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THE BIRTH AND DEATH CHAIN IN A RANDOM ENVIRONMENT:
INSTABILITY AND EXTINCTION THEOREMS

By WiLLIAM C. TORREZ
New Mexico State University

Let (Y,) be a recurrent Markov chain with discrete or continuous state
space. A model of a birth and death chain (Z,) controlled by a random
environment (Y,) is formulated wherein the bivariate process (Y, Z,) is taken
to be Markovian and the marginal process (Z,) is a birth and death chain on
the nonnegative integers with absorbing state z = 0 when a fixed sequence of
environmental states of (Y,,) is specified. In this paper, the property of uniform
¢-recurrence of (Y,) is used to prove that with probability one the sequence
(Z,) does not remain positive or bounded. An example is given to show that
uniform ¢-recurrence of (Y,) is required to insure this instability property of
(Z,). Conditions are given for the extinction of the process (Z,) when (i) (Z,)
possesses homogeneous transition probabilities and (Y,) possesses an invariant
measure on discrete state space, and (ii) (Z,) possesses nonhomogeneous
transition probabilities and (Y,,) has general state space.

0. Introduction. In this paper, we formulate a model of a discrete-time birth
and death process (Z,) evolving in a random environment controlled by a process
(Y,) as follows: we take the environmental process (Y,) to be a recurrent,
irreducible, discrete-time Markov chain on either discrete or continuous state
space. The process (Z,) moves on the nonnegative integers Z, with transitions from
zy € Z, permitted only to those states z for which |z — zy| < 1. We assume all
positive states of (Z,) lead to 0 and we make 0 absorbing. The processes (Y,) and
(Z,) are related through the definition of a transition probability function P for the
bivariate process (Y,, Z,). This kernel P is defined in such a way that (Y,, Z,) is
Markovian and its definition imposes the following two conditions: (i) (Y,) is
Markovian and time homogeneous and (ii) given a realization of (Y,), the condi-
tional distribution of (Z,) is Markovian (but not time homogeneous, in general).
Condition (i) means that there is no “feedback™ from (Z,) to (Y,), while condition
(ii) means that the evolution of (Z,) is Markovian when a fixed sequence of
environments (determined by the Y,’s) is specified. Nevertheless, since the
sequence of environments is itself a stochastic process, the marginal (Z,) process of
(Y,, Z,) is not Markovian, in general. When no realization of the (Y,) process is
specified in advance, we will refer to (Z,) as a birth and death chain in a random
environment. In this paper, it is our intent to study the process (Z,) using minimal
information about the environment (Y,,). In terms of the bivariate process (Y, Z,),
this would reduce to the familiar model of a Markov chain. Given full information
about the initial distribution and bivariate transition probability function P of
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BIRTH AND DEATH CHAINS 1027

(Y,, Z,), the classical theory of Markov chains would provide answers to the
questions raised. The problem here is to study the behavior of the non-Markovian
process (Z,) without full knowledge of the bivariate stochastic structure. The two
central questions which are of interest are the questions of instability and extinc-
tion of the process (Z,). The results in Section 2 completely determine conditions
on the environmental process (Y,) which insure that the sequence (Z,) does not
remain positive and bounded with probability 1. Under these conditions, (Z,)
either goes to 0 or + oo, thus exhibiting an “unstable” or “transient” quality. In
Section 3, we give conditions for P, ,[Z, — 0] =1 for any initial state (y, z) of
(Y,, Z,), examining both the cases when the “transition probabilities” of (Z,)
depend on the z-state of (Z,) or not. In Section 1, we present the definitions and
general results of discrete-time Markov chains which are pertinent to the results in
this paper (see Chung (1960) and Orey (1971) for further reference). We also
describe the exact structure of the processes (Y,) and (Y,, Z,) as well as introduce
the notation which will be used throughout the following discussion.

Recently there has been great interest in stochastic processes in random environ-
ments, notably the works of Griego and Hersh (1969), (1971) in -which they
introduce the concept of random evolutions, on which the present model is based;
Smith (1968), Smith and Wilkinson (1969), (1971), and Athreya and Karlin (1971),
(1971a) dealing with branching processes with random environments; and Solomon
(1975), in his paper on random walks in a random environment. In each of these
three models, there is some relationship between the present paper and the works
cited above. The work of Griego and Hersh introduced random evolutions as an
operator-theoretic version of the classical Feynman-Kac formula, and this has been
their point of view throughout, that is, to use random evolutions as tools for solving
differential equations. Our purpose in studying the birth and death chain in a
random environment is more in consonance with the Smith-Wilkinson and
Athreya-Karlin models; that is, determining the stochastic nature of (Z,) with
minimal knowledge of the environment (Y,). The Smith-Wilkinson model assumes
that the environment is chosen by i.i.d. random variables, a rather crucial assump-
tion since it makes (Z,) Markovian. Athreya and Karlin specify that the environ-
ment be controlled by a stationary ergodic process and they too are interested in
instability and extinction characteristics of the branching process with random
environments. Their results depend heavily on the iterates of the probability
generating function of Z,, a device which has no applicability in the analysis of the
birth and death chain in a random environment. In Solomon’s model of random
walks in a random environment, he assumes that the transition probabilities of the
walk are chosen randomly in space in contrast to the present model (as well as the
branching process with random environments) where randomness of the environ-
ment occurs in time.

