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CENTRAL LIMIT THEOREMS FOR EMPIRICAL MEASURES!

By R. M. DuDLEY
Massachusetts Institute of Technology

Let (X, &, P) be a probability space. Let X, X,,- - -, be independent
X-valued random variables with distribution P. Let P, = "“l(sx. + -+
8x,) be the empirical measure and let », = n%(P,, — P).Givenaclass C C &,
we study the convergence in law of »,, as a stochastic process indexed by C, to
a certain Gaussian process indexed by €. If convergence holds with respect to
the supremum norm supceq|f(C)|, in a suitable (usually nonseparable) func-
tion space, we call C a Donsker class. For measurability, X may be a complete
separable metric space, & = Borel sets, and C a suitable collection of closed
sets or open sets. Then for the Donsker property it suffices that for some m, and
every set F C X with m elements, C does not cut all subsets of F (Vapnik-
Cervonenkis classes). Another sufficient condition is based on metric entropy
with inclusion. If € is a sequence {C,,} independent for P, then C is a Donsker
class if and only if for some r, 2,,(P(C, )1 — P(C,))) < .

1. Imtroduction. The statistics used in Kolmogorov-Smirnov tests are suprema
of normalized empirical measures n%(P,, — P)or (mn)%(m + n)‘%(Pm - Q,) over
a class C of sets, namely the intervals ] — o0, a], @ € R. Donsker (1952) showed
here that n%(P,, — P) converges in law, in the space / °(C) of all bounded functions
on C, to a Gaussian process. Later, Donsker’s result was extended to the class of
products of intervals parallel to the axes in R* (Dudley (1966), (1967a)). Since
[*(C) in the supremum norm is nonseparable, some measurability problems
(overlooked by Donsker) had to be treated. Recently Révész (1976) proved an
iterated logarithm law for a much more general class of sets
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where f. and g; have a fixed bound on their partial derivatives of orders < k, and P
is the uniform measure on the unit cube. This paper will consider extensions of
Donsker’s theorem to suitable classes of sets in general probability spaces.

Section' 2 will treat countable sequences of sets, with results in particular for
independent or disjoint sequences. Sections 3 and 4 treat measurability questions,
Section 4 on collections of closed or open sets. Section 5 introduces metric entropy
with inclusions, and finds a sufficient condition applicable to bounded collections
of convex sets in R?, or sets with more than k — 1 times differentiable boundaries
in R¥, if P has a bounded density with respect to Lebesgue measure. Section 6
shows how convergence in law of the one-sample measure n%(P,l — P)onaclass C
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900 R. M. DUDLEY

extends to the two-sample measure (mn)%(m + n)‘%(Pm — Q,), where P,, and Q,
are independent empirical measures for P. Section 7 shows that for Vapnik-
Cervonenkis classes, satisfying suitable measurability conditions, Donsker’s theo-
rem holds for all P. Iterated logarithm laws uniformly on classes € will be treated
in a separate paper by J. Kuelbs and the author.

Here are some definitions. Let (S, d) be a metric space (we have in mind a
nonseparable space of bounded functions on C with supremum norm). Let B, =
B, (S, d) be the o-algebra of subsets of S generated by all balls

B(x,e) ={y € S:d(x,y) <e}, x€E S, e>0.

Then B, is a sub-g-algebra of the o-algebra ® of Borel sets, with B, = B for S
separable. We have %, c 9B strictly if the smallest cardinality, v, of a dense set in
Sisc, or 25 or 2¥,- - -, and hence for all nonseparable S we will treat (Dudley
(1967a), proposition and following discussion). If y =&, possibly %, =
% (Talagrand, 1978).

I will call a probability measure a law, defined on %B, unless otherwise specified.
A sequence p, of laws will be said to converge to a law p, p, —ep, if and only if
f du, — [f du for every continuous, bounded, %,-measurable real-valued f on S
(Dudley (1966), (1967a)).

A net X, of S-valued random variables on a probability space (2, &, Pr) is said
to converge almost uniformly to Y if and only if for every ¢ > O thereisasetd € &
with Pr(4) < ¢ and a B such that for all @ > B and w & 4, d(X,, Y)(w) <e. This
does not require that w — d(X,(w), Y(w)) be measurable. Suppose however that for
some separable subset T C S, Pr(Y € T) = 1. It is easily seen that the metric d is
jointly measurable on (S, ®,) X (T, ®,), usifig only balls with centers in a
countable dense subset of 7. Then d(X,, Y) is measurable. In this case, a sequence
X, — Y almost uniformly if and only if X, — Y a.s,, ie., d(X,, Y) — 0 a.s. Wichura
(1970) proved that given laws p, defined on o-algebras @, with ®, c @, c B,
such that p, has a separable support, then p, —cp, if and only if there exists a
probability space (2, S, Pr) with random variables X, such that X,"'(B) € & for
all B € @, Pr(X,'(B)) = p(B), and d(X,, Xo) — 0 Pr-almost surely. The useful-
ness of Wichura’s theorem will be seen, e.g., in Section 6.

