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CONDITIONED LIMIT THEOREMS FOR SOME NULL
RECURRENT MARKOV PROCESSES!

By RICHARD DURRETT
University of California, Los Angeles

Let {vx, k = 0} be a discrete time Markov process with state space
E c (—o0, ) and let S be a proper subset of E. In several applications
it is of interest to know the behavior of the system after a large number
of steps, given that the process has not entered S. In this paper we show
that under some mild restrictions there is a functional limit theorem for
the conditioned sequence if there was one for the original sequence. As
applications we obtain results for branching processes, random walks, and
the M/G/1 queue which complete or extend the work of previous authors.
In addition we consider the convergence of conditioned birth and death
processes and obtain results which are complete except in the case that 0
is an absorbing boundary.

1. Introduction. Let {v,, k = 0} be a discrete time Markov process with state
space E C (—oo, o) and let S be a proper subset of E. In several applications
(see [8], [12] and [13]) it is of interest to know the behavior of the system after
a large number of steps given the process has not entered S. For example, if v,
is a branching process and § = {0} a limit theorem for (v,|v,, # 0,1 < m < n)
gives information about the size of v, on the set {v, > 0}.

In [2], Seneta and Vere-Jones have given conditions for the convergence of

(1) a;;(n) = P(v, = j|v, = i, Ny > n)

where Ny = inf{m > 1:v,eS}. In many cases, however, all the limits in
(1) are zero. Applying the results of [2] when v, is a branching process and
S = {0} gives that a;* = lim,_, a,;(n) is a probability distribution when
m = E(w,|v,=1)< 1 and «;* =0 when m = 1. To obtain an interesting
theorem in the second case we have to look at the limit of (v,/c, |v, = i, Ng > n)
where the ¢, are constants which 1 co.

In this instance the most desirable type of result is a functional limit theorem,
i.e., a result asserting the convergence of the sequence of stochastic processes
{V.*(t), 0 < t < 1} defined by

2) V() = (Vpaaf€n| Vo = i, Ng > 1)
where [x] is the largest integer < x.
In this paper we will show that under some mild restrictions {V,*(¢), 0 < ¢t < 1}
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converges if there is a corresponding functional limit theorem for the uncon-
ditioned sequence. As applications we will obtain results which complete the
work of Lamperti and Ney (1968), Iglehart (1974) and Kennedy (1974).

To describe our results in detail we have to state the basic assumptions. The
first and most natural are: (i) v,, kK > 0 is a Markov process with state space
E C (—o0, o0); (ii) there are constants ¢, T oo with c,,/c, — 1 so that if x, — x
and x,c, € E for all n then

Varn = (VaafCa| Vof€n = X,) = (V| V(0) = x) = V=,

where V' is a Markov process with /' nondegenerate for some y > 0; and (iii)
P{inf,_,., V*(s) > 0} > 0 for all 7, x > 0.

Here the symbol — means that the sequence V,*» converges weakly as a se-
quence of random elements of D—the space of right continuous functions on
[0, 1] which have left limits (see [20] for a description). Nondegenerate means
that P{V'= = f} < 1 for all fe D.

Let N= N_. 4. Itis under assumptions (i)—(iii) that we will derive condi-
tions for the convergence of (V,*»| N > n) (a) for all x, — x = 0 and (b) when

¢, =yekE.

We will obtain our conditions for the case x, — x > 0 by solving a more
general problem. In Section 2 we give sufficient conditions for the conver-
gence of P,(.|4,) = P,(. N A4,)/P,(A,) when the P, are probability measures
with inf, P,(4,) > 0. Applying these results to sets A4, = {f : infy,., f(s) > 0}
with ¢, — t€[0, 1] we find that if P,*» and P~ are the probability measures in-
duced on D by V,*» and V'*, then x,, — x > 0, (ii), and P,*»{N > nt,} — P*{T, > t}
are sufficient for (V,*»|N > nt,) = (V*| T, > t) when T, = inf{s > 0: V(s) or
V(s—) < 0}. (We will work with T, instead of the natural hitting time
T, = inf {t > 0: f(r) < 0} since

{f:00) >0, Ty(f) > 1} = {f + infos,z, f(5) = 0}

is open.

1111) Sec)tion 3 we consider the convergence of the conditioned processes when
x, — 0 and, in particular, when x, = y/c,. In either situation P *{N > n} — 0
(in most cases) so a special analysis is required. Our method for proving con-
vergence will be to show that if

Vot = (Vipa/Cal Vo = X, N > ) and T = inf{k: v,/c, = ¢

then
lim,_, V,* = lim,_,lim,_, (’U[Tn+,n /€l vy = X,¢,s N > )
= lim__, lim, ., (Vn.1/Ca |0 = V (T n), N >n—Tr™
= lim,_, lim,_, (Vp.9/€. |V = X, N > n) .