1. Preliminaries. Let (Y,) be a discrete-time Markov chain with countable
state space %Y and transition probability function (tpf) K. Denote the n-step tpf of
(Y,) by K®. Fory,y’ € %Y, say y and y’ communicate if there exists n,, n, € N =
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{1,2,3...} such that K®)(y,y") > 0 and K™)(y’,y) > 0. If y and y’ communi-
cate, we say y (and y’) are recurrent (transient) if and only if 32, K™(y,y") = +
oo(< + o). A set of states 4 C Y is called (stochastically) closed if no state
outside 4 can be reached from any state in 4. A single state y forming a closed set
will be called absorbing. A Markov chain (Y,) is irreducible if there exists no closed
set other than %. Of course, for countable state space, this is equivalent to saying
that all states communicate. Define the first return time 1, to a state y € % by
m,=inf{n > 1, Y, =y} and let 7, = + o0 if no Y, =y, for n > 1. Call the
recurrent state y positive recurrent if E,1, < + co where E 7, is the mean return
time to y. We will use the following fact: if the Markov chain (Y,) is positive
recurrent, then it possesses a distribution {m,} such that 7K = 7, i.e.,

Zy'eﬁywy'K(ylay) = "Ty'
We call such a distribution 7 an invariant distribution.

Consider now the case where (Y,) is a Markov chain with continuous state space
(%, @). Let K be the tpf for (Y,). Then K satisfies

(i) K(y, - ) is a probability measure on @ for ally € ¥ and
(i) K(-, A) is @-measurable for all 4 € @.

Before introducing the concepts of indecomposability, irreducibility, and re-
currence of Markov chains on general state space, we need the following notions:
Let

o 4)=p(Nr U [Y,eq]), yeddece,
Ly, 4)=p(U” [V,€4]) re¥4eq,
A’={y e Y :L(y,A) =0}.

Thus Q(y, A) is the probability that ¥, € A for infinitely many n, given Y, = y,
and L(y, A) is the probability that Y, € A for some positive n given Y, = y. The
set A° consists of those states y for which the process (Y,) never reaches A given
that Y, = y.

Let ¢ be a o-finite, nontrivial measure on (%Y, @). A set 4 € @ is (stochastically)
closed if A #+ & and K(y, A) = 1 for all y € A. Note that the set A° is either closed
or empty. A closed set which does not contain two disjoint closed sets is indecom-
posable. The Markov chain (Y,) is called ¢-irreducible if L(y, A) > 0 for all y
whenever ¢(4) > 0. The Markov chain (Y,) is ¢-recurrent if L(y, A) =1 for all
y € Y whenever ¢(4) > 0. The set A € @ is inessential if Q(y, A) =0, for all
y € ¥ ; otherwise A4 is essential. An essential set which is the union of countably
many inessential sets is improperly essential; otherwise it is properly essential. We
will use the fact that if y is indecomposable and 4 is closed, then Y — A is not
properly essential. (See Orey (1971).)

The first entrance time 7, to aset A € @ is defined by 7, =inf(n > 1:Y, € 4}
and + oo if no n exists satisfying the given condition. Similarly define 7¢{”? = inf{k
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>7¢"D: Y, € A} and + oo if no such k exists, and call 7{” the nth entrance time
to A. It is convenient to define 7{¥ = 0 and set 7{¥ = r,. We now define the
important notion of uniform ¢-recurrence.

DerINITION.  The Markov chain (Y,) on (%, @) is uniformly ¢-recurrent if

sup,ca P [Ty >n] >0 as n—o o
whenever ¢(4) > 0.

Let K,"(y, B) = P,[7,"" < + 0, Y, » € B]for all B € @. Suppose P[7," <
+0]=1,VyeY. Let@, ={Be@:BcA).ThenK,"(y,B),B ER,isa
tpf for the Markov chain Y, Y, , Y, o, . .. with state space (4, €,). This chain is
called the process on A. A set D € @ is a D-set if the process on D is uniformly
¢-recurrent. We assume that @ is separable, i.c., there exists a countable class of
sets Ag, 4y, . . . that generate @. A probability distribution P, is determined on the
product measurable space (YN, @) by the transition kernel K through the rela-
tions

P[YoE Ay, Y, EA,]
= on‘P(d)’o)fA,K(J’o’ ) - fA,,_,K(yn—zs & VK(Yn-1 4p),
where A, - - - , A, € @. The expectation operator corresponding to such a proba-

bility distribution will be denoted by E,. A o-finite measure 7 on (%, @) is
invariant for the tpf K if 7K = =, i.e., if 7(4) = [4K(y, A)7(dy), A € @. We know
from the theorem of Harris (Orey (1971)) that every ¢-recurrent chain on (%, @)
has a nontrivial o-finite measure = such that « is invariant and ¢ is absolutely
continuous with respect to .

Throughout the following discussion, (Y,) will be a discrete-time Markov chain
with tpf K. Surprisingly, however, it will be seen in Theorem 3.2 that a sufficient
condition for extinction of the process (Z,) is stated without any assumptions on
(,) so that it may be taken to be any stochastic process. When the state space ¥
of (Y,) is countable, a minimal assumption we make is that (Y,) be an irreducible,
recurrent Markov chain. When % is continuous, we will take (Y,) to be ¢-irreduc-
ible and ¢-recurrent for an arbitrary but fixed nontrivial o-finite measure ¢ on
(%Y, @) with @ separable. The process (Y,, Z,) will be a discrete-time Markov
chain on the state space & = %Y X Z, with 0 made absorbing in Z;, Thus F =
%Y x {0} is a closed set in &. We assume that & is indecomposable. If A is taken to
be counting measure on Z,, then a further condition we impose on & is that & — F
be irreducible in the countable case and (7 X A)-irreducible when % is continuous.
When % is countable, note that each state (y, z) € & — Fis transient, for we have
specified that there is positive probability of (y, z) ever reaching F. When % is
continuous, & — F is not properly essential since F is closed (cf. Orey (1971)).

