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LIMIT PROCESSES FOR SEQUENCES OF PARTIAL SUMS
OF REGRESSION RESIDUALS!

By IaN B. MACNEILL
University of Western Ontario

Linear regression of a random variable against several functions of
time is considered. Limit processes are obtained for the sequences of par-
tial sums of residuals. The limit processes, which are functions of Brownian
motion, have covariance kernels of the form:

K(s, 1) = min (s, £) — [§ [§ 9(x, ) dx dy .

The limit process and its covariance kernel are explicitly stated for each of
polynomial and harmonic regression.

1. Introduction and summary. The first test for change of regression at un-
known time, obtained by Quandt (1960), was based on the likelihood ratio.
Distribution theory for this test statistic has been shown by Feder (1975) to be
complicated and to depend upon the configuration of the observations on the
independent variables. An approach that does not have this dependence and
which yields statistics whose properties are well known has been proposed by
Brown, Durbin and Evans (1975). This approach requires the computation of
recursive residuals, a computation rarely included in a standard regression
analysis. MacNeill (1977) proposes a test for change of polynomial regression
based on the sequence of partial sums of raw regression residuals. Derivation
of large sample distribution theory for this test depends upon first ascertaining
the limit process for the sequence of partial sums of regression residuals. In
this paper we consider linear regression of a random variable against several
regressor functions of time. The class of regressor functions considered is wide
enough to include most functions used in practice. Limit processes are found
for the sequences of partial sums of regression residuals. These limit processes,
which are functions of Brownian motion, have covariance kernels that are
simply defined in terms of the regressor functions. Examples given include
polynomial and harmonic regression.

We first define the basic model. Let {¢;, j > 1} be a sequence of independ-
ent and identically distributed random variables possessing zero means and
variances ¢* < co. Also let {f,(+), 0 < k < p} be a collection of regressor func-
tions defined on [0, 1] and define the triangular array {Y,;, 1 < j < n,n > 1}
of dependent variables as follows:

Yo; = Do Bufilj[n) + ¢; -
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For convenience the total time of observation has been compressed to the in-
terval [0, 1] and observations are taken at equi-spaced time points. In the usual
matrix formulation we have

Y'n = xnﬂp + &,

where the (s, r)th component of the design matrix is f,(s/n). The Gauss-Markov
estimator for 8, is denoted by B, and is defined by

A

ﬁp'n = (x'n’xn)_lxn’Y'n s
subject to the existence of the inverse.

2. Limit processes. Sequences of partial sums of regression residuals are
denoted by {(Sf,;, 1</ <n),n21} where Sf,; = ¥i, (Y, — ?,.), Y=

' £(i/n) and £(i/n) = {fy(i/n), f(i[n), - - -, [(i[n)}. Sfa = 0. These sequences
of partial sums define a sequence of stochastic processes [{6,,(f), f € [0, 1]}, n = 1]
possessing continuous sample paths as follows:

an*ﬂf”(t) = an[nt] + (nt - [nt])(Y[nt]+l - Y['nt]+l) N

Then if e,; is an n X 1 vector whose first j components are 1 and the remainder
zero one can write:

om0, (jin) = Sfa; = en{l, — Xu(XX0) X, e,
Provided the Riemann integrals on [0, 1] of f,%(+) (r = 0, - - -, p) exist one finds
the (r, s)th component of lim n~(X,’X,) = F to be {}f,.(1)f,(1)dt. We then let
g(s, t) = f'(s)F'f(¢), assuming, here and in the sequel, that the inverse in this
bilinear form exists.

Now denote by {B(), € [0, 1]} the standard Brownian motion process with
continuous sample paths. Such a process is Gaussian with E{B(r)} = B(0) = 0
and E{B(f)B(s)} = min (s, f). Also let S, = 3}i_, ¢; and define another sequence
of stochastic processes [{8,(t), t€ [0, 1]}, n = 1] possessing continuous sample
paths by

n260,(1) = Spay + (nt — [nt])etai1a -
We then have the following result.

TueoreM. If f,(f) (r = O, - - -, p) are continuously differentiable on [0, 1] then
{6,a(1), 1€ [0, 1]} converges weakly to the Gaussian process {B(1), te [0, 1]} de-

fined by:
0

B/(1) = B() — B(1) $g(x, 1) dx + §2B(x) {855 0(x, ) | dx.