In Section 3 we will show that these three equalities hold if (in addition to
(i)—(iii)) we have
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(iv) P,*»{N > nt,} — P*(T, > t} whenever x, —» x >0, t, —»t > 0; and
(v) P,»{N > nt,} — 0 whenever x, —» 0 and 7, — ¢ > 0.

The key to our proof is the following fact (first observed by Lamperti in [25]):

THEOREM 3.2, If (ii) holds then there is a 6 =0 so that for all ¢ >0,
Ver =, cVe(ec™?).(x)

This scaling relationship identifies the processes which can occur as limits in
(ii) and can be used to deduce many properties of the limit process. In Section
3.1 we use (x) to compute relationships between the numbers P*{T, > ¢}. These
relationships are used to identify trivial cases and obtain sufficient conditions
for (iii), (iv), and (v) to hold.

In Sections 3.2 and 3.3 we use these preliminaries to prove our conditioned
limit theorems. To do this we reverse the usual procedure for proving weak
convergence. In Section 3.2 we develop sufficient conditions for V,* to be tight.
In Section 3.3 we find conditions for the convergence of finite dimensional dis-
tributions. The main results of these two sections are:

THEOREM 3.6. V,* is tight if and only if
(6a) lim,_ limsup, ., P{V,*(1) > K} =0 and
(6b) lim,_, lim sup, ., P{V,*(t) > h} =0 foreach h>0.

THEOREM 3.10. Suppose (i)—(v) hold and V ,* is tight. If V+ = lim, ,(V*|T,> 1)
exists and is % O then V,* = V'* if and only if

lim, |, lim inf,

n—oo

PV,"(t)>h =1  forall t>0.

From the first result we see that to prove the sequence is tight it is enough to
prove that V, *(r) = V*(¢) for all t > 0 and V*(t) =0 as t — 0. The second
result shows that if we do this and find that P{V'*(r) > 0} = 1 forall¢ > 0 then
V*(t) =, V*(r) (provided that V'* exists).

In Sections 4.1—4.4 we use the results of Section 3 to prove conditioned limit
theorems for random walks, branching processes, birth and death processes, and
the M/G/1 queue which contain the corresponding results of [6], [8], [12], and
[13] as special cases. It seems likely that the methods can be extended for the
non-Markovian examples studied by [7] and [11], but I have not tried this.

A more interesting unsolved problem is to generalize the results of Section 3
to other types of conditioning. There are three types of theorems in the litera-
ture to which it seems our methods can be applied. The first and most closely
related are the results of Belkin (1970, 1972) and Port and Stone (1971) on random
walks conditioned on {N; > n} when B is a bounded subset of the state space.
A second type of result concerns conditioning on {v, € 4} or {(v,_,, v,) € B}.
Several limit theorems of this type have been obtained for 4 = {x} or [a,, b,]
(see [15], [17], [18]) and B = (0, 0) X (—o0, 0) (see [19]). A third possibility
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can be constructed by taking the intersection of a condition of the second type
with {N > n — 1} or {N; > n — 1}. The condition {N,, = n} is an example of
this type which has been studied by Kaigh (1976).

2. Conditions for the convergence of P (.| 4,) when inf, P, (4,) > 0. In this
section we shall give several conditions under which the weak convergence of
a sequence of probability measures P, on a metric space (S, p) is sufficient for
the convergence of the conditional measures P,(+ | 4,) = P,(+ N 4,)/P,(A4,) when
inf, P,(A4,) > 0. The main result is:

THEOREM 1. Let P,, n = 0, be probability measures and A,, n = 0, be a sequence
of events. If(i) P, = P, (ii) there are sets G, 1 A, such that for each m, P,(0G,) = 0
and there is a positive integer k(m) so that A, D G, for all n = k(m), and (iii)
P(A4,) = limsup, P,(A4,) > O then P,(A,) — Py(A)) and P,(-| A,) = P+ ]| A4)-

Proor. ItsufficestocheckthatP,(Bn A4,)— P(Bn A)forall Bwith Pi(0B) =0.
From (ii)

lim inf, . P,(B N A4,) = lim inf, _ P,(B N G,).
Since Py(3(B N G,)) < P(dB) + Py3G,) = 0
P(BNG,) =P(BnG,).

P(B N A,) = P(Bn A). Since (B = 9B,

lim

n—00

Letting m — oo now gives lim inf,
P(d(B°)) = 0 and we have

lim inf,_, P,(B° N A,) = Py(B° N A,).