Now let (X, @, P) be a probability space. Let X, X,,- - -, be independent
X-valued random variables with distribution P, defined on a countable product
(X, @, P*) of copies of (X, @, P). Let P, be the random empirical measure

Py=n (B 4 +8y),

where §,(4) == 1,(x). Let », be the normalized empirical measure », = n%(P,, ~
P).

Let W, be the P-noise Gaussian process with parameter set @, EWp(4) = 0 and
EWy(A)Wy(B) = P(A N B) for all 4, B € @. Then W, has independent values
on disjoint sets. For each A let Gp(A) == Wp(4A) — P(A)Wp(X). Then Gp is a
Gaussian process with parameter space @ such that EGp(4) = 0 and
EGp(A)Gp(B) = P(A N B) — P(A)P(B) for all 4, B € @.
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The central limit theorem in finite-dimensional vector spaces tells us that, at least
when restricted to a finite subclass of @, », converges in law to Gp.

Given a subclass C C @, let /°(C) denote the space of all bounded real-valued
functions on €, with supremum norm. Then »,(-)(w) € /°(C) for all n and w.

DErFINITIONS.  Given a probability space (X, €, P) and 4, B € &, let
dp(A, B) = P(AAB),  where AAB :=(A\B)U (B\A).

Aclass € C @ will be called a G,UC class if and only if G, on C has a version
such that for almost all w, C — Gp(C)(w) is uniformly continuous on € for the
pseudometric dp.

Also, C will be called a GpB class if and only if G, has a version which is a.s.
bounded on C. If € is both a G,B class and a G,UC class it will be called a
GpBUC class.

Note that |1, — 1,|, = dp(4, B) where || - ||, is the norm in L*X, @, P).
Thus these metrics define the same topology and uniform structure on C.

If Y is a Gaussian variable independent of G, with EY = 0 and EY? = 1, and
Wp(A) = Gp(4) + P(A)Y, A € @, then W, is a (version of) P-noise.

We recall that if L is a linear map of a Hilbert space H to a space of Gaussian
random variables with EL(x) = 0 and EL(x)L(y) = (x,y) forall x, y € H, then a
set C C H is called a GC-set (resp. GB-set) if and only if L restricted to ©C has a
version with continuous (resp. bounded) sample functions (Dudley (1967b), (1973)).
Let Io= {1, : C € C}.

(1.0). PrOPOSITION. For any C C @, C is a GoBUC class if and only if the closure
of I.in L*(X, @, P) is both a GB-set and a GC-set.

ProoF. In view of the relations between G, and W) given above, where we can
let Wp(C) = L(1.), Gp has a version uniformly continuous on a class € c & if
and only if W, does, and likewise for sample continuity or boundedness. A GB-set
must be totally bounded (Dudley (1967b), Proposition 3.4, page 295; (1973),
Theorem 1.1(c), page 71). Functions on a totally bounded set I, extend continu-
ously to its compact closure if and only if they are uniformly continuous. The
extension is still a version of the same process since it is continuous in probability.

0

(1.1). ProPoSITION. If C is countable, then in 1°(C), D, equals the smallest
o-algebra B, for which all coordinate evaluations f — f(A), A € C, are measurable.

Proor. For any f € /°(C) and r > 0, the closed ball
B=(fr)={g:llg— flow <r}
= N el8:18(C) = AO) < 7).
Thus B, c B.. Conversely, if C € € and x € R, then

(f:4(C) <xy = U B(fyn)
where f(C) = x — n, f(D) =0for D#C,D €C,50 B. C B,. [
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For any C, let C,(C, dp) be the space of all bounded real functions on C
continuous for dp. Let Dy(C, P) be the linear space of all functions ¢ + ¢, where
¢ € C,(C, dp) and  is a finite linear combination of point masses, ¢ = 24,0,
Let D(C, P) be the closure of Dy(C, dp) in /*(C) for the supremum norm.

The space D(C, P) can be considered as an extension of the usual space D[0, 1]
of functions on [0, 1] continuous from the right with limits from the left, where
X =10,1], C is the class of all intervals [0,c], 0 <c < I, and P is Lebesgue
measure or any law on [0, 1] with a strictly increasing distribution function.

However, as in this case, functions in D need not have a decomposition into a
pure jump part and a continuous part: let f=0 on [1/(2n + 1),
1/(2n)), f(1/(2n)) = 1/n, and let f be linear on [1/(2n), 1/(2n — 1)].

Since all our »,, and G, for GpBUC classes, take values in Dy(C, P), it will be
convenient for us to work in this incomplete space.

For a metric space (S, e) and T C S, the Borel sets in T are exactly the
intersections with T of Borel sets in S. We have

By(T,e) C{ANT:A4E RS, e)},
where the inclusion may be strict if 7 is nonseparable, e.g., if e(x, y) = 1 for x #y
in T.
DEerFINITION. We say C is P-EM (empirically measurable for P) if and only if for

all n, P, is measurable from the measure-theoretic completion of (X **, @, P*) to
(Dy(C, P), Bp).