We define the tpf of (Y,, Z,), denoted by P, by the relation

P[(y,2), (¥, 2)] = K(»,»)P,(2, 2)
in the countable case and
P[(y, z), (A, z’)] = K(y, 4)P(z, 2), AER®,
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in the continuous case where, in either case, for z > 1,
Pz, 2)=p*» >0 if z=z4+1
=rP>0 if zZ=:z
=g >0 if zZ=z-1
=0 otherwise,
and r§¥ = 1IVy € %Y, with p©® + r® + ¢ = 1. Thus for each fixed y, P, is the
tpf for a birth and death chain on Z, with 0 made absorbing. Note that (Z,) is not
Markovian in general since the sequence of environments is chosen according to a

Markov process. In an abuse of language, we will refer to {p?, ¢, r’} as
“transition probabilities” for (Z,) and 0 as an “absorbing state” for (Z,).

2. Instability of the birth and death chain in a random environment. In this
section, we obtain conditions on the control process (Y,) for which
2.1) P22, >0 or Z,—>o0]=1
for any initial state (yq, zo) of the bivariate process (Y, Z,). The results in this
section give a complete solution to this problem when the state space %Y of (Y,,) is
discrete or continuous and in so doing show that positive recurrence of (Y,) does
not insure the instability property (2.1). Indeed, we will show that the condition
which insures instability of (Z,) is the uniform ¢-recurrence of (Y,) and we present
a counterexample of instability when (Y,) is only positive recurrent. For %

discrete, we take @ to be the o-algebra of all subsets of ¥, and ¢ to be counting
measure on (%Y, @). Let Z* = Z, — {0}.

THEOREM 2.1. Let (Y,) be a uniformly ¢-recurrent chain with discrete state space
(%, @). Then property (2.1) holds.

PROOF. Let (yg, zg) € Y X Z*,z € Z*. The uniform ¢-recurrence of (Y,) says
that for each y’ € %Y there exists m € N, and ¢ > 0 such that

25) Piyo Ui Yasy =y (¥ Z) = (0.2)) >
for all y € %. Note that
Pispo( U [(Yar 2) = (0, 9)])
= Eyeﬁypmzo)( U:;l[ Y., =y 0[(Y, Z,)=(y, Z)])
=5, ca{ Pou o U [ Yy =117, 2) = (0, 2))
Py ol (Yo Z) = (0, )]}
Using inequality (2.5) gives
Piryeo( U [(Ya 2) = (7, 2)]) > 2, 0P o (Y 2) = (2. 9]
= &Py, 29[ Z, = 2]
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Summing over n gives

2310=1P(YO,20)[Z ] < 8—12 lP(yo,zo)( U [( n+j» n) = (y/9 Z)])

We need only show that the right-hand side of the above inequality is finite, for
then it follows as a consequence of the Borel-Cantelli lemma that P, ,[Z, = z
infintely often] = 0 which implies the desired conclusion. By Boole’s inequality

(2'6) P(yo,zo)( U _1[( n+j’ n) = (yl’ Z)])
< 2;'n=lP(yo,zo)[( n+js Z) y > Z)]
Now let B = {Z + 1,0 <i <m} N Z*. We have

(2‘7) 27; lP()’(y zo)[( Yn+j’ ) (.y Z)]
< 2/ I{P(yo Zo)[( n+j n+1) € (y B)]
+ P ol Z, = 2, Z,,;, = 0]}.

This follows because (Z,) can move at most one step to the right or left. Thus after
m steps its position is at most z + m and at least z — m. The second term in the
RHS of (2.7) adjusts for the event that (Z,) may be absorbed at 0 before m steps
have occurred.

Note that
@i = 1P("+J)[(J’0s o), (', B)] 12 ,+1P( )[()’o’ zo), (', B)]
(2.8) < Em 12n-1P(")[(J’0s o), (¥, B)]
= mz?xo-lp(n)[(.yO’ zy), (', B)]
and
(i) Z7erZ5 Pl sl Zo = 2 Zyuy = 0]
(29) =BGy 271201 K z,m2 2, =] <M

where X denotes the indicator function. Let S, ; =[Z, = z, Z,,; = 0]. The in-
equality (2.9) is true because either a sample sequence contains no coordinates with
a 0 entry, in which case for all such sequences w, X, ,(w) =0 for all n and all j, or
the sample sequence has a coordinate with a 0 entry ‘and all coordinates thereafter
are 0. In the latter case, the maximum value of 27,37, %X , occurs when we
consider a sample sequence of the type w=(z, - -, z, 0 0 ) It readily
follows that 37 %, ;(w) < j. Thus 27,37, X (@) < ZJ_,j < m*. Now use
(2.8) and (2.9) in (2.7) to obtain

2n 121 IP(ymzo)[( n+j° Zn) = (y,’ Z)]
(2.10) SmET_ Py, [ (Y Z,) € (Y, B)] + m?
= mzz’eBEleP(yo, zo)[(Yn’ Zn) = (yl9 Z,)] + m2



1032 WILLIAM C. TORREZ

Since (¥, z’) € Y X Z%, it is a transient state for (Y,, Z,) (since there is positive
probability that (y’, z') reaches the closed set ¥ X {0}) so that

2Z°=1P(J’o,zo)[(yn’ Zn) = (yl, Z’)] < +o00.