00

Using (iii) now gives
limsup,_., P (B N 4,) < limsup,_, P,(A4,) — liminf, _ P, (B N A4,)
< P(B N 4),

which completes the proof.

When applying this theorem we will typically be given P,, n > Oand 4,,n = 1,
and we will have to find an appropriate sequence G,. Condition (iii) suggests
that we would like to construct the largest 4, for which there is a sequence
G, T A4, which satisfies (ii). To do this observe that if G, and A, satisfy (ii) then

G,. C Nuzieim An and P(0G,) =0

s0 P[U5-1 (MNazm 44)°] = P(A,). Toshow that J_, (MN,zn 4.)° (hereafter called
LIMNF 4,) is the limit of a sequence G,, which satisfies (ii) we have to introduce
some notation.

If H is a subset of S and ¢ > 0 let H* = {y: {x: p(x, y) < ¢} c H}. The in-
terior of H, H° = |J,,, H* so P(H*) T P(H) as¢ | 0. Lete, | 0 and let

Gm = (nﬂgm An)em *

It is immediate from the definition that G,, ¢ A, forn = m and G,, } LIMNF 4,.
The sets G, may have P(0G,) >0 but this is no problem. If ¢ <
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O(H¥) C (H*)*so 0H* n 0H* = @. From this it follows that P(0H?) = 0O for all
but a countable number of ¢ so we can pick another decreasing ¢,’ < ¢,, for
which the associated G,’ have P(dG,’) = 0.

Using the observations above we can write the result of Theorem 1 in a simpler
form.

THEOREM 2. If P,=P and P(LIMNF 4,) = limsup, P,(4,) > 0 then
P, (A,) — P(LIMNF A,) and P(+| A,) = P(- | LIMNF 4,).

The reader should note that if P(LIMNF 4,) = 1 then P (.|4,)=P. To
apply Theorem 2 in nontrivial cases it is desirable to reformulate the condition
P(LIMNF A4,) = lim sup,, P,(A,) in terms of the sequence 4, and the limit meas-
ure P. One way of doing this is to observe that for alln = m

A'n C (ngm Ak)_ b

SO
lim sup, P,(4,) < limsup, P,(Uirzm 4x)7) < P(Uszm 4)7) »
and letting m — oo
lim sup, P,(4,) £ P(Np=1 (Urzm 4:)7) -

If we let LIMSP 4, = N2, (Uxan 4:)~ and note that LIMSP 4, > LIMNF 4,
we can write Theorem 2 as:

THEOREM 3. If P(LIMSP A, — LIMNF 4,) = 0, P(LIMNF 4,) >0 and
P(AALIMNF A4,) = O then P,(A,) — P(A) and P,( | A,) = P(+ | A).

A special case of Theorem 3 which we will need in Sections 3 and 4 is the
following:

ExaMmPLE. Let S = D and p be the Skorokhod metric on D (see [20], page
113). Let 4, = {f: inf,,, f(s) > 0} with 7, »¢>0. If g, = sup,,t, and
r, = inf, ., ¢, then

LIMSP 4, = (3, ({f : infle,, /(5) > 0))
= Nia{f+inf, f(s) = 0}
= {f: infic f(s) = 0}.
To compute LIMNF A, we observe
Ne-w A, = {f + inf,g, f(5) > 0} if t,=t forsome n=m
= Mo {f 1 inf,,_ f(5) > 0} if t,<t forall n=m
Since the interior of the second set is the first, we have
LIMNF 4, = Uz, {f ¢ infug,, /() > 0} = {f : infe, /(5) > 0}
and
LIMSP 4, — LIMNF 4, = {f: inf,, f(5) = 0} U {T, = 1}

where T, is the hitting time defined in the introduction.
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Using Theorem 2.3 now gives that we have convergence whenever P{T,>1} > 0
and the two sets in the last equality above have probability zero.

This result is sufficient for most, but not all, of our desired applications. If
P{f:f= 0} =1 then P{f: inf,, f(s) = 0} = P{T, < ¢} and from the compu-
tations above we see that Theorem 3 can only be applied in the trivial case
P{T, > 1} = 1. To obtain our results when P{f: f = 0} = land P{T, > t} € (0, 1)
we will use Theorem 2.

3. Conditioningon T __ ;; > n.

3.1. Preliminary results. In this section we will investigate consequences of
assumptions (i) and (ii). Our first result follows immediately from the type of
convergence assumed in (ii).

THEOREM 1. If there is a Markov chain v, so that v,.,/c, converges to V (in the
sense specified in (ii)) then V has the following weak continuity property:

(1) if x,—x, then Von = V=,
This implies, in particular, that V is a strong Markov process.

