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UPPER BOUNDS FOR THE RENEWAL FUNCTION VIA
FOURIER METHODS

By D. J. DALEY
The Australian National University

Stone has used Fourier analytic methods to show that the renewal
function U(x) = 3;5° F**(x) for a random variable X with distribution func-
tion F, finite second moment and positive mean 1! = EX, isbounded above
by ix. + Ci2EX? for a universal constant C, 1 < C < 3. This paper refines
his method to prove that C < 2.081, and shows that within certain con-
straints the smallest upper bound on C that the method will yield is 1.809.

Various authors’ work on the simpler case where X = 0 is summarized:
the best result is the earliest published one, due to Lorden, who showed
that then C = 1.

1. Introduction. Stone (1972) has proved that for any random variable (rv)
X with finite first moment 2-! = EX > 0 and finite second moment 3/2* = EX*
(so that 3 = 1), there exists a constant C independent of the distribution F of X
such that the renewal function

(1.1) U(x) = Yo, F**(x)
is bounded above as follows:
(1.2) Ulx) < ix, + C5 (all x).

He showed that 1 < C < 3, and remarked that the upper bound could conceiv-
ably be made significantly smaller.

Lorden (1970) showed via methods using sub-additivity and Wald’s lemma
that the first passage time rv N(x) = inf{n: S, > x} satisfies

EN(x) £ 2x 4+ CZEX* (all x > 0)
“with C = 1. In the case that X > 0, we have equality throughout in
Ulx)=Eg{n=0,1,...:S, <x} = Einf{n: S5, >x} (x=0)

so that, as Professor Lorden kindly pointed out in correspondence, the proof
via real variable methods in my recent paper (Daley (1976)), showing that C <
1.3186. . -, yields a result weaker than one already extant. It may be added
here that O’Brien (1976) showed that the basic principle of my argument yields
C < (3(3%))/4 = 1.299. . .; a further modification to the method yields a tighter
bounding constant, C(8) say, for which C(8) 1 with 31, C(8) | 1 for 8| I and
11.299... for 31 co. O’Brien’s approach enabled some progress to be made
on using real variable methods to establish (1.2) for general X, but nothing as
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general as that given below. It should also be noted that Borovkov (1976) has
given (in an appendix on renewal theory) an upper bound similar to (1.2),
namely

U(x) = (1 = p){1 + 2(am,)~*f}

where 0 < p < 1 and m, is nonzero and a pth quantile of the distribution of X
which is assumed to be nonnegative.

The purpose of the present note is to examine Stone’s Fourier analytic tech-
nique in some detail. The main result, which is a consequence of recognizing
the broader validity of an identity and using a sharper inequality in Stone’s
line of reasoning, is the tighter bound in Theorem 1.

THEOREM 1. 1 < C < 2.119418.

Using the subadditivity of the renewal function in place of its nondecreasing
property leads to the sharper bound in Theorem 2.

THEOREM 2. There exists a function C(y) (0 £ y < oo), decreasing monotonic-
ally, 2.119418 > C(0) = C(y) | 1 (y — o0), such that

(1.3) U(x) — 2x, < Cx/8)8 -

Finally we shall show that the use of various inequalities on both the charac-
teristic function and the renewal function in conjunction with the Fourier
technique, will not yield as an upper bound on C anything smaller than 1.80884.
The proof of this result suggests how the bound of Theorem 1 might be sharp-
ened, and we do in fact effect a marginal improvement to

(1.4) 1 < C < 2.080642 .

Further improvement is probably possible but slight.

In view of Lorden’s sharp result for renewal processes, this limitation appears
to be one of technique rather than suggesting the falsity of the conjecture that
C = 1 irrespective of whether or not X is confined to be nonnegative.