Since B is a finite set the expression (2.10) is finite, and from (2.6) we can conclude
that

27=1P(yo,zo)( U7=1[(Yn+j’ z,) = (v, Z)]) < oo
which was to be shown. []

ReEMARK. Note that in Theorem 2.1, the assumption of uniform ¢-recurrence of
(Y,) can be replaced by the following equivalent condition: there exists y’ € %Y,
m € N, and € > 0 such that for ally € %,

SuP1<j<mKU)(y,yl) > ¢,

where KO is the jth step transition probability function of (Y,,).

When % is countable, there is a condition which guarantees property (2.1) in the
case when (Y,) is only recurrent. This condition is stated in the following proposi-
tion:

PROPOSITION 2.1. Suppose (Y,) is a recurrent Markov chain with discrete state
space %Y. Assume that
lim inf, P¢, 5[ Y, =»|Z,=2]>0
Jor (¥o, zo), (¥, 2) € Y X Z*. Then property (2.1) holds.

PROOF. Suppose that P, ,\[Z, = z infinitely often] = 1 for some state z €
Z*. By Borel-Cantelli, this implies
(2.11) 2?;11’(},0’20)[2” =Z] = 4+ 0.

From the identity

2Py o[ (Y Z,) = (9, 2)]
= 201 Piy g Zn = 2] Py 20 Yo = V2, = 2]

and the hypothesis

lim inf, P, o[ Y, =»|Z,=2] =¢>0,
we have

2Py (Yo Z,) = (9, 2)] 2 e23_1Py, 29[ 20 = 2]
Thus by (2.11) this forces
2R PGy (Y Z,) = (,2)] = +0

contradicting the transience of the state (y, z). []
The fact that the positive states of (Y,, Z,) are transient played a crucial role in
the proof of Theorem 2.1. Thus

2:()=1P(,v0,Zo)[(Yn’ Zn) = (y’ Z)] < o
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for (y,z) € Y X Z* and consequently we were able to show
2:°=1P()’o’lo)[z" = Z] < +oo,

which was the desired conclusion. When % is continuous, there is no notion of
transient states but there is a notion of transient sets, namely that of inessential
sets. However, for continuous state space, 4 inessential in % does not automati-
cally imply 27, P, . [(Y,, Z,) € (4, 2)] < + oo (see Chung (1964) for a coun-
ter-example). Thus the extension of Theorem 2.1 to continuous state space (%, @)
depends upon the existence of certain “small sets” 4 X B C Y X Z* where 4 is a
set of positive ¢-measure and B is a finite set such that

2?xo-lP(yc.,zo)[(Yn’ Zn) € (A’ Z)] <+
for all z € B. Lemmas 2.1 and 2.2 establish the existence of such a set.

LemMa 2.1. Let (Y,) be a Markov chain with continuous state space (%, ).
Then for any ny € N, there exists A € @ with ¢(4) > 0, m € N and ¢ > 0 such that

P, z)( U

j=l[2j =0]) >e forall (y,z) €A X{l,---;ng}.

PrOOF. Let F =% X {0}. Since F° = {(y, z) : L[(y, z), F] = 0} is empty or
closed, the indecomposability of ¥ X {0, 1,2, - - - } implies F° is empty. Thus
Li(y,z), F]>O0forall (y,z) €Y X {0, 1,2, - - }. If we define

Ay =[(y, z): P(y,z)( U™.l(v.2)e F]) > e]
then

(2.12) U U 4, =%x{01,2---}

since L[(y, z), F] > 0 for every (y, z). Wlog assume ¢(%) is finite. For each fixed
z, it follows from (2.12) that there exists finite m(z), n(z) such that letting
B, ={y :(),2) € Ap) 1/nn}» We have ¢(B,) > ¢(Y)(1 — 1/2°*"). Now given
ny €N, let

m = max, ¢, ¢, {m(z)}
and
e = min, ., , {1/n(2)}.
Letd = [) ::.Bz- Then
(2.13) o(A4) > ¢(Y)(1 — =2.,1/2°71) >0
and the conditions of the lemma are satisfied for this 4, m, and &. []
LEMMA 2.2. Let F and G be subsets of ¥ X {0, 1,2, - - - } such that F is closed
and F N G = Q. Suppose there exists m € N and ¢ > 0 such that
Poo(UlL (Y, 2) €F))>e  for (n2)€EG.
Then Z3_ P, . (Y, Z,) € G] < + oo for any (yg, 20) € Y X Z*.
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Proor. Let 7™ denote the time of the nth visit the (Y,, Z,) process pays to G.
Then by hypothesis there exists m € N such that for any (y, z) € G, and using the
fact that F N G = & with F closed,

(2.14) Piy, o[ "D < +00] < P(y’,)( Uj>m[(Yj’ Z) € G]<l-e
Now
P(yo, zo)[T(”+m+1) < + OO]

= Py [ 7™ < + 0] Py o[ T"THD < +00|7™ < +00]

= E(ymzo){%[f(")«w]P(Y,(n), z,(,.,)[’f('"“) < + oo] }

< (1= )P oo 7 < +o0]
by (2.14) and the strong Markov property. Iterating this relation gives
(2.15) Py [ 7D < +00] < (1 - @)
If we let V' be the number of times (Y,, Z,) visits G, then

2;x.omlP(yo, zo)[(Yn’ Zn) € G]
= E()’m zo)( V) = 2:°=1P()’0s Zo)[T(n) <+ 00]
and by (2.15)
<32 ,(1 =)™ < 0. 0

The following lemma (cf. Cogburn (1975)) is also needed for the proof of
Theorem 2.2.