Proor. The second fact is a well-known consequence of the first. To prove
(1) we observe that if x, — x there is a sequence n, increasing to oo so that if
Yo = X, Wwhen n, < n < n,, then lim,__ V% = lim V,y» = V* (the lim here
means weak convergence).

The processes which can occur as limits in (ii) also have special properties
because they result from scaling and contracting time in a single Markov process.
The most basic of these is the scaling relationship given in the following theorem.

n—00

THEOREM 2. If assumptions (i) and (ii) hold, there is a 6 = 0 so that
(2) forall ¢>0, Ver =, eV*(sc7?),
3) and forall t >0, lim,_, ¢,p/c, = t°  (here, t= = lim,_, ™).
Note. To simplify notation in what follows we will drop the square bracket
from c,,; and write c,,.

Proor. Let 2¢(0,1]. Let m,=m, (2) =sup{m < n:c,/c, < 2}. Since
Cp_ifc, — 1 and ¢, — oo, Cp, /¢y — 4. If x, — x and a subsequence of m,/n con-
verges to p € [0, 1], it follows from (ii) that

(v[mn.]/cm,n I 'Uo = xncm") = Va:
and asubsequence of the left-hand side converges to 2-'V*(p«) so V* =, 271V**(p.).

Let x, be a state with P{V% = x,} < 1. If m,/n has two subsequential limits

01, P2 € [0, 1] with p, < p, then

2—11/:0(‘01.) =y Vo2 =y 2—1Vz0(p2.)
so if > 0 and n is a positive integer V*o(t) =, V=(t(p,/p,)"*). Letting n — oo and
using the right continuity of V= at 0 gives P{V*(t) = x,} = 1 for each ¢, a con-
tradiction, so lim,_, m,(2)/n exists and is positive.
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If we let p(4) = lim,_, m,(2)/n then p is a positive nondecreasing function
which satisfies p(s)o(t) = p(st). From this it is immediate that p(s) = s° for some
6 = 0 and (2) holds.

To prove (3) we will consider two cases. First, let d > 0. If 22 < r < 2
then for n sufficiently large m,(4,) < [nt] < m,(4,) so 2, < liminf, c,/c, <
lim sup, ¢,,/c, < 4,. Since this holds for all 2, and 2, with 2 < ¢t < ;% this
means lim,_ c,/c, = /°. If 6 = 0 a similar argument shows that if ¢+ < 1,
lim sup,_.., ¢,./¢c, < ¢ for all ¢ > 0 and this completes the proof.

REMARK. A function L isslowly varying if lim,_, L(xt)/L(¢) = 1forallx > 0.
Using this notation conclusion (3) can be written as ¢, = n"?L(n). Since we
will write many statements like this in what follows we will use the letter L to
denote slowly varying functions. The value of L(n) is rarely important for our
arguments and in general will change from line to line. Subscripts and other
ornaments will be attached when we want to emphasize that the slowly varying
function depends upon the indicated parameters.

If 6 > 0 we can let ¢ = n~"? and x = y/n="? in (2) to obtain

@) V=g ey

so (1) and (2) characterize the processes which can occur as limits in (ii). If
0 = 0, however, (2) becomes V¥ =, cV¥ and we can no longer guarantee that
there are ¢, — oo so that ¢,~'V*=*(n.) converges. We have not been able to
characterize the limits which can occur when ¢ = 0. The next few results shows
that these processes have some strange properties.

An immediate consequence of Theorem 2 is the fact that for all ¢ > 0

(5) PT, > t} = P*{T, > tc~°}.

If 6 = O this means that P¥{T, > t} has the same value for all y > 0 so using
the strong Markov property

PYTy, > s + t} = E¥Y[T, > s; P"{T, > t}]
= PY{T, > s}P¥{T, > t} .
Since ¢(t) = P¥{T, > t} is nonincreasing, nonnegative, and satisfies ¢(r + s) =
¢(s)¢(t) this means PY{T, > t} = e~* for some 2 > 0 (which is independent of y).
This shows that (iii) is always satisfied if = 0. If 6 > 0, however, we are
not so lucky. In this case taking ¢ > 1 in (5) gives only an inequality:
(6) PHT, > t} = P¥{T, > t} when x=y >0,

so we are forced to take a new approach.
Let S, = inf {¢: P*{T, > 1} = 0}. What we would like to show is that S, = o
for each x > 0. From (2), we have:

1) if ¢>0, §,6=cS,,

so either all the S, are infinite or none is.
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Suppose S, < oo. Forx > 0and fe DletT,(f) = inf{r > 0: f(r) = x}. Using
the strong Markov property

0= PT, > S} 2 BT, < Ty P'Ts+(T, > S, — T, }].