A countable class C c @ is always P-EM (by the easy direction of Proposition
1.1). More generally, if C has a countable subclass 9 such that for all C € C there
are D(n) € D with 15, (x) > 1o(x) for all x € X, then C is P-EM.

ExampLE. If P is Lebesgue measure on [0, 1] and C = {{x} : x € E} where E
is a nonmeasurable set, then C is not P-EM, since sup¢ed Py(C)| is nonmeasur-
able. Here € is included in the P-EM class of all singletons.

Note that B, -measurability of P, and », are equivalent. For any P-EM class C,
let £(»,) be the law (probability distribution) of », on (Dy(C, P), B,).

DEfFINITION. A P-EM class C c @ will be called a Donsker class for P, or a
P-Donsker class, if and only if it is a GpBUC class and we have convergence of
laws £(»,) » £(Gp) in (Dy(C, P), B,) for the supremum norm, where G is taken
to have sample functions bounded and dp-uniformly continuous on C.

There are at least two definitions of convergence of laws, in spaces like D(C, P),
different from ours. One the space D[0, 1] of right-continuous functions on [0, 1]
with left limits, continuous at 1, Skorohod (1955) and Kolmogorov (1956) defined a
complete separable metric topology, now called a “Skorohod topology,” for which
convergence to a continuous function is equivalent to uniform convergence. See
also Billingsley (1968, Chapter 3). Replacing [0, 1] by a cube [0, 1]?, Neuhaus (1971)
and Straf (1971) defined a Skorohod topology on a suitable function space D[O0, 1}*.
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More generally, given a group G of 1 — 1 transformations of a probability space X
onto itself, with identity element e and a right-invariant metric d, Straf (1971)
defines a metric for bounded real functions f, # on X by

p(f, h) = infyc g(d(e, g) + sup,|f(x) — h(g(x)))).

D(X) is the p-closure of a suitable space of simple functions. Under some
conditions, (D(X), p) will be separable and topologically complete. But I do not
know how to choose a suitable G in the generality of this paper.

Pyke and Shorack (1968) defined weak convergence for processes on R with
bounded sample functions and laws g, by [f du, — [f dy, for all bounded f which
are continuous for the supremum norm and measurable for all u,. But the above
example C = {{x} : x € E}, E nonmeasurable, indicates that there may not be
enough such f here.

So, the definition requiring %,-measurability will be used. Let £ = X* and
Pr:= P*. Then

Pr*(Y) = inf{(Pr(E): E D Y} foranysetY c Q.
Givene > 0and § > 0, let

B; .= {f € Dy(C, P) : for some 4, B € C,dp(4, B) < 8 and |f(4) — f(B)| > ¢}.

Here is a characterization of Donsker classes.

(1.2). THEOREM. Given a probability space (X, &, P) and a P-EM class C c @, @
is a Donsker class if and only if both

(@) C is totally bounded for dp, and
(b) for any € > O there is a 8 > 0 and an n,, such that for n > ny,

Pr*{», € B; ,} <e.

ProoF. First assume (a) and (b). Then C has a countable dp-dense set ©D.
Applying the central limit theorem to finite subsets %, of D, using (b), and letting
,, 1D, shows that 9 is a G,UC class. Almost all sample functions of G, then
extend uniquely to C by uniform continuity. It follows that € is a G, UC class and
a GpB class.

Let s(f, 8) = supccf(C) — g(C)|. For y >0 and a set K C Dy(C, P) let
K" = {g:5(f,g) <y for some f € K}.

(1.3). LemMA. 1.2(a) and (b) and C P-EM imply that for any ¢ > O there is a
compact set K C Cy(C, dp) with metric s such that for any y > 0, Pr{v, € K"} >
1 — ¢ for n large enough.

Proor. This is a variant of Dudley ((1966), Proposition 2). We may assume
0<e< 1 By (b), take & >0 such that Pr*{y, € Bs .2} <&/4 for n > ny=
ny(8, ). Let ¥ be a finite subset of © such that for all C € €, dp(4, C) < 8 for
some A € ¥, by (a). Let F have k elements. Take M large enough so that
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(M -1)2<e/k Foreachd € F,
Pr{|y,(A4) > M — 1} <e/ (4k)
by Chebyshev’s inequality. Thus
Pr{sup,cqlr,(4)] > M — 1} <e/4,
and
Pr{supccdv,(C)] > M) <e/2,

where the latter event is measurable by the P-EM assumption. (

For m=1,2,---, and B >0, let &(m) = ¢/2™ and Ag m = Bg oy We
choose a sequence { B(m)} of positive numbers satisfying the following two
conditions:

D B(m + 1) <B(m)/2;

(II) For some sequence {ny(m)},
Pr*{v, € Agymy m} <&(m) foralln > ny(m).