2. Preliminaries. Let ¢(0) = Ee'’* = (= e’* dF(x) be the characteristic func-
tion of X. Then the elementary trigonometric inequality sinu > u(1 — u/r)
(all &) yields
2.1) 1 — ¢(8)] = [Im $(0)] = |Esin 0X|

= Esin X =z §EX — ’EX¥rn,

and hence, since |Im ¢(6)| = [Im ¢(—8)|, that
(2-2) 01/]1 — ¢(0)] = 4/(1 — B|0|/=2) (|6] < =4/6) -

This inequality is sharper than Stone’s equation (7). The constant = appearing
in (2.2) cannot be increased without making the inequality more complex alge-
braically: see Daley (1975).
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Introduce /(x) = O or 1 as x < or = O,
(2.3) G(x) = {=, (l(u) — F(u))ydu — EX (x— o0),
(2.4) S(x) = §% (EXI(u) — G(u)) du — EX*2 (x — o).
We now write Stone’s equation (11) more generally (Stone has M = 1/5) as
(2.5) (%) = §Z. MEM(x — y)(U(Y) = 4y, — 2S(y)) dy
= PQ2ri)=* {¥, e =k(0/M)(p(0) — 1 — iGEX)*0-%(1 — ¢(0))~'db,
valid where |1 — ¢(0)| > 0, viz., certainly where 0 < M < 2r1/B (see, e.g.,
Daley (1975)), in which K and k are the probability density function
(2.6) MK(Mx) = (1 — cos Mx)/rMx*
and its characteristic function
2.7 k(0/M) = (=, e MK(Mx)dx = (1 — |0|/M), .

The identity (2.5), cited by Stone, is a special case of a series of identities in
Dubman (1970), on whose argument the derivation of (2.5) given in Section 6
is based. Observe the interpretation of (2.5) as the equality of the convolution
of MK(Mx) and the bounded measurable function W(x) = U(x) — Ax, — 228(x),
with the Fourier inverse of the product of k(¢/M) and “Fourier transform” of
W(.) (this last transform may be only formally defined). The feature of (2.5)
that ensures its actual validity, and not merely formally so, is that k(+) vanishes
outside (—1, 1), and the scale factor M is so chosen as to ensure that any singu-
larities of the “transform” of W(.) lie outside the support of k(.).

3. Proof of Theorem 1. Substitute into the identity (2.5) the inequalities (2.2)
and

3.1 |¢(0) — | —i0EX| < *EX?[2 = 0°8/222,
yielding (since k(+) is nonnegative and symmetric)
(3-2) M) = (2/2m) {2, k(0] M)(8*[42)A(1 — |6]3[2)~" db
= (BC/4) S k(u)(1 — Cu)~ du,
provided that 0 < { = fM/z2 < 1. Since
(3.3) 170 MK(M(x — y))ZS(y) dy < /2,
we thus have in place of Stone’s equation (12) the inequality
BI2 + (BL/4) So k(u)(1 — Cu)~" du
(3:4) > J,(x)
= {20 MK(M(x — y)(U(y) — 4y.) dy
= (. K(—v)[U(x + v/M) — A(x 4 v/M), ] dv .

Now U(x) — 4x, is nonnegative, and U is a nondecreasing function, so for all
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x > 0, and any constants 4 < B,
(3.5) Ji(x) =2 $K(—0)[U(x + v/M) — Ax + v/M),] dv
= {EK(—v)[U(x) — ix — 2w/M]dv .
Set A = 0 and B = M(U(x) — Ax)/4, so that on combining (3.5) with (3.4),
(3.6) (@@ =12 [M(U(Xx) — Ax)[A — V]K(—v) dv
< w2 + (=84) (5 k(u)(1 — Cu)du .

The function appearing on the left-hand side here (and recall that K(+) is sym-
metric), namely

(3.7) 9(») = W8 (y — v)K(v) dv,
is a strictly increasing function of y, — oo for y — oo, and g(0) = 0, so there
is a unique root & of

(3.8) 9(&) = nj2 + (x(*4) (S k(u)(1 — Cu)~'du.