LemMA 2.3. Let (Y,) be a uniformly ¢-recurrent Markov chain on general state
space (Y, @). Let 8 > 0. Then there exist constants a < + 00, 0 < b < 1 (depend-
ing on 8) such that for all A € & with ¢A > 6,

sup, eqP)[ T4 > m] < ab™.

THEOREM 2.2. Let (Y,) be a uniformly ¢-recurrent Markov chain with continuous
state space (%, @). Then property (2.1) holds.

PROOF. Let (yg, 29) EY X Z*,z €Z*. Let F= ¥ X {0}. This is a closed set
in Y X Z, Wlog assume ¢(¥) < + oo and let § = ¢(¥)/2 > 0. By Lemma 2.3,
there exist constants a < + o0, 0 < b < 1 (depending on &) such that whenever
¥4) > §,

sup, caP,[74 > m] < ab™.
Now choose m such that ab™ < 3 and nj such that n, > z + m. From Lemma 2.1,

there exists a set 4 with ¢(4) > ¢(¥Y)/2 (by 2.13), and there exist ¢ > 0 and
m’ € N so that

P(y,z’)( U;;,[(Yj, zZ)e F]) >e forall (y,z)€A4X{l,--",ng}.
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By Lemma 2.3
P(Yo»Zo)( U;”.l[ Yn+j € A]I(Yn’ Zn) = (y, Z)) > %

uniformly in y. Furthermore if we let G =4 X {1,- - -, ny}, then Lemma 2.2
gives
(2.16) 22 Py (Yo Z,) € G] < + 0.

Using identical methods as in the proof of Theorem 2.1 (see (2.5)—(2.9) with &
replaced by 3 and y’ replaced by A4), we obtain

%zf-lP(yo,zo)[Zn = Z]
< 2.';'=12:°'1P()’0s20)[(yn+j’ Zn+j) €EAx{zxi0<i<m}n Z*’)]
+27'12;°=1P(yo»lo)[zn =2 Zn+j = 0]
< m{z;'.o=1P(szo)[(Yn’ z)e G]} +m? < + oo,

the last inequality following by (2.16). Thus =7_,P(, ,)[Z, = z] < + oo and the
theorem is proved. []

As Example 2.1 below shows, the assumption of uniform ¢-recurrence of the
control process (Y,) is required to insure that (Z,) satisfies the instability condition
(2.1). However, by using the idea of a uniform set for % (defined below), we can
assume that (Y,) is only ¢-recurrent and show the result holds for a suitable
subsequence (Z¥) of (Z,). Let = be an invariant distribution for the ¢-recurrent
chain (Y,) such that ¢ is absolutely continuous with respect to .

DEFINITION 2.1. A set D € @ is uniform if for every B € @ with wB >0
sup,cpP,[73 > n] >0 as n—oo.

For this result, we will assume that D is a ¢-positive uniform set for ¥ with
P, (D)= 1. (Since @ is separable, there exist uniform sets D with positive
¢-measure and in fact there exist uniform sets D, so that Y — U :°= 1Dn is not
properly essential (cf. Cogburn (1975)).)

PROPOSITION 2.2. Let (Y,) be a ¢-recurrent Markov chain with continuous state
space (Y, @). Then property (2.1) holds for the subsequence (Y,*, Z,*) of (Y,, Z,)
where (Y,*, Z,*) is the process on D X Z,,

PROOF. Let (g, z5) € D X Z, z € Z*. The fact that D is a uniform set for Y
says that given ¢ > 0, there ‘exists » € N such that

(2.17) sup,epP,[7p > 7] <¥.

We assume wlog that ¢(D) < + co. From Lemma 2.1 (since (Y,*) is a Markov
chain with state space (D, @p)), there exists 4 € &, with ¢(4) > 0, there exists
m’ € N and & > 0 so that

Py, z')( ur

Jj=1

(%% Z%) € D x {0}]) >
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forall (y',z') €A X {l,- - -, ny} with ny = z + mv where m € N satisfies
(218) Py U T [ Yy € 41(Y2 20 = (3,2)) >3-

(Of course, (Y, Z}) = (Y, @, Z, »).) Such an m can be found because the assump-
tion that D is a uniform set in ¥ with positive ¢p-measure implies that the process
(Y;) on D is uniformly ¢-recurrent (cf. Cogburn (1975) and Orey (1971)). Thus
Lemma 2.3 can be applied to (Y¥) since ¢(4) > 0. Furthermore (as in the proof of
Theorem 2.2),

(2.19) 2Py (Y ZH) EAX (L, -+, np}] < +o0.
Now define sets A;, B, C, as follows:
A4; = {w: 9 — 147D > v}, j>1
where w is a sample sequence of (Y,, Z,), and
(2.20) B, = ﬂj=,A,f+,, C, = Uj’.';,[Y;ﬁ 4]
Observe that B,, C, € ¥, «, the o-algebra generated by {Y}} for k > 7,®.
Note that fory € %,

@ Py, ol BiI(YS, Z3) = (1, 2)] < 27, P,(A4,.,) by the strong Markov prop-
erty which applies from observing (2.20). But (2.17) says P,(4,) < ¢’ since ¢ carries
D and another application of the strong Markov property gives P(4,.;) <¢'. By
choosing ¢’ < 1/4m and using (i), we obtain