Let 8, = B(m)e/(2"*'M). Then by (1), 8,,,, <8, /4. Let A, = A B(my, m» NOW if
50, /) <M, f & A4,, C,D € C, and dp(C, D) > B(j), then |f(C) — f(D)| < 2M
< edp(C, D)/(28), while if dp(C, D) < B(j), then |f(C) — f(D)| < e(j) = &/2.
Thus for any C, D € @,

™ IA(C) — AD)| < €27/ max(1, dp(C, D)/8).

Let F,, be the set of all f € Dy(C, P) such that s(0, f) < M and (*) holds for
J=2---,mandallC, D € C. Then for n > N = N(m) large enough, there is a
measurable set E,, C X such that Pr(E,) > 1 — eand forallw € E,, »,(-)(w) €
F,.

Now let K be the set of all real functions g on © such that s(0, g) < M and for
all j=1,2,---,dp(C,D)<8/2 implies |g(C) — g(D)| < 3¢/2. Then K C
Gy(C, dp). Now (C, d;) is totally bounded and K is a uniformly bounded, uni-
formly equicontinuous family of functions, complete for s. Thus by the Arzela-
Ascoli theorem (applied to the completion of C for dp), (K, s) is compact.

Given a y > 0, choose an integer m > 1 such that e/2™ < y/2. Let us show that
F,, C K". Take a maximal set C, C C such that d,(C, D) > §,, for all C D in
G- Then G, is finite by (a). For all C € C, dp(C, D) < §,, for some D € C,,.

If fEF, and C,D € C,, then |f(C) — f(D)| < edp(C, D)/(2™8,,), by (*).
Then f on C, can be extended to a function g on C with |g(C) — g(D)| <
€27"dp(C, D)/§,, for all C,D € C (McShane (1934)). Taking max(— M,
min( g, M)), we can assume s(0, g) < M. Let us show that g € K. For i > m, since

&/ (278,,) = 2M/ B(m) < 2M/B(i) = ¢/ (2%,
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we have
|&(C) — g(D)| < /2 for dp(C, D) <8,
For j <m, given C,D € C with dp(C, D) <§;/2, choose C,, D, € C, with
dp(C, C,) <, and dp(D, D,,) < §,,. Then dp(C,, D,,) < 28,, + §;/2 < §;, and
18(C) — &(D)| < |&(C) — &(C,)l
+I/(C,) = F(D)) + |&(D,) — g(D)|
<e/2" + e/ + /2™ < 3¢/,
using (*) for the middle term. Thus g € K. Now s(f, g) < vy since for any C € C,
there is C,, € C,, with d,(C, C,) < §,,, and
If(C) — 8(C)l < 18(C) = A(C,)| + |&(C,) — 8(C)

< 2e/2™ < y.

So F,, ¢ K" as desired. For n > N(m), Pr*(v, & F,)) <e&,s0 Pr(v, € K¥) > 1 — ¢,

noting that K is a countable union of balls, hence %, measurable. Thus Lemma
1.3 is proved.

Now, using Lemma 1.3, the sequence {£(»,)} of laws on (Dy(C, P), %®,) has a
convergent subsequence, as in Dudley ((1966), Theorem 1; (1967a), Theorem). Any
limit of such a subsequence is concentrated in a countable union of compact
subsets K, of C,(C, dp), with ¢ = 1/n in Lemma 1.3. Now , K, s separable for
s. By the finite-dimensional central limit theorem, these limits of subsequences
must all equal £(Gp). Every subsequence of {£(»,)} has a convergent subsub-
sequence. (In 1966 I carelessly called this property “precompact”; that should
mean “having compact completion” for subsets of uniform spaces.) It follows that
L(»,) = £(Gp), i.e., € is a Donsker class.

Conversely if C is a Donsker class, hence a GpB class, then (a) holds by Dudley
((1967b), Proposition 3.4). A version of G, which has uniformly continuous, hence
bounded sample functions on the totally bounded set C for dp, gives a law £(G,)
with a separable support in Dy(C, P), concentrated in a countable union of
compact subsets of C,(C, dp). Thus by Theorem 2 of Wichura (1970), we can
assume here that », — Gp uniformly on C, so that for any § > 0,

T,s = sup{|»,(4) — »,(B)| : 4, B € C, dp(4, B) <&}
converges almost uniformly (as defined above) for n — oo to
Ts == sup{|Gp(A4) — Gp(B)| : 4, B € C, dp(4, B) < §}.

Here it is not claimed that 7,5 is a measurable random variable, but each Tj is. For
any & > 0 there is a § > 0 such that

Pr{T; >¢/2} <e/2, andforsome ny,
Pr*(ITna_ Tsl >8/2)<€/2
for n > ny. Thus Pr*(7,; > ¢) < ¢, proving (b). ]
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2. Sequences of sets. Let (X, @, P) be a probability space.

(2.1). THEOREM. Let {A,,} -, be any sequence of measurable sets with P(A,) =
Py, Such that for some r < oo, T,p; < oo. Then {A,,},,, is a Donsker class.

ProOF. We know that any countable collection {4,,} is P-EM. Further C =
{4,,} is totally bounded for dp. Hence it remains only to verify condition (b) of
Theorem 1.2.