Consequently, M(U(x) — Ax)/A < & for all x > 0, or, observing that & depends
on ¢,

(3.9) U) — ax, < Q)M = (EQ)/=0)3 -
Thus, it remains to evaluate the bound
(3.10) C < infyc;e 8L

Substitute for K and k at (3.6) and (3.7) from (2.6) and (2.7). Writing
(3.11) Si(x) = §zutsinudu, Cin (x) = {fu=(1 — cosu)du,
(3.12) §Si(6) —Cin(§) — (1 —cosé) =30 + (1 = {)In(1 —{))/4.

Solution of (3.12) yields for (3.10) the bound asserted in Theorem 1; it is attained
at (&, ) = (5.582059, .8383549).

4. Using subadditivity and Theorem 2. We shall use here the subadditive
-property of the renewal function

(4.1) Ulx +y) < U + UQ) (@l x, ).

Proor oF (4.1). If both xand yare < 0, (4.1) follows from the nonnegativity
and monotonicity of U. Otherwise, assume y > 0. Set §, =0, S,,, =S, +
X, ., where the X,’s are independent random variables distributed like X, so that
U(x) = Eg{n = 0: S, < x}. Either there is a least n, = v(x, y) say, such that
X < S,y = X+ y,orelse foreveryn =0, 1, - .., either S, < xor§, > x4+ y,
and we canset y(x, y) = co. Writing 4, (¥) = Pr {v(x, y) < o0, S,,,, — x < u},
(4.2) Ux +y) = Ux) = §§[U(y — ) — U(—u)] d4, ,(4)

= UQ) — U=y) = U0,
proving (4.1).

It follows from (4.1) that the function

4.3) Vy(x) = U(x) — Ax
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is also subadditive; note that the function
(4.4 V(x) = Ux) — 2x, = Vi(x) — Ax_
appearing in (3.4) and (3.5) need not be subadditive. In the first inequality in
(3.5), set B= 5 > 0 and 4 = —, and recall that K(.) is symmetric. Then for
x = 0 we can write
(4.5) Jo(x) = STK@)[Vo(x + v/M) 4 Vi(x — v/M) — A(x — v/M)_] dv
= §5 K@)[Vi(2x) — i(x — v/M)_] dv.
Combine (4.5) with (3.4); we obtain

(4.6)  (U(2x) = 24%)[8 = C(y, 1, O)ly=2izss

= 1+3C §o k(u)(1 —Cu) ™" du +(2/7C) in ey, VK(V) BV
- 2 (7 K(v) dv

(recall that M = 7i{/B). Inequality (4.6) can be rewritten in the form of
Theorem 2 by defining

(4.7) C(y) = infoceer 50 €1, 7, €) -

C(y) decreases with increasing y > 0 by inspection, and to check that C(y) | 1
(y — o), take { small to make the first integral in the numerator sufficiently
small, take 7 large enough to make the denominator close to 1, and then take
y large enough to make the second integral in the numerator vanish.

To evaluate C(y), observe that the infimum at (4.7) is attained in the restricted
range 7 = ©{y/2, and the two possibilities, » > and = #n{y/2, require separate
consideration (note that the former must hold for y = 0). Take 5 > ={y/2, and,
keeping { fixed, the infimum of (4.7) with respect to  occurs (by differentiation)
where

(4.8) n §TKWw)dv = n{j2 + (n{*/4) §§ k(u)(1 — Qu)~*du
+ sglin(rj,:rCy/m Q)K(Q)) dv .
If we take (4.8) as an implicit definition of 5,({), it follows from (4.7) that

(4.9) C(y) = infoc;ci 7 (Q)/C

provided this infimum exceeds y/2. Referring to equation (3.8) and (3.10) it
follows that the bound of Theorem 1 equals C(0). Theorem 2 is proved.