P(yo,zo)[B:I(Y:’ Z:) = (y’ Z)] < %
(ii) From (2.18), we have
P(yo,zo)[CnI(Y:’ Z:) = (y’ Z)] > %'
It follows from (i) and (ii) that
P(yo»zo)[Bn n CnI(YrT’ Z:) = (y, Z)]
> P(J’o» Zo)[ Cnl( e Z;) = (y’ Z)]
—P(ymzo)[Brfl(YrT’ Z:) = (y’ Z)] > %,
hence

Py Ba N GlZY = 2] > 5.
Thus
P(yo’zo)-([z: = Z] N Bn N Cn)
= }:,()"o,zo)[z;:g = Z]P(J’o»zo)[Bn N CnIZ: = Z]

> 4_1P(yo’zo)[Z,’," = Z].
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One clearly sees that |Z¥,; — z| < mv on B,,j < m where we may think of ; as
the number of steps between returns to 4. Thus

Py, ([Zt=2]Nn B,NC,)
< TPl [(Vhy ZF) E(4,2)] N B,)
< 2L I{P(ymzo)[( wip Zniy) € (4, B)]
+ Py, [ Zt = 2, ZF,; = 0]}

where
B={zxi:0<i<mw}nZ*

Using the bound P, ,\[Z¥=z] < 4P ,(Zr=:z1n B, N C,) derived in
notes (i) and (ii), and using (2.19), the assertion 277, P, , [Zy = z] < + oo now
follows from the above inequalities as in Theorem 2.2 (see (2.5)-(2.9)) to obtain
property (2.1). )

The following example shows that positive recurrence of the environmental
process (Y,) is not enough for (Z,) to satisfy the instability condition (2.1). Indeed
the example shows that the (Y,) process may be taken so that all moments of the
return of (Y,) to a distinguished state of %Y exist, yet (2.1) fails to hold.

ExaMPLE 2.1. The state space for (Y,) is the lattice set Y = {(i,/)) EN X N : 1
< j <i,i > 0}, with transition probabilities defined as follows:

P[Y,,=(,0)Y,=(0,0]=f>0 for i=2,4,6,---
=0 for i=1,3,5,- "
P[Y,,+1=(i '—1)|Y.=(ij)]=l 1<j<i
P[Y, 1= ©0)%, =i D)] =1
The successive returns to (0, 0) represent a periodic recurrent event with the
distribution P[r =2k + 1] = f,,, k = 1,2, - - - for the recurrence time 7 of (0, 0).
By choosing the £’s so that the mean recurrence time of (0, 0) is finite, i.e., so that
212k + Dfy, < + oo, the () chain will be made positive recurrent (e.g., let
o = 1/Qk)*, a > 2).
The birth and death probabilities, i.e., the transition probabilities of (Z,), are
defined as follows:

qéN =1 for i/2<j<i and z > 2,
peh =1 for 1</ <i/2 and z > 1,
g =1/ for j=i/2+1

=0 for i/2+1<j<i
rEd =1-1/2" for j=i/2+1

=1 for i/2+1<j <,

PP =r0%=1,2>1(j)€d.
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Note that these probabilities allow all positive states of (Z,) to lead to 0. Since
the environmental process (Y,) can be taken to be an irreducible, recurrent Markov
chain by a suitable definition of the f’s as noted above, the example fits the
specifications of our model.

Let 7(n) = nth return time to state y = (0, 0) for (Y,,) and fix (yq, zo) € Y X Z*.

Z,,#0forall nand Z <

Ciam 1. Z =lim, ., Z , exists a.s. and P ool

+ 0] =0.

Proor. (For convenience, we will suppress the subscript (y,, z,).) Suppose that
Z.(my 7 0 for all n. We will show that Z_, is an increasing sequence. Suppose at
time 7(n), Z,,, = z, where z5 > 2 and Y, = (i, i) where i/2 <z, (If z, =1,
ie,if Z,, =1, then Z ,,, > 2 (assuming Z, # O for all n) since (Z,) remains at
1 for some period of time, and then moves to the right when j < i/2.) During the
time span 7(n) + 1 to 7(n) + 1 + i/2, when the control chain (Y,) has moved
deterministically from (i, i) to (i, i/2), the (Z,) process has moved i/2 steps left
since ¢ =1fori/2 + 1 <j <iand 2 < z < z, During the time span (n) +
i/2 + 1to r(n + 1) when the control has moved deterministically from (i, i /2) to
(0, 0), (Z,) has moved right i /2 steps since p*” = 1for 1 < j <i/2and 1 <z <
2o Thus Z,, 1y = 2,

Consider now the case that i/2 > z, > 2. Then because g% = 1 for i /2 <j <
i, 1 <z <z (Z,) will hit state 1 for some j, i/2 <j < i. It will remain at 1 until
Jj=1i/2+ 1. But since Z, # 0 for all n, the process will remain at 1 when
J=1i/2+ 1 as well since r{>/2*D =1 — 1/2" Tt is at state 1 (i/2 — z, + 1) times
and will be at state i/2 + 1 > z, at time 7(n + 1) since p{? =1 for 1 < j <i/2
and z > 1. Thus Z,,=i/2+ 1>z, and so Z, increases, and Z =
lim, ,,Z, ., exists a.s. Suppose { is such that 1 < { < + o0. Clearly [1 < Z < {] =
M [l < Z,(,) <1 We caloulate P( (1) [1 < Z,) < §]) and show that this
probability is 0. By the chain rule for probabilities,

