e—=v)e-ze du
_ {exp{—e"(l + (k — 1)e-x)}}_
1+ (k= D)e®

Hence the result.

REMARK. The rate of convergence of (2.1) can be found in the above dis-
cussion. We note that via choice of the function g(n) and in showing the second
term in (2.13) is o (1) the rate of convergence depends on the function p(») (and
consequently on r,;). If it can be assumed that p(n)(log n)* — 0 for some 0 <Z
a < 1, then the rate of convergence could be shown to be o((log n)~#) for some
B8 > 0. This is quite slow for practical calculation.

3. Strongly dependent sequences. In this section we assume throughout that
{X,, n = O} is a standard stationary Gaussian sequence with r, = EX, X, ,. We
assume that (1.2) holds. The aim (realized in Theorem 3.1) will be to show that
the same limiting distribution as in (2.1) holds for M, — m, , under these condi-
tions where M, and m,, , are the same as before. (However, definitions of various
other quantities are different in this section from the last and should be carefully
noted.)

As was seen in Mittal and Ylvisaker (1975), the limit distribution of the
normalized maxima will now change due to the strong interdependence of the
variables. The fact that such dependence plays no part in the distribution con-
sidered in Theorem 2.1 seems odd at first but could be explained if we look at
the representation of the sequence considered in [3]. We can write for0 <i<n

X, = (1= 1), + (r)U

where {§,0 < i < n} are standard normal with covariance sequence r,/ =
(r; — r,)/(1 — r,)and U is again standard normal independent of {§;, 0 < i < n}.
(The dependence of the variables §; and r;” on n is suppressed for the sake of
simpler notation.) Thus

M, =1 —r)tmax,,, & + (7r.)U = (1 — )M, + (r,)tU, say,

m, . = (1 - rn)Q max;.q, &+ (rn)iU = (1 - rn)Qm:»,k + ("n)%U , say,
and °

(3.1 ’ cCM, —m,,)=C,(l —r)(M, —m,,),
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the part (r,)!U which makes the process strongly dependent cancels out and
allows us to see the same behavior as in the last section for the difference of the
two maxima. Even though the ideas are the same the proofs are longer and
more involved due to the bulky nature of the covariance function.

The following theorem is stated somewhat differently than Theorem 2.1 be-
cause the second order terms of m, , are not comparable with the difference
M,—m,,.

n

THEOREM 3.1. If (1.2) holds for {X,, n = O} as described in the beginning of
this section then
1
_—
1+ (k— 1)e=*

(3.2) P{Mn —m,, < i}
C

n

asn— oo forall 0 < x < co.

Proor. Looking at (3.1), it is sufficient to show that P(M, — m, , <
x/c,(1 — r,)}) converges to the r.h.s. of (3.2). Let usdefine ,, = b, , — g(n)/c,
where g(n) — oo is chosen such that (r,)te*™ = o(1). (Notice the different
definitions of 7, , and g(n).) In order to follow the proof of Section 2, we first
have to show that P{m;, , < 7,,} = o(1). The proof of this follows that of (2.17)
in [3]. Define

(—1)=0
(3.3) 7(0) = [n1] for 0<a< (_11_+_§)_2
7(i) = nexp{—r,*log n} i=12,-..,49(n)
2(q(n) + 1) = n
where g(n) is chosen so that
log n
As illustrated in [3], (1.2) (ii) implies that
Fejy — Fn S 10070
By Berman’s lemma [1]
Pim;, . < 70,2}
(3.9) < @¥(n,,,) + (const.) 3, 3, F'(i — j) exp{ Mo }
L4 r(i—))
< ®™'(,.) + (const.)n Y32 (i 4 1)rl,, exp{—iaﬁ»“.,_} .
+ e

Direct computations will show that the first term of the r.h.s. of (3.5) is o(1)
for any g(n) — oo, and that the second term is o(1) can be seen by some modi-
fication of the procedure in [3]. The same method is also used in (3.14). Hence
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we exclude the details at this stage. Thus it is sufficient to show that

X

3.6 - P{M,,’ S
(3-6) P2 =)

m'ln,k > 770,7»}

tends to the desired limit in (3.2) as n — co. Conditioning on §, ¢ G, and pro-
ceeding as in Section 2, the quantity in (3.6) is equal to

, ; L — 7o\t x
3.7 S PV Sy (D) ues,,
G B, PO =) oy e
vesy (Lot ves) o a
L+ 70
where {Y,%, 0 < u < n} are standard Gaussian with
’ ’ ’
EY,Y, = Tuw — Tuprloe =7i,, say.