Since V¥(T,, )=y + cand S, — T,,, < S, it follows from (7) that the integrand
is positive so P¥{T,,, < T,} = O for each ¢ > 0.

Since V is strong Markov process this implies V¥(z A T,) is nonincreasing.
When we note that foreach s > 0,0 = PY{T, > S,} = P{V(t) = y, T, > t}P*{T, >
S, — t} we have shown:

(8) if S, <oo, V¥r) isstrictly decreasing for + < T, .

Having arrived at a strange conclusion under the assumption §, < co we
might hope to continue and derive a contradiction. The next example (due to
W. Vervaat) shows that assumptions (i) and (ii) do not imply (iii).

ExaMPLE. Let v, be a Markov chain with state space {0, 1,2 ---} which
makes transitions according to the following rules:

P{v,,, = 0|w. = 0} = P{v,,, = 0fv, = 1} =1
k=2 Plv,,=k—1|v,=k}=1—(1/k)
Plv, ., =0|v, =k} = 1/k.
From the definition of v, it is easy to check that v,.,/n converges (in the sense
specified in (ii)) to a process which has the following form:
Vet) =x—1t if t<R,
=0 if +t=R,
where R, has P{R, < x} = land for0 < s < x P{R, > x — s} = lim,_, T[\"]..; (1 —
1/m) = exp(log s — log x) = s/x .
Up to this point we have only used the scaling relationship for x > 0. If we

let x = 0 in (2) and (5) then we get two more formulas to help us analyze the
limit process.

(%) VO =, cV%ec™?)
(10) PAT, > t} = PYT, > tc~?}.

If 6 =0, (9) says V" =, ¢V for all ¢ > 0 so V* = 0. Combining this result
with the fact that P*{T, > 1} = e~* for x > 0 gives that for all # > 0

lim, o P(SUPoges; V¥(2) > | Ty > 1) < € lim, |, P(supyg,s, V(1) > h) = 0

so (V*|T, > 1)=0as e | 0. Taking a peek ahead into Section 3.3 we see that
this means the only possible limit of ¥,* is 0 so we will abandon this case and
label it trivial.

If 6 > 0, (10) shows that P{T, > ¢} has the same value for all + > 0. Since
PYT, > 0} = lim, , P°{T, > u} it follows from the Blumenthal 0-1 law ([22],
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Theorem 5.17) that

(11) PYT, >t} iseither =0 or =1.
Since {T, > t} is open, using (6) and (1) give

(12) P*{Ty > t} = lim, , PY{T, > t} = P{T, > t}

for all 1, x > 0.

From (12) we see that if P°{T, > ¢} = 1 then P*{T, > t} = 1 forall t,x > 0
and so we expect that the conditioning to stay positive will have no effect. For
positive levels this is a consequence of the results of Chapter 2: if x, - x > 0,
using Theorem 2.2 gives (V*|N > n) = (V=|T, > 1) = V=

If x, — O the situation becomes more complicated. If lim inf, P,*{N > n} < 1
then we cannot apply the results of Chapter 2 (each theorem has P (4,) — P(A)
as a conclusion) and if lim inf, P,*»{N > n} = 0, V,* may fail to be tight. Con-
ditions for convergence in this case will be given in Section 3.3. The results
given there will show that if the limit exists in the sense of (a) then V, * = V",
i.e., the conditioning has no effect.

For the rest of the paper we will be mainly concerned with what happens
when P*{T, > t} % 1 for some (and hence all) x > 0. Since P*{T, > t} is de-
creasing lim,_ ., P*{T, > t} exists for each x > 0. Using the scaling relationship
gives that this limit is independent of x. Call it 2. From the Markov property

PT, >t + s} = E*[T, > t; PP{Ty, > s}].
Letting s — co gives 4 = AP*{T, > t}so 4 = 0.
If 6 = 0, this agrees with our previous calculation. If 6 > 0, we can use (3)
to conclude
(13) lim, , P*{T, > t} = lim,,, P{T, > u} =0 iff PoTy,>t}=£1.
The reason for interest in this conclusion is the following result which is an
immediate consequence of Theorem 2 of Section 2:
Suppose lim, ,P*{T, >t} =0 forall 7> 0 and (iv) holds.
(14) If for each m, P{N> m|v,= x} is an increasing function
of x then
(v) P*»{N >nt}—0 whenever x,—0 and 1,—1¢>0.
There is a converse to this proved in [41]:
(15) if (v) holds then so does (iv).

Since it is usually more difficult to verify (v) than (iv), (15) is not a useful result
for checking that (iv) holds. To obtain the results which we will use to check
(iv) in Chapter 4, we will use the results of Chapter 2.