Suppose finally that in (4.7), » = n{y/2. Then differentiation shows that the
infimum, occurs where { satisfies

(4.10) (1 + (£/2) 5 k(u)(1 — Cu)~" du)myK(=Cy/2)
= (;92K(v) dv {3 k(u)(1 — Qu)~*du ;
complications may arise, as is the case in the computations referred to below,

from (4.10) having more than one root { in 0 < { < 1.
We have evaluated the bound C(y) for the kernel function k(4) = (1 — |6]),
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used in Section 3. The infimum occurs where » = z{y/2 for y = 3.0687, with
0<7<2r for y < 19.7, 2 < p < 4z for 19.7 < y < 58, and 7 > 4r for
larger y (2nr < 5 < 2(n 4 1)z for an interval of values of y). For large Ps
C(y) = 1+ 3/x(2y)*

S. Possible limitations of the technique. It is shown in Section 6 that equa-
tion (2.5) holds on the range 0 < M < 2ri/j for certain K(.) and k(-) more
general than at (2.6) and (2.7) with k(+) real and vanishing outside (—1, 1). In
Sections 3 and 4 it was convenient to take k(.) nonnegative, and throughout
this section we assume that k(+) is as in Section 6 and also that it is nonnegative.

From the inversion formula for probability density functions,

(5.1) K(v) = == {j cos §vk(6) db ,
so that equation (3.7) can be expressed as
(5.2) g9(y) = 77 (567%(1 — cos Oy)k(6) d6 ,

enabling the equation (3.8) to be rewritten in the form
(5.3) §6 [(1 — cos 08)/x%0* — *j4(1 — (6)]k(8)do = §/2 .
For fixed § < 2z, 6~*(1 — cos 6¢) decreases monotonicallyon 0 < 6 < 1, while
£*/4(1 — £0) increases monotonically on the same interval. So if 262 > #°(*and
4(1 — cos &) < mC¥(1 — {), there exists 6, in (0, 1) such that the integrand in
(5.3) is positive or negative as § < or > §,. Since 0 < k() < 1 (all 0), it
follows that
£ < 2§0[(1 — cos §8)/n%6* — (2/4(1 — £6)] 40,

i.e.,
(5.49) 2706, < 4£6,Si (£6,) — 4(1 — cos é6,) + =*C6,1In (1 — £6,) .

Now the equation
(5.5) (1 —£6,)(1 — cos&b,y) = (nC0,/2)*

“and the inequality (5.4) are consistent only provided that £, exceeds the unique
positive root of (5.5) and (5.4) with equality. Hence, there is a smallest possible
upper bound obtainable by using this Fourier transform technique in conjunction with
the inequalities (2.2), (3.1), the nondecreasing nature of U(x), and the nonnegativity
of U(x) — Ax,. This least possible upper bound on C equals 1.80884, obtained
at (§6,, £6,) = (3.30133, .580952).

The bound could in principle be tightened by replacing (2.2) by an inequality
based not on (2.1) but on the relation

11 — ¢(6)] = {(E(1 — cos 6X))* + (E sin 6.X )}
(5.6) = {(|PEX| — °EX*2m)'[4 + (|0EX| — 0*EX*|z)*}}
(6] < 2x|EX|/EX?)
where y = 1 or Oas |f| < or = n|EX|/EX*. The additional algebraic complexity
is readily apparent.
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The argument concerning (5.3) suggests seeking an improvement to Theorem
1 via a ch.f. k(¢) that has a broader peak around ¢ = 0 and higher order contact
with the axis at # = 1 than the function (1 — |6]),. An example of such a ch.f.
is the following (obtained by convolving (1 — |6]), with itself and rescaling:
see Esseen (1945)):
(5.7) ky(0) =1 — 60+ 6/6)*, |60] < .5,
=@ —1op., ez 5.
(The corresponding density K,(x) = (3/8x) (sin (x/4)/(x/4))*.) Our calculations
showed that the infimum at (3.10) occurs for { = 1, a happy chance since the

integral at (3.8) is then simpler to compute, and leads to the slight improvement
on Theorem 1 asserted at (1.4).