N
@21 P[] [1<24< ¢)
=P[1 <Zf(l)<§]‘P[l ng(2)<§|1 <Zf(])<§] ce
XP[1<Zyn <$1<Z <5 1<j<N—1]

and by the strong Markov property,
P[l < Zf(n+1) < {Il < Zf(j) < {, 1 <_] < n] = P[l < Zf(n+]) < {Il < Z,,.(n) < {]
From the above discussion, it is clear that Z _,, > { if and only if i/2 > ¢{ so that

P[Z-r(n+l) >§|1 < Z,r(n) < f] = P[ Y,r(n)+] S {(l, l) > 2§}] = 2ﬁ§f2j‘

Denote the right-hand side of this expression by t,.. Then
(2.22) P[l < Z‘r(”+l) < {Il < Z‘r(”) < f] < 1 - t2§-.
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Using (2.21) and (2.22), we have
P(M 7 \[1 < Zywy <§]) = P[1 < Z <]

H,,-l [ 7(n+l) {Il 1'(”) {]
SP[1<Zgy <] T2,(1 = 1),

where the product II37_ (1 — #,;) is understood to be the factor (1 — ¢,,) multiplied
by itself infinitely often. Since 1 — #,, < 1 this product is 0. Hence P[1 < Z <]
= 0, which proves Claim 1.

CLamm 2. [Z, = 1 infinitely often] D [lim,_,,Z,,, = + oo].

Proor. Iflim, .7, = + oo, then Z _, increases without bound. This is only
possible if Z, visits state 1 infinitely often, for an increase in Z,,, during the time
span 7(n) to 7(n + 1) meant that Z, hit state 1 within the time block 7(n) to

(n + 1).
Coam 3. P, ,[Z,, = 0 for some n] < 1.

Proor. Define a process Y, (,,)+1 by Y.+ = (Y, )+ 15 T(,,)+1) Then (Y,(,,)H)
is an independent, identically distributed sequence of random variables with
probability distribution {f}, i=2,4,6,--- . Let o(1) = miniinf{'r(n) 17,(,,)+,
> 2zy}, + o} and o(k) = min{inf{7(n) : T(n) >o(k—1)and Yy, > 2z + k
— 1)}, +o0}. Note that since (Y,) is a recurrent Markov chain, the state y, € % is
hit infinitely often. Also P, | 17,, > 22+ k—1]>0 for all n and k so that
a(k) < + oo for all k with probability 1. Now

Poyy [ Zotk+1y = 0y Zogry # 0]
= Py 2ol Zotk+) = 0, Zoy > 29 + k — 1]
< 2 ek /2
The inequality above follows because in order that the Z, process be absorbed at 0
during the time interval o(k) to a(k + 1), it must happen that ¥, ., = (i, i) with

i>2(zy + k — 1), i.e., it must happen that )7,, > 2(zy + k — 1) (see the proof of
Claim 1). The factor 1/2’ follows from the definition of the g{"/’s. Thus

(223) S0Pl o] Zokrty = 0, Zyay # 0]
< EP 22t k-1fi/2 < S 47 GrkD <,

But Z,;, > 2o # 0 and Z ;) + 0 implies Z, ;, % O for j < k so that
Py 9l Z, =0  forsome n]= P, .)[Z

T

= Z8=1Py 29[ Zotk+) = 0, Zoy 0] <1
by (2.23).

o =0 for some n]
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This proves Claim 3. Now from Claims 1 and 3, it follows that P, ,.[Z,, 7 0 for
all n and Z = + 0] > 0, so that by Claim 2, P, ,,[Z, =1 infinitely often] > 0
thus contradicting the instability condition (2.1). []

3. Extinction of the birth and death chain in a random environment. In this
section, we state and prove conditions for which Z, — 0, considering both the cases
when the “transition probabilities” {p{, ¢, r”}, (»,2) €S do or do not
depend on the z-state of (Z,). When no such dependence is assumed, we refer to
these probabilities as homogeneous and denote them as { p©, ¢®, ¥}, y € ¥; of
course, the state set Y X {0} remains closed in &. For the homogeneous case, we
assume that the state space % of (Y,) is discrete and that (Y,) possesses an
invariant probability distribution {#,} (which is certainly true when (Y,) is uni-
formly ¢-recurrent) and we give a necessary and sufficient condition for Z, -0
with probability 1. The result is stated as follows:

THEOREM 3.1.  Assume that p©, ¢, r”) are homogeneous probabilities associated
with (Z,). Then P, ,\[Z, —0] = 1 where (v, z,) is any initial state for (Y,, Z,) if
and only if 3, ca(p® — ¢P)m, < 0. .

ProOF. Fix y, € Y and let 7™ be the nth return time to y,. Let 7 = 7. Let
Dn = Zf(n-H) - Z(n),

Since the probabilities {p?, ¢©, r)} are independent of the z state, the {D,}
form a sequence of independent, identically distributed random variables, and the
Zw form a generalized random walk. Note that D, = Z7_4(Z,,, — Z,). By the
smoothing property of expectation,

E(y 29Dt = E(yo so{ Zx_0E[(Zisr = Z(Yis ZJ) ]}
= Ey, o {Zi20(p0 = ¢("9)}
= (I/Wyo)zye%(p(y) - q(y))'”y'
(The last equality follows from formula (16), Chung (1960), page 82.)