Let T, = inf{r > 0: f(r) < 0}. If P*{T, =t} = 0 and P’{T,~ = 0} = 1 then
from the strong Markov property P*{f : inf ., f(s) = 0} = 0; so using Theorem
2.3 gives (V,*»|N > nt,) = (V*| T, > t) whenever x, —x >0 and ¢, » ¢ > 0.
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From (9)
(16) PYT,” = 0} = lim,_, P{V°(r) < 0} = P{V%(1) < 0},
so if P°{V°(1) < 0} > O using the Blumenthal 0-1 law gives P{7,~ = 0} = 1and
the result above can be applied to conclude:
(17) if P[V(1)<0} >0 and P{T, =1t} =0 forall +>0
then (iv) holds.

On the other hand, if P{V%(1) < 0} =0
(18) Plinfogus, V(s) 2 0} 2 1 — X4 ravtonar P{V(q) < 0} = 1
so ¥* = 0 and Theorem 2.3 cannot be applied. In this case we will use Theorem

2.2 or another trick (see Section 4.4).

3.2. Conditions for tightness. According to Theorem 15.2 in [20], a sequence
of probability measures on D is tight if and only if the following two conditions
hold:

(a) lim,_, limsup,_ P, {f:sup,|f()) > M} =0
(b) lim,_,limsup, . P,{f: o/(d) > ¢} =0

where o/(d) = o/(d; 0, 1) is the modulus of continuity defined by

w/(d; a,b) = inf”i, [max, g, (Supti_]§8<t<ti 1/(s) — f(D))]
the infimum being taken over all sequences {t;} witha =1, <1, < --- <t, =5
and min, (1, — t;,_,) > d.

Because of the complexity of the definition of w, the second condition is
usually difficult to verify. In this section we will assume (i)—(iv) hold and
develop equivalent conditions, which are easier to check in our special case,
by examining the behavior of the path before and after hitting [e, co). Through-
out this section we will assume that J, the exponent in (2) of Section 3.1, is

positive.
If T(f) > d we can let , = T(f) in the definition of v, and obtain
(D) o/d)ZeVo/dT,]1).

When f = V,* = (V,.1/¢,| ¥ = X,€,, N > n) the last expression is the modulus
of continuity of a process which starts from a height V,*(7. A 1) and is con-
ditioned to stay positive for (1 — T,)* time units. Since we have assumed (iv),
the results of Section 2 show that (V,*s| N > n) = (V*|T, > 1) when x, - x > 0
and using the inequality above we can prove the following.

THEOREM 3. V,* is tight if and only if the following two conditions hold:
(3a) for some ¢ > 0, lim,_,, limsup,_., P{V,*(T.) > M} = 0;
(3b) forall e > 0, lim, ,limsup,_. P{T(V,*) < t} = 0.

That is, we have tightness if the conditioning does not make the process jump
too high or leave zero too fast.
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Proor. The conditions are necessary since they follow from (a)and (b) above.
To prove sufficiency define the post-T, process

X'n+(') = (v["(T5+‘)]/c"|TE é 1’ N > n) .
Since v, is a Markov chain,

Xn+(') =d (’U[n,]/C,nI’UO = Y", To > Ln)
where
Y, = (Vr,[¢,|T. = 1, N > n)
and
L=(1-T,]|T.Z1,N>n).

From Prohorov’s theorem ([20], Theorems 6.1 and 6.2) a sequence of prob-
ability measures on D is tight if and only if every subsequence has a further
subsequence which converges weakly, so it is enough to show that for any sub-
sequence (a) and (b) hold for some further subsequence.

Lete > 0. If P}{T, < 1} — 0 as k — oo then (a) and (b) hold so it suffices
to consider subsequences for which lim inf, P} {T, < 1} > 0. In this case the
tightness of Y, follows from (3a). Since 0 <L, <1, (Y,,, L,,) is tight and
so there is a sequence of integers m; = n, T co so that (Y, , L,,)=(Y,L).

Let # be a bounded continuous function from D to R. If g,(x,7) =
E(h(V,*)| T, > t) then E(h(X,*)) = E(9,(Y,, L,)). Using (iv) and the results of
Section 2 we have that as x, - x > 0and ¢, -t >0

Iu(Xns 12) = 9(x, 1) = E(R(V) | V(0) = x, Ty > 1)

so from the continuous mapping theorem (Theorem 5.5 in [20]) EA(X} ) —
Eg(Y, L). From this we conclude X} = (V|V(0) =Y, T, > L), a process we
will denote by V*.