By Theorem 3.1 in Dudley (1967b), € is a G, UC-class. So for any & > 0 there is
a § = 8(¢) > 0 such that

(22) Pr{sup{|Gp(4,) — Gp(4))| : dp(A;, 4) <38} >e} <
It will be shown that
(23) There exist numbers p and n, such that for all n > n,,

Pr{sup,,,,|v,(4,)| > ¢} < 2e.
We define the binomial probabilities
b(k, n,p) = n'p*q"~*/k!(n — k)!, where q:=1-p,
E(k, n,p) = 2k<j<nb(j’ n, p),
B(k, n, p) = Zo< j<xb(J, n, p)

where in B and E, k is not necessarily an integer.
To prove (2.3) it is enough to show that for any & > 0 there are a p and an n,
such that for all n > ny,

(24) E,n}FE(npm + en%, n,p,,,) <e and

(2'5) 2m)nB(npm - sn%, napm) <e.

We may assume 1 > p,,|0 as m — oo.
To prove (2.5) we use the Chernoff-Okamoto inequality (Okamoto (1958),
Lemmas 1, 2b’, or Hoeffding (1963), Theorem 1),

B(k, n, p) < exp(— (np — k)*/2npq),
if p <3 and k < np, which implies

1
B(np,, — en?, n,Ppn) < exp(—2/2p,.4,,)-
Letd =1 / r. Then for some constant K < oo, p,, < Km~? for all m. Thus since

2, exp(—m®?/2K) < oo, there is a p large enough so that (2.5) holds for all ».
For series (2.4), Bernstein’s inequality (Bennett (1962) or Hoeffding (1963)) gives

E(np + en, n,p) < exp(—sz/ (2pq + sn‘%))

< exp(—¢*/6pq)
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if 4pqn% > ¢ > 0 and hence, for p < %, if 2pn% > e. Thus
S, = EM{E(npm + snzl, n,pm) : 2pmn% >em2 u}

< Em{exp(—82/6pm) L 2p MG e m > u}

< 2, {exp(—em®/6K) :m > p} <e/2
uniformly in » for u large enough. Let

S, = Zm{E(npm + en, n,pm) : 2pmn% < e}.
The Chernoff-Okamoto inequality (Okamoto (1958), Lemma 1) gives
(2.6) E(k,n,p) < (np/k)(ng/ (n — k)" % for k > np.
(2.7). LEMMA. Whenever k > np, E(k, n, p) < (np/k)‘e*=".

PrROOF. By (2.2), we may prove (nq/(n — k))" ¥ < e*~". Let x :== nq/(n — k)
> 1. Then x < e*~!, giving the result. []

Let s(n) = n?. Then for e := (k — np)/s(n), E(k, n,p) < (np/(np +
end)yP+eMes®  and ent — (np + en?)n(l + €/pn?) = eni(l — (x + Din(l +
x~1)) where 0 < x = nip/e <3. The function f(x) = (1 + x)In(1 + x ') is de-
creasing for all x > 0. Thus for 0 < x <3, f(x) > f(3) > 1.5. Thus

eni(l — f(x)) = enz(1 — 2f(x)/3) — enif(x)/3
< - en%f(x)/3.
Hence

E(k, n,p) < exp(— (en% + np)(ln(l + e/pn%))/B).
Thus

S, < EM{(pmn%/e)m(")/s: 2pmn% < e}.
Since p,, < Km~°, we have S, < S, + S, where
S, = E,,,{(p,,,n%/e)”(n)/3 : 2Km =% < e}

< (Kn%/e)”(")/:;E,,,{m'8”(")/3 :m>G)
where G = G

s = (2Kn/€)/5. Choosing n, large enough so that 88”1% /3>2,
we have for n > n,

S5 < (Kn%/e)w(n)/?’f}’;°_lx“se’(")/3 dx

< (Knz/e)" ™ (8en2 /3 — 1) 7(G — 1)! 78/,
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For fixed K, € and 8, we find that the logarithm of the last expression is asymptotic
to —(en;'/3)ln 2— — o0 as n— 0, so that S; — 0. Thus S; < ¢/4 for n > n, for
some n,.

Lastly,

S, = 2,,,{(p,,,n%/t‘:)ss(n)/3 : 2pmn% <e< 2Km‘8n%}
< (2kn3/€)°(1/2)*™" 0

as n— o0, so S, <e/4 for n > n, for some n,. Hence for n > max(n,, n,, n,),
S, < &/2 s0 (2.4) and hence (2.3) hold. We take p large enough so that p,, < for
all m > p. From the finite-dimensional central limit theorem and (2.2) we can find
n, such that for n > n,

Pr{sup(|»,(4;) — v,(4))| : i,j < pand dp(4,, 4;)) <38} >e} <e.

This and (2.3) then imply condition (1.2b), completing the proof of Theorem 2.1.

(2.8). THEOREM. If A,, are independent for P and P(A,) = p,,, then {A,} is a
Donsker class if and only if for some r < o0, 2, (p(1 — p,)) < 0.