6. Proof of the identity (2.5). Throughout this section which is largely based
on part of Section 3 of Dubman (1970), K(-) denotes a continuous symmetric
probability density function whose characteristic function k(+) vanishes outside
(—1,1). Wetake M > 0 to be such that [¢(f)| < 1 for —M < § < M excluding
the point § = 0. Then the inversion theorem for characteristic functions of
continuous probability density functions ensures that
(6.1) MK(Mx) = (2x)~* §¥, e~ **’k(6 /M) db

= (2m)7* {¥, cos x0k(6/M) d6 .
Similarly, the probability density function
(6.2) Mz  K(M(x — y))dF**(y) = (27)7* { X, *'k(6]/M)¢"(0) db
= (27)7' {¥, Re (e7**’k(0/M)p™(6)) d6 .
Forany 0 < r < 1, define U, (x) = };& r"F"*(x), so that it follows from (6.2) for
0<r<1 that
(6.3) Mz, K(M(x—y))dU,(x) = (27)7* {2y Re (e7*'k(6/M)/(1—r$(0))) d6 .

Feller and Orey (1961) show that the measures on [—M, M] with density
Re (1 — r¢(6))~* converge weakly as r 71 to a measure with an atom of mass
Am at @ = 0 and an absolutely continuous component with density Re (1 —¢(8))~!
(6 # 0). Since dU,(x) 1dU(x) (r11)and (=, K(M(x — y))dU(y) < oo, the two
sides of (6.3) converge as r 1 1 by monotone convergence and weak convergence
respectively to yield the identity
(6.4) Mz K(M(x — y))dU(y)
= 2/2 + (27)7' {2 Re (e *’k(0/M)/(1 — ¢(0))) d6 .
Now from (6.1),
§7 MK(M(x — y))dy = §2.. MK(My) dy = § + {5 MK(My) dy
(6.5) =% + (2=)7' §¥, 67 sin x0k(6/M) d6
=% + (27)7' (¥, Re (e *0k(0/M)/(—i6)) db .
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Combining (6.5) with (6.4), we have with 4 = EX = A7,

M §z. K(M(x — y))d(U(y) — 4y4)
(6.6) = (27)7* (%, Re (e "k(O/M)}{(1 — $(0))™" + (i6u)7'}) dO
= (27)7* (% Re (e7*%k(0/M){(1 +i0p:— (6))/(1 — $(6))(i012)}) 46 -

Now the term in braces is continuous and bounded on (—M, M), hence inte-
grable there, so the restriction of the integrand to the real part, introduced at
(6.2) for integrability considerations, can be relaxed.

The function A25(+) (see (2.4) above) is a distribution function which, it may
be verified, has characteristic function (¢(6) — 1 — i0p)/(i0p)*. Thus we may
write down an expression similar to (6.2) involving § in place of F** and this
then yields in conjunction with (6.6) (without the restriction to the real part)

(6.7) M|z, K(M(x — y)) dW(y)

N B 1 1 ¢0)—1—ibp
= o [ e =k(0]M) {qus—(oj 7 _ }da

where W(y) = U(y) — 4y, — A5(y). The expression in braces equals
(1 +i0p — $O)/(1 — ¢(@)(0p)*,

and when divided by @, it is still continuous and bounded on (—M, M), hence
integrable there. Since k(§/M) vinishes for |#| > M, this property of integra-
bility will enable the Riemann-Lebesgue lemma to be applied later.

Let K (+) be the distribution function with density MK(+). Formal integration
of the left side of (6.7) followed by formal integration by parts yields for fixed
xand —A4 < x

Ze WO)MK(M(x — y)) — K(M(—A4 — y))) dy
(6.8) = 1Za (Ky(M(x — y)) — K(M(—4 — y))) dW(y)
' = 2, du(Z. MK(M(x — y)) dW(y)
_ {r (e7™? — e Nk(O/M)(1 + i6p — $9)) 4o .
2z " (=i0)(1 — $(O)(ibpy
Replacing the infinite range of integration in the first three expressions here by
(2g, for some Bsufficiently large that W(— B), K,(— MB), and

(82 — §2)MK(M(u — y)) dW(y)|

are sufficiently small for — 4 < u < x, the first two equalities asserted at (6.8)
can be verified, and then (6.7) used to deduce the last equality. Using the
Riemann-Lebesgue lemma on the right hand side of (6.8) establishes (2.5) since,
for the left-hand side of (6.8) MK(M(.)) is a probability density.
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