Since X} — V* we have that limsup, Eh(X; ) < Eh(V*) whenever k is bounded
.and upper semicontinuous. Applying this result with A(f) = 1 A (sup, f(t) —
(M — 1))* and A(f) = w,/(d) A 1 and using the obvious inequalities

sup, f(f)y S e Vv supzzTgf(t)
PHo/(d) > < P,HT. < d} + P, Mo /(d; T, 1) > ¢|T, < 1}

completes the proof.

Condition (3a) may be difficult to check directly because it involves esti-
mating the value of V,* at a random time. Using the scaling relationship ((2)
in Section 3.1) and the Markov property we have for + < 1 that

P{V(1) > K| V(1) =.x} = P{V(1 — ) > K} = P{xV((1 — t)x~%) > K}.

Since we are assuming d > 0 it follows from the right continuity of V'* that as
x — oo the last expression above converges to 1 uniformly for 7€ [0, 1] so

lim,_. P{V(1) > K|(T,) > M} = 1.
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From the scaling relationship and the right continuity of V*
lim,,, P*{T, > 1} = lim, ( P{T, >t} =1,
so the same statement holds for the process V'*. This suggests:
THEOREM 4. A sufficient condition for (3a) is
limg_, limsup, . P{V,*(1) > K} =0.

REMARK. From (a) it is clear that this is necessary for tightness. An argu-
ment similar to that given in the proof below will show that this is necessary
for (3a).

Proor. Using the Markov property, if ¢ < K
PV, *(1) > K} = E[T, = 1; ¢V, *(T.), 1 — T.)]
where g *(x, ) = P(V,(1) > K|V, (1 — ) = x, T, > 1). From (iv) it follows
that, if x, - x >0ands, -t =0
liminf, .. gx"(¥Xa, 1) Z gx(%, 1)
where g (x, 1) = P(V(1) > K| V(1 — t) = x, T, > 1)so foru < 1
lim sup, ., P{V,*(1) > K}
> lim sup, .. E[V,*(T)) > 2Ku="%; gV, (T.), 1 — T)]
> [inf {gg(x, 8): x = 2Ku=°,0 < s < 1}]lim, _,, P{V,*(T,) > 2Ku="°}.
From scaling g.(x, ) = gg.(xc, tc?) so if 2K/x < 1, g.(x, 1) = 92K, t(2K/x)*)
and from above
lim sup,_., P{V,*(1) > K}
> [infy.,<. 9x(2K, )] lim sup,_, P{V,*(T.) > 2Ku="’}.
Now

| > g.(2K, 5) = PUa) > K| V.(0) = 2K) — K(T, < 5| Vy(0) = 2K)
P(T, > 5| V,(0) = 2K)
Letting u — 0 gives
limsup,_, P{V,*(1) = K} = lim,,_,, limsup, _, P{V,*(T.) > M}
and letting K — oo gives the desired result.
From Theorem 4 if we know that ¥, *(1) converges then (3a) is satisfied. The
next theorem gives a sufficient condition for (3b).

THEOREM 5. Let P,* be the probability measures induced on D[—1, 1] by
V,*(t v 0). If (3a) holds {P,*, n = 1} is tight. If, in addition, for every P* which
is the limit of a subsequence P}, we have P*{f : f(0) # f(0—)} = O then {P,*, n = 1}
is tight.

Proor. For all fe D[—1, 1] which are constant on [—1, 0) if d < 1 we have

o/d; -1, )L eVo/dT,1).
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From this
PXo/(d; —1,1) > ¢} < P *o/(d; T, 1) > ¢},

so using the proof of Theorem 3 we see that (3a) is sufficient for tightness in
D[—1, 1}.

To prove the other result we note that by Prohorov’s theorem it is sufficient
to show that if P} — P* then P} — P* = P*z~! where r is the natural projec-
tionfrom D[—1, 1] to D[0, 1]. If A: D[0, 1] — R has P*(A,) = 0 where A,
is the set of discontinuities of # then P*{f: f(0) # f(0—)} = O implies that
P*(A,..) = 0. Using the continuous mapping theorem ([20], Theorem 5.2) now
gives P¥ n~'h~' — P*z~'h=* for all bounded continuous functions #, which com-
pletes the proof.

Combining the conclusions of Theorems 3, 4, and § gives the following result.

THEOREM 6. V,* is tight if and only if

(6a) limg_, limsup, . P{V,*(1) > K} =0,
(6b) lim,_ limsup, ., P{V,*(r) > h} = O for each h > 0.

From Theorem 6 if we know that the finite dimensional distributions of V_+
converge to those of a process V* with P{}'*(0) = 0} = 1, then the sequence is
tight.

In Theorem 10 below we will give conditions which imply that if V,* is tight
then the limit is lim, ,(V*| T, > 1) (assuming this exists), so in cases when the
convergence of finite dimensional distributions is not known we would like to
check that the sequence is tight without computing the limit of the distributions.