Proor. Note that a subsequence of the 4,, can converge for dp if and only if
their probabilities converge to 0 or 1. Hence, {4,,} is Donsker if and only if the
collection {4,,, X \ 4,,} of 4, and their complements is Donsker. Thus we may
assume p,, < 3.

Now, “if” follows from Theorem 2.1. Conversely, suppose = ,.p = + oo for all
n. Then for each n, Pr{P,(A4,) =1 for infinitely many m} = 1 by the Borel-
Cantelli lemma. Since P,(4,,) = | implies »,(4,,) = n%(l — D) —> 00 as n —> o0,
{4,,} is not a Donsker class. []

Also, any sequence of disjoint measurable sets is a Donsker class by Theorem 2.1
with r = 1.

Independent 4,, with P(4,,)|0 as m — oo form a G, BUC class if P(4,,)log m —
0 as m— oo (Dudley (1967b), Proposition 6.7, with (1% dP) = P(A)). This is
weaker than the condition for {4,,} to be Donsker, and shows that the binomial
upper tail E(k, n, p) for small p becomes substantially larger than the correspond-
ing Gaussian tail.

3. Measurability. A measurable space is a pair (X, B ) where X is a set and P
is a o-algebra of subsets of X. Then (X, ®) or B is called countably generated iff
there is some countable @ c B such that % is the smallest o-algebra including &@.

Given a measurable space (X, %), a set 4 C X will be called simply measurable
if A € %B.If Pis alaw defined on B, 4 will be called completion measurable for P
iff dp(4, B) = 0 for some B € B, i.e., AAB C C for some C € B with P(C) = 0.
If A is completion measurable for all laws on B (where B and C depend on P), it
is called universally measurable.
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If (Y, &) is another measurable space, a function f from X into Y will be called
(completion, resp. universally) measurable iff for all E € &, f~!(E) is (completion,
resp. universally) measurable in X.

A Polish space is a topological space metrizable by a complete separable metric.
A set A in a metric space is called a Suslin set iff there is a continuous function
from a Polish space onto 4. Note also that any Borel measurable function from a
separable metric space into a metric space has separable range (Stone (1962), page
32, Theorem 16). A set in a metric space is Suslin iff it is the range of some Borel
function on a Polish space. Thus any Borel set in a Polish space is Suslin.

All Suslin sets are universally measurable (e.g., Federer (1969), Theorem 2.2.12,
page 69). Clearly a product of two Suslin sets with product topology is Suslin, a
union of countably many Suslin sets is Suslin, and a continuous or Borel image of a
Suslin set is Suslin. A countable intersection of Suslin sets is Suslin (e.g., Kuratow-
ski (1966), pages 454, 478). As Suslin proved, a Suslin set whose complement is
Suslin is a Borel set (e.g., Kuratowski (1966), pages 485-486), while there exist
Suslin non-Borel sets (Kuratowski (1966), page 460).

A measurable space (X, B) will be called Suslin iff there is a metric d on X for
which (X, d) is Suslin and 9 is the o-algebra of Borel sets.

DerFmNiTION.  If (X, %) and (C, §) are measurable spaces and C C b, we call
(X, B; C,8) a chair. The chair, or (C, §), will be called admissible iff the €
relation, {{x, C) : x € C}, is a measurable subset of X X € for the product
o-algebra of B and &. We call C admissible iff there is some g-algebra & for which
(G, &) is admissible.

Note that if (C, &) is admissible, so is (€, U) for some countably generated
U cCs.

Suppose % has a countable set @ of generators. Let &, := @. For each successor
ordinal « + 1, let &, ; be the collection of all complements and countable unions
of sets in &,. For each limit ordinal 8 > 0, let @ = U ac B@"" The @, are called
Borel classes (or Banach classes, cf. Aumann (1961)).

A collection € c ¥ will be said to be of bounded Borel class iff for some
countable set @ of generators of B, and some countable ordinal a, € c @,. This
notion does not depend on the choice of @, although the specific ordinal a does.

We quote a theorem of Aumann ((1961), Theorem D); B. V. Rao ((1971),
Theorem 3) gave a shorter proof.

(3.1). THEOREM (Aumann). For any countably generated measurable space (X, B)
and C C B, C is admissible iff it is of bounded Borel class.

Thus in any separable metric space, the collections of all open sets, closed sets,
G; sets (countable intersections of open sets), F, sets (countable unions of closed
sets), and countable sets are each admissible, etc. In Section 4, specific admissible
g-algebras will be put on collections of open or closed sets.

In [0, 1], for example, the collection of all Borel sets is not admissible.
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We recall that (C, §) is called a standard Borel space iff there is a measurable
isomorphism of it with a Polish space carrying its Borel o-algebra. A metric space
(X, d) is called absolutely Borel iff X is a Borel set in its completion for 4. If X is
separable, this property depends on 4 only through its topology (e.g., Parthasarathy
(1967), page 22, Corollary 3.3). A separable metric space with Borel o-algebra is a
standard Borel space iff it is absolutely Borel (Parthasarathy (1967), pages 133—
134).