(I — 2.t — rdy d

By Berman (1971, (4.5), page 932) we can write (3.7) as

(3.8) Vg, Tlues, @ <y <1 — r%,m)y Lx >

1 + ru,t(i) cn(l - r’n)é
1 —r o\t ,
X Moes, @ (¥ (7240)) o) dy + Tt §55,0 o 90) dy
L+ 7 '
where the error E; , is such that
(3.9) Eisl £ Zu Xo [§500 0(3s yur 2) 44|
and

_ _ 222 + .2
sy A) = ) (1 — )-Fex {_yl Y1 )s yz},
¢(V1s yor 4) = (27)7X( )"t exp T
We know that y, is either y, = y((1 — 7}, .,))/(1 + 7%.:)))} OF y, + (x/c,(1 —7,)})
and Yals either y, = (A =y a1+ roaaontory, + (xfe (1 — r,)). Noticing
that |7¢,| < 6 < 1 for large n for each i, we can see that

2 __ i 2
(3.10) |E; | < (const.) >, >3, |rk.l exp{—y" 22(|{“”_|y;l)2}”) T }

= (const.) >3, >, h(u, ), say.
Define
Dy = Dociu—tinse 2o MU V) = 3w Docio—tiinse HHs V) -

The last equality follows by symmetry. We notice that the sum of A(u, v) over
the set {ju — #(i)] < (0) or [v — #(i)| < 7(0)} is at most 2A,. Also define

A; = sum of h(u,v) on set
G- <=1 =N {c(j — 1) < v — 1) = =(0)}
j=1,2,---,(g(n) + 1). Then by the same argument as above the sum in the
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r.h.s of (3.10) is at most 2 3749 *+* A,. Next we will estimate A;, j =0, 1, .-,
(9(n) + 1) for y > 5, ,. First
(3.11) Ay = Fu-tionsco D—tanszo B V) + Diuctansco Dp—tmi>ae, HH V) -

To bound the exponent in A(u, v),

yuz _ 2|T;v|yuyv + yvz

2(1 — 74
) 1 — 7,00\ 1 — 7\
(3.12 — 2 {1 1— 2 —1|:< u,t(z)) _ < v,m)) ]
) ) K ) L+ 7w 1+ Tyt
: 1 —r N\ /L — 10\
+ (1 __|__ bﬂ;ﬁ}‘)—l( u,t(z)) < 'v,t(’b)) }
1 4 ot 1+ AP

> Y . <1 - r;,t(i)>i (1 - r;,t(t)>i .
Tl el M+ L+ 7l
We will use this bound for all sums A; except the second term in the r.h.s. of

(3.11). For this term notice that when |[u — #(i)| < ¢(0); |[v — #(i)| > 27(0) we
have [u — v| > 7(0) and |y%,| < (const.)r'(n%). Thus the l.h.s. of (3.12) is at least

y((l—0 , 1—=r(ny w
3 <1 T + [T ) (const.)r'(n )) .

Substituting, we get

A, < (const.) {72(0) ‘“3XP<_)’2 ((11 _: l?))z>

— (const.)r'(n“)))}

+ nz(0) exp<—y2 <ﬁ_~5
< (const.)e™ {exp (2 logn <a — (—11——1;—5(;_2»

+ exp <log n <a + (const.)r'(n%) — %))} .

Since r'(n*) = o(1), by choosing a < (1 — 0)/(1 4 6)* — B for some B > 0 we
see that the r.h.s. above is o(n™#). Now

(3.13) A; < (const.) ZZr(j—'1)<|u—t(i)l;I'v—t(i)lér(y‘) [7%0
X exp{_ .y2 _ <1 - rﬁ(]‘—l))} .
14 7i, \L+ "Ir(j—l)

Before proceeding to find upper bounds for A, let us notice that

T S Fo(l = 1) ™M1 — 1000) ™ < 2(ry — 1)
for large n if |u — #(i)] > 7(0) and [v — #(i)| > ©(0). In the following discussion
we will bound 2(r, , — r,) above and use the same bound for [yi,|. This is

justified because of the following. We will bound i, below by, say, dand then
show that |d| is smaller than the smallest upper bound we use for (r,, — r,).
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Now 7iy = by — Fhsw Powwy- Suppose |u — (i)] = a and |v — «(i)| = b; then
the lowest value of r/,, will be when |u — v| = a + b. Suppose a < b; then
b= (a + b)/2. Thus

’ ’ ’ ’ !
Tow — TuparyToy 2 Taxs — Tnaliainys

= (ra+b — I = rn“(r(a+b>/2 - rn))(l - rn)—l .
BUt 7 5,3 < Turs(l + log 2/log (a + b)/2) because of condition (1.2)(ii). Thus

the r.h.s. above is at least

1 —r)" _ 1 —r.) — Fpalyyslog2 > _ Fnalapy 10g2 .
(1 =r.) [(r‘”" =) = e T b)/2:| = “{log(a+ b)) — 1)