By the general results in the theory of random walks, £, . D, = 0if and only if
(Z,») forms a recurrent chain and E, . D, <0 if and only if (Z,») forms a
transient chain with negative drift. Now place an absorbing barrier at 0 and
consider D, in this context. If 3, cqp™m, = 3, cqq™m,, then we know from the
above that (Z ) will be a recurrent chain and thus it is sure to absorbed at 0. If
3, eap?m, < 2, caq™m, so that a drift left occurs, then 0 is certain to be entered
starting from a positive z-state. Conversely, if extinction is certain, then either the
process (Z,) is transient with a drift to — co or recurrent. Thus £, . D; < 0, and
502, capn, < Z,caqm,. [

Let us now consider the extinction problem in the case that the “transition

probabilities” {p®, ¢, r?), (y,z) €S of (Z,) are nonhomogeneous. The
following result, which gives a condition for P, ,,[Z,—0] =1 for any initial
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state (g, Z,), makes no assumption on the environmental process so that (Y,) may
be taken to be any stochastic process on general state space. Define the following
quantities: ¢, = inf, cqq”, §, = sup,eap?’, 7, = 1 — (7, + ¢,). Analogously de-
fine quantities g,, p,, r,.

THEOREM 3.2. Assume that the quantities p, and P are positive forall z €Z,
and that ¢ + r? > ¢, for all (y,z) €Y X Z*.

D If EZ_IHk=1(gk/p'k) = + oo, then P, ,\[Z,—0]=1 for any initial state
(Vo 20) € 3.

@) If Z7.I5-1(3/p) < + oo, then P, ,[Z,—0] <1 for any initial state
(Vo 20) € 5.

Proor. (1) Let (Z,) be an ordinary birth and death chain with transition
probabilities {g,, 7,, 7,}. Denote by % the g-algebra generated by Yo, Y, Ys, -
and define F,(z) = P,[Z, <z] and F}z) = P, ,)[Z, <z|B], n=0,1,2,-
so that F, and F® are, respectively, the distribution function and condmonal
distribution function of the random variables Z, and Z,. This definition sets
Zy = zy = Z, so the two chains start at the same state z,. Thus both F, and F® are
distributions degenerate at z, so that F, = F,’. We will show by induction on
that £3(z) > F,(z) for all z and for all ( Yo Y1, * * + ) realizations of Y, Y, -
Assume F2 > F,. Set p©) = 0 for all y by convention. Now

(3‘1) anil(z) = 2i‘-OP(J/o’zo)[Zn+l = gl%]
= 2o PVAPGy e[ Z = § = UB] + r§7P,, 5[ Z, = §|B]

+qPP Py [ Zs = § + l|6J3]}.

Collecting terms with Z, = { for 0 < { <z — 1 and noting that r§{’” = 1, expres-
sion (3.1) becomes

(32  ZioPiyw[Z, = $IB] + (427 + )P, [ 2, = 2B ]
+¢1z£1P(yo,zo)[Zn =z+1%]

= F3(z — 1) + (g2 + r®)(F2(2)
— F3(z = 1) + ¢?(F2(z + 1) = F2(2))
= pOPER(z — 1) + (g9 + r? — qPP)F2(2) + q2P F2(z + 1)
(3.3) > pPWE,(z = 1) + (¢9” + r¢” — qPP)E,(2) + ¢ F,(z + 1)

by the induction hypothesis and the assumption that ¢ + r® > ¢, for all y.
The above expression (3.3) becomes (in similar rearrangements used to denve the
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expression (3.2))
E(z = 1) + (29 + r97)(E,(2) — E(z = 1)) + ¢?P(E(z + 1) — E(2))
= E(z = 1) + (1 = p?)(E,(2) — E(z — 1)) + ¢?/\(E,(z + 1) — E(2))
>F(z =D+ (1= 5)E(2) — E(z = D) + g.4i(E(z +1) = E,(2))
= S0P [2Z, = ¢ + (q, +7)P,[2,=z2]+ ¢.P[Z,=2+1]

=2‘;=o{ﬁ;_lp (2, =t —1]+ /P, [Z,=¢]+ g P [Z, = + 1]}
t=0P; [Zn+l = f] = _n+l(z)'
Thus F&, > F,,, forn=0,1,- - - . Now by the classical theory of birth and

death chains (see Karlin and Taylor (1975)), we know if 25115 - (g, /B] = + oo,
then F,(0)11 as n — oo so that F,30)M and thus P, . [Z, = 0] = E,_, (FX(0))
— 1 by the monotone convergence theorem. But P, ,\[Z, =0]- P, ,,[Z, =0
for some n] as m — oo so that P, ,,[Z, =0 for some n] = 1 and part (1) of the
theorem is proved.

(2) In a similar fashion, we consider an ordinary birth and death chain (Z,) with
transition probabilities {g,, p,, r,}, and using obvious modifications of the argu-
ment in part (1), we can show F.2(z) < F,(z) where F, is the distribution function
of the variate Z_,,, n=0,1,2--- . Now the classical theory tells us that if
> I2_1(3./p) < + o, then F,(0) < 1 for all # and hence F.2(0) < 1 for all n.
But then P, ,)[Z, = 0] = E,_ ,(F30)) <1 for all n so that P, ,)[Z, =0 for
some n] < 1. i

REMARK. Note that this leads to a much stronger result: conditionally, given
any sequence of Y,’s, i.e., any realization of the environmental process,

u®(yg, zo) = Py [ Z, =0  forsome n|B]
<P [Z, =0 forsome n| = a(z).

Since #(z,) can be computed (indeed,

2 = (/i)
1+ 251521 (G/Pi)

(cf. Karlin and Taylor (1975))), a nice upper bound for the probability of extinction
of the birth and death chain in a random environment initially at (yg, z,) is
obtained.

#t(zo) =
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