For any probability space (X, %, P) and C C B, there is a smallest o-algebra
Sp of subsets of € for which P is a measurable function, generated by countably
many sets {4 : P(4) < r}, r rational. If (€, §) is admissible, let U be the smallest
o-algebra including & and §,. Then A is also admissible, and countably gener-
ated if S is; & always has a countably generated admissible sub-o-algebra.

DEFINITION. A chair (X, ®; C, §) is e-Suslin iff it is admissible and both
(X, ®) and (C, &) are Suslin measurable spaces. Given a law P on B, the chair
(X, B; C, S) is Pe-Suslin iff it is e-Suslin and all dp-open subsets of € belong to
S.

If (X, 9B) is Suslin, it is countably generated, so (B, dp) and (C, dp) are always
separable.

DerFINITION.  Given a probability space (X, %, P) and C c B, we call C
strongly P-EM iff for any n, any real b;, and independent random variables X(i) in
X with law £(X(i)) = P, the map

@ = 21 <icnbidxine
is completion measurable into (Dy(C, P), B,).

(3.2). PropoSITION. If (X, B; C, §) is Pe-Suslin, then C is strongly P-EM.

Proor. For any x € X, the function C — §,(C) is S-measurable on € since
(C, &) is admissible. Thus for any y(1),...,y(k) € X and real b,, - - -, b, the
function C — £5,8,,(C) is & -measurable on C.

Let f be any dp-continuous function on C. Then for any real ¢, {C € C : f(C)
>t} is an open set for dp, thus belongs to &. Hence f is S-measurable. In
particular, P is § -measurable. So P + f + Zb,8,, is S -measurable.

Now it is enough to show that for independent X(1), - - - , X(n) with law P, real
b;, and any S -measurable function g on C,

Supc ee|21<i<nbi8x(i)(~)(c) - g(0)|

is measurable. We denote points of X" by x = {x(1), -+ - , x(n)). For any ¢t > 0
we define the set E, C X" X C by

E, = {{x, C) 1 [Z1cicabiu(C) — 8(C)| >t}
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Then
E=U {Kx,C):x()eC iff i€F)
N {<{x € 1 2erb — 8(C) > 1)

where the union runs over all 2" subsets F of {1,- - -, n}.

For each F, {(x,C):x(i) € C iff i € F} is product measurable since
(X,%; C,S) is assumed admissible. Also, {C:|Z,cpb; — g(C)| >t} is S-
measurable since g is an & -measurable function. Thus E, is jointly measurable.

Since (X", ®") and (&, ©) are Suslin spaces, E, is Suslin and its projection on
X" is Suslin, hence universally measurable. This projection equals

{x 1 supc e dZ 1 <icnbifun(C) — 8(C) > t}. 0

The combination of admissibility and the Suslin property seems not so easy to
satisfy. For example, let Co be the collection of all countable subsets of I := [0, 1].
Then Co is of bounded Borel class, hence admissible by 3.1. Also, Co has some
Suslin measurable structures since its cardinal is ¢, but I do not know any
admissible Suslin structure on Co.

For one thing, the structure generated by {C € Co: x € C}, forall x € I, is
not countably generated (Szpilrajn-Marczewski (1938)).

Or, take the space ™ of all sequences in I, with its standard Borel structure %.
Take the equivalence relation =: {x,} = {y,} iff {x,} and {y,} have the same
range. Let B /= be the factor o-algebra,

B/=={A4e€PB: if x=y then x€A4 iff y€ 4}.
Then 9B /= is not countably generated (Freedman (1966), Lemma (5)).

For the present, our positive results are for families of open or closed sets
(Section 4).

DEerFINITION. Given sets X, Y and E C X X Y, with projection my E C X where
my(x,y) = x, a selector for E is a function f from 7y E into Y such that {x, f(x))
€ E for all x € mE.

We state for later reference the following extension of a theorem of Lusin and
Sierpinski, which is a consequence of Corollary 4.5 of Sion (1960):

(3.3). THEOREM. Let X and Y be separable metric spaces and E a Borel set in
X X Y. Then there is a universally measurable selector f for E.

4. Spaces of closed or open sets. Let (X, d) be any separable metric space.
Then there is a metric e for the d topology of X such that (X, e) is totally bounded
(e.g., Kelley (1955), page 125). If X is complete for some metric metrizing the same
topology (not for e unless X is compact), X is called a Polish space. For any
topological space X let % (X) denote the Borel o-algebra generated by the open
sets.
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For any metric space (X, d), nonempty 4 C X, and € > 0, let

A*={yeX:d(x,y)<e forsome x €A}, and
A={x€EX:y €A whenever d(x,y)<e}.

The well-known Hausdorff pseudometric h is defined for 4 and B nonempty by
h(A, B) = h (A, B) =inf{e >0: 4 C B° and B C 4°}.

Then h, is finite valued iff (X, d) is bounded. It is a metric on closed sets.