We will see later that the lowest upper bound used for r,, — r, is r,,?»*2/2. But

Ppalyys 10g2
(log (a + 6)/2)(1 —ru)
By choice of ¢(n) asin (3.4) we see that 7, ~?/?logn — co as n — co. Returning
to (3.13), for y = 7,,

) 2
(ConSt')Aj =< 7(J) Z-tw1>e-n 750 eXp{—_—jﬂ'”—i——(l - 2r;(j—l))}
1+ |72

(3.14) = 7()) {5 exp<_177_i,_n_5 (1 - 2’2(1—1)))

r D = r,4™+D/(1 — (const.)(r,*™Plog n)~7) .

n

. 2
+ 2 c(Oria-y exp(“ﬁ(—l: (1 - 2r;<l—1>)>

+ nrioy exp(—ns (1 — 4r;(i—1>))} .
The first term above is at most

(const.) logn exp{Zg(n) — logn <i g — 4ri;o + rnm)} = O(n™¥)

for some 8 > 0. The last term is at most

(const.)r};_,, log n exp {2g(n) —r,*logn (1 — 8_r;£__1)_)}

rnf/z

< (const.)r, 92 log n exp{ _szio_g_".}

because of the bound shown right after (3.4). Lastly, the middle term in the
r.h.s. of (3.14) is at most

(const.)e® Flizir,+/ log nexp{—1log n(r,* + 1, — 4rli, — 8rl; )}

. l/2
< (const.)e*™ »i-1r, V2 logn exp{ —r_".%ﬁ}

since 7} ;,_,, < 2r,**"?and | < j — 1. Substituting in (3.14) we see that by choice
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of g(n)
A; < (const.) {o(n—ﬁ) + N r, 2 logn exp(—r"zl/2 log n)}
< . —p ; _r*logn
< (const.) {o(n )+ > exp( A >}
since

r,/*logn

+ log (r, " log n) < — 2108”1
" = 2

+ 2log (r,/*log n)

and / £ j < ¢g(n) implies r,/*log n — oo as n — co. Thus the sum in the r.h.s.
above is at most
4

— .
r,t?log n

2=

Choice of g(n) implies (r,)* log n > (r,)"#¢™~!*H and the upper bound for the
above will be

4 Yoy (rp) eI = A(r )Hammith 3 (r, )Y
é 8(r”)§(q(n)—j+§) .
Thus

D42 A, < (comst.) T (R)HeW -3 < (const.)(r)t -

For the last sum A, ,,,, we proceed as in (3.14). The only term that needs atten-
tion is the last in the r.h.s. of (3.14). Similar procedures will show that it is
at most

(const.)r,9m*D/2 Jog n exp{—r, ™+ log n} < (const.)(r,)*
by choice of g(n). Thus
Dt Vi Biy 9(3) dy < (c0nst.)(r,)! exp(2g(m)
which by choice of g(n) is o(1). It remains to be seen that the first term in (3.8)

approaches the right limit as n — oo.
Let us write y = b, , + w/c, and look at

Tlaes (I)<b k<1—r;,t(i)>5+x+w+0(l)>
ueSp n, .

L4 ri e Cy
® (bnk <1 - rqﬁ.t(i))i + X+ w+ 0(1)>
~ exp{— SN+ Cn
- weSp b, . <1 — r;,t(i)y + x+w+o(l)
L+ 7 Cyp

We.will split the sum in the exponent above as usual and see that it is approxi-
mately equal to

1 —7r ..\ X 4+ w
(3.15) DI Yoy stu-sii<s(hmesp (10g ) He <bn,k ( ?’tm> + + >
L+ rvn Cn
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for —g(n) < w < co. The above sums for 0 < j < ¢(n) tend to zero and for
f = q(n) + 1 it tends to (k — l)e==**), The proof of this is very much similar
to that of (3.14). In fact we can see that the first two terms of the r.h.s. of
(3.14) could be taken as the upper bound for 374 in (3.15). The sum for j =
q(n) + 1is taken over all u € S, such that v(g(n)) < |# — #(i)| < n. It is easy to
see that the number of terms in the sum are asymptotically equal to (k — 1)n/k.
Thus the sum for j = g(n) + 1 is about

(k — )n B
WCXP{ > (+W)+0(1)}

which tends to (k — 1) exp(—(x + w)). Similarly we can show that
HveSi @ <bn,k (‘——‘—1 — rv'““)i + K)

1 + rv,t(i) Cn

tends to exp(—e~*). We follow the same steps as in the end of Section 2 to
complete the proof of Theorem 3.1. Notice that the additional condition required
there, namely log log n/(log n)t exp (2g(n)) = o(1), is automatically satisfied here
since log log n/(log n)¥(r,)* = o(1) in view of (1.2)(ii) and the choice of g(n).
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