This process has mean and B ,(0) equal to zero and covariance kernel, K (s, 1), given
by:
K,(s, t) = E{B/(s)B,(f)} = min (s, ) — {3 §¢9(x, y) dx dy .
ProOF. Define a sequence of functions, {.,(+),n = 1}, from the space of
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continuous functions, C[0, 1], into itself by the following relation:

hf'n{an(t)} = 0n(t) - e;.ntxn(xn’xn)_l(an(l)f(l)
— L5 [f(/m) — (7 — D/rH0(j — 1)/n}) -

e, .. is defined to be an n x 1 vector whose first [nf] components are one, the
next is nt — [nt] and the remainder are zero. Abel’s partial summation formula
implies that k,,(60,(f)} = 6,,(r). Also define #/(.), a function from C[0, 1] into
itself, by: & {B(t)} = B(t). {h;n(+), n = 1}and h(+)are continuous in the uniform
topology on C[0, 1]. Since lim n~'e},,;X, = §¢ f(5) ds and lim n(X,'X,)! = F-
it follows that h,,(+) converges to k() in the sense that if {Z,,n > 1} and Z
are elements in C[0, 1] and Z, converges uniformly to Z then 4,,(Z,) converges
uniformly to #,(Z). If {P,,, n > 1} and P, are the measures generated in C[0, 1]
by [A;,{0,(+)}, n = 1] and B,(.), and {W,, n > 1} and W are the measure gener-
ated by {0,(+), n = 1} and B(.) we have P,, = W, h;yand P, = Wh,~'. Theorem
5.5 Billingsley (1968) implies that P, converges weakly to P, which completes
the proof.

Embodied in this proof is the result that 3;7_, f,(j/n)e,/(n*s) converges in dis-
tribution to f,(1)B(1) — (} B(r)(d/dr)f(f) dt, which is integration by parts. It
can also be observed that

By(1) = B(1) — $:{§3.9(x, y) dB(y)} dx,
a formula that facilitates computation of the covariance kernel.

The time of observation need not be restricted to [0, 1] nor must the sampling
be equi-spaced. Suppose the total sampling period is [0, T] and the rate of
sampling is described by a nonconstant positive function {r(¢), t € [0, T]}. Then,
with R(r) = §§r(s) ds/§ r(s) ds, the limit process B,,(+) may be related to that
of the theorem by the relation:

Bype(t) = BAR(1)} .

3. Examples. First consider the case of fitting a mean to a set of data, i.e.,
p=0and f() = 1. Then B/(r) = B(r) — B(1), which is the Brownian bridge
with K (s, t) = min (s, ) — st.

Next consider the case of fitting a polynomial of degree p to a set of data.
Then f,(f) = " (r = 0, 1, .-, p). Exactly the same fit is provided by using the
orthogonal polynomials up to order p. See Allan (1930) for the general form
of these polynomials. Orthogonal polynomials can be used to show that

BA) = B() — Taeo(2m + 1) B(U)gu(1) 5§ 9u(5) s

— {0 9n(5) ds} {sz, B(s) dis In(S) ds}:|
where -

2m
9a(t) = i (= )¢ bgpleca) ¢ — gy
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See MacNeill (1977) for a derivation of this result. The covariance kernel is
given by:

Ky(s, 1) = min (s, 1) — Fho (2m + D){§i gu(x) dx}{§5 gm(y) dy} -
Although it is not true in general it can be seen in this case that 0 and 1 are
zeros of K(t, t) so B,(t) can be thought of as a generalized Brownian bridge in
the sense that its paths are tied to 0 at # = 0 and r = 1. The bridge property
will hold if one of the f,(+) is constant.

Finally, consider the case of fitting an harmonic polynomial of degree p. to
a set of data. Let fi(f) = cos2nkt (k =0,1,...,p) and f, () = sin 27kt
(k=1,2, ..., p). The theorem implies that

By(t) = B(t) — B(1){t + X b_, (wk)'sin 2zkt}
+ 2 §3 B(s)[ 228, {cos 2mks — cos 2mk(t — s)}] ds
and that
K(s, t) = min (s, ) — st — 332_, (27**)~H(1 — cos 2zjt)(1 — cos 2xjs)
+ sin 2xjs sin 27jt} .
Again it can be seen that the paths are tied at both r = 0 and r = 1.
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