One way of doing this (Which we will use in Section 4.3) is to use

THEOREM 7. If for each ¢ > 0 (V, *(T,) — ¢)* = 0 then V,* is tight.

Proor. Observe that if V7 (¢ v 0) conveys (as a sequence of random ele-
ments of D[ —1, 1]) to a process V* with P{V*(0) > 2k} = p > 0 for some & > 0
then lim inf, P{V}(T,) — k > k} = p which contradicts the assumption that
(Va*(h) — h)* = 0. This shows that the hypotheses of Theorem 5 are satisfied
and proves the desired conclusion.

3.3. Convergence of finite dimensional distributions. 1In this section we will
assume V,* is tight and derive conditions for ¥,* to converge. Our method of
proof is not the usual one suggested by the title of this section, however. We
will prove convergence by showing that all convergent subsequences have the
same limit.

The first step is to consider what processes can occur as limits of the V,*.
From (i)—(iv) and the results of Section 2, if x, >x >0 (V,*s|N > n) =
(V*|T, > 1). Letting x, go to zero very slowly we see that if V,* converges
for all x, — 0 then lim, ,(¥*| T, > 1) exists and is the limit process for any
x, — 0.
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Assuming lim, |, (V*| T, > 1) exists and writing (V°| T, > ¢) for lim,  ,(V*| T, > 1)
we can give a simple formula for the processes which can occur as limits of
subsequences of V,*.

THEOREM 8. If V! = V* then there are random variables t* € [0, 1] and x* = 0
with P{t* = 0, x* > 0} = 0 so that

(1) V*(+) =a Linsy(V(c = )| Ty > 1 — %)

Proor. From the proof of Theorem 3.3 V*(T,(V*) 4 t) behaves like V' starting
from V*(T,) and conditioned to stay positive for 1 — 7,(V*) units of time. As
¢ decreases, T,(V*) does not increase so as ¢ | 0, T,(V*) converges to a limit r*.
Since V* is right continuous this means V*(T,) converges to a limit x*.

Under the hypothesis of Theorem 8, (x,t) — (V*|T, > t) is a continuous
function from [0, o0) X (0, 00) to D[0, 1]; so using the continuous mapping
theorem we see that V*¥(T,(V*) + 1) = (V*"|T, > 1 — t*). Since 0 < V* < ¢
on [0, T(V*)) this shows V'* has the representation given by (1).

To see that P{t* = 0, x* > 0} = O observe that since V; = V* in D, x, =
Vi (0) = V*(0) so V*(0) = 0.

Having identified the possible limits of subsequences of (V,*»|T, > 1) the
next step in solving problem (a) is to determine for which V'* there is a Markov
chain v, so that (V,*»|T, > 1) = V* for all x, — 0.

If lim sup, P,*»{N > n} > 0 for some x, — O then it is easy to show that a
subsequence of ¥}, converges to V. In this case if the convergence takes place
in the sense of (a) the conditioning will have no effect. So in what follows we
will assume that (v) holds.

To characterize the limits which can occur when (v) holds we will investigate
the convergence in the case x,c, = a. In this instance the limit process results
from conditioning and scaling a single sequence of random variables so there
is a scaling relationship which allows us to compute the distribution of V'* from
that of V*(1).

THEOREM 9. Let x,c, =a, Q%) = P(+|v,=a). If V,*(1)=0 then V,*
converges to a process which is = 0. If V,*(1) = v* with P{v* = 0} < 1 and (V)
holds then Q*{N > n} = n~?L,(n). In the second case the finite dimensional distri-
butions of {V,*, 0 < s < 1} converge to those of a nonhomogeneous Markov process

V* which has

(2) P(V*(1) € dy) = tPP(t*v* e dy)P¥{T, > 1 — 1t}
and

(3) P(V+(f) e dy| V+(s) = x) = P(Ve(t — s)edy, Ty >t — )P Ty, > 1 — 1}

PHTy > 1 — s}
for s<t, x>0.

If V¥(t)y=0as t — 0 then V" is tight and V,* = V*.
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Proor. The first result is obvious: observe that if ¥* is given by (1) and
x > 0 then P(V*(t + s) > 0| V*(t) = x) = P(V*(s) > 0|Ty, > 1 —1)=1so V*
does not hit zero after it hits a positive level.

To prove the second statement, note that if 2 > 0

@ < {]Zfzv( 1>:}2)n} = i Q(Vo(1) € dx [N > n)P(N > In|v, = xc,),
and from the hypothesis as x, —» x = 0, ¢,%(x,) = P(N 