Let %, be the class of all nonempty closed subsets of a separable metric space X,
with a totally bounded metric e. Take on %, the Hausdorff metric 4, defined by e.
Then (%,, h,) is a separable metric space; if X is Polish, then (%, 4,) is Polish
(Effros (1965)), although it is not complete unless X is compact. The o-algebra
B (%,) of Borel subsets of F, for h, is called the Effros Borel structure on %,. It
does not depend on the totally bounded metric e except through its topology
(Effros (1965)).

Let F be the class %, U {¢} of all closed sets in X. If we make ¢ an isolated
point of %, then ¥ is also Polish whenever X is. If (J, B (%)) is a Suslin or
standard measurable space, so is (%, B(F)). We call B (%) the Effros Borel
structure on F. It is also generated by all sets {F € ¥ : F C H} for HE€ ¥
(Christensen (1971), (1974)) since such collections are h-closed and a countable
family of them separates elements of %. (Note however that for U open, {F €
% : F c U} need not be Effros measurable or even Suslin, e.g., if U is the open
unit ball in an infinite-dimensional Hilbert space: Christensen (1971), Theorem 8.)
Here a Suslin subset of & or %, will be the image of a Polish space by a map
measurable for the Effros Borel structure of ¥ or %,.

For any § C & we have the naturally induced Borel structure B (9).

(4.1). ProPOSITION. For any separable metric space (X,d) and any collection
8 C G of closed sets, (8, B(S)) is admissible and for any law P on B(X), P is
B (G )-measurable.

PrROOF. The set €z = {{(x, F) : x € F € ¥} is closed in X X ¥, using the
Hausdorff metric 4, on ¥. Since (¥, h,) is separable, 5 belongs to the product
o-algebra generated by rectangles A X B where 4 € % (X) and B € B (%). Thus
(9, % (9)) is admissible.

For any law Pon X and ¢ > 0, {F € ¥ : P(F) > c} is closed for A,. Thus P is
upper semicontinuous on & and hence Effros measurable on ¥ or any subset §. ]

(4.2). PROPOSITION. For any separable metric (X, e) and law P on X, (%, dp) is
separable and all open sets for dp are Effros measurable.

Proor. Since L'(X, B (X), P) is separable, (¥, dp) is separable, as is any
subset § C 9. Thus, any open set for dp is a countable union of open balls. For
any fixed closed set F, the function C — P(C \ F) is upper semicontinuous and
hence Effros measurable. Also, C — P(F \ C) is lower semicontinuous and Effros
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measurable. Thus, C — P(CAF) = dp(C, F) is Effros measurable. Thus dp-open
balls, and dp-open sets, are all Effros measurable. []

(4.3). PROPOSITION. If X is Polish and § is any Suslin subset of F (for h,), with
Effros Borel structure B (S), then (X, B (X); 8, B(9)) is Pe-Suslin for any law P
on B (X).

Proor. This follows from Propositions 4.1 and 4.2.

Let QU be the class of all open sets in X. On U \ {X} we have the metric he
defined as the Hausdorff metric of complements:

heo(U, V) = h(X \ U, X \ V).

In the notation defined at the beginning of this section, we have ,V c U iff
X\U) c(X\ V). Thus
he(U, V) =inf{e >0: UcCV and ,V c U}.
Now A, has various properties which follow from those of A, on %,. For a
totally bounded metric e on X, we will call the s-algebra B (U \ {X}) of Borel sets
for hy in QU \ {X} the Effros Borel structure, and likewise for the Borel structure

induced on U by making X an isolated point. Then we have an induced
measurable structure on any subset V' C Q. We conclude from Proposition 4.3:

(4.4). PROPOSITION. If X is a Polish space, and V is any Suslin subset of U for Riey
with Effros Borel structure B (V), then (X, B (X); <V, B (V) is Pe-Suslin for any
law P on % (X).

Let X be a set and G a collection of real-valued functions on X. Let pos(G) be
the collection of all sets

pos(g) = {x € X : g(x) > 0},g €G.

Recall that by Lindelof’s theorem any locally compact separable metric space is a
countable union of compact sets.

(4.5). PROPOSITION. Let (X, e) be a locally compact, separable metric space and G a
collection of continuous real functions on X. Suppose we are given a o-algebra & of
subsets of G such that for each x € X, g — g(x) is &-measurable. Then the map
g — pos(g) is measurable from (G, &) to U with Effros Borel structure.

Proor. It suffices to show that for any open ¥V C X, {g € G: V C pos(g)} €
&.Letv=J o1 Kn with K, compact. For each n let 4, be a countable dense set
in K,,. For any ¢ > 0, let

G(n,e) = {g€G:g(x)>e forall xE€4,} €6.
Now V c pos(g)iff g € () . U G, 1/m). 11

Under the conditions of Proposition 4.5, if (G, &) is a Suslin measurable space,
then pos(G) is a Suslin set, and by Proposition 4.4, (X, B (X); pos(G), B (pos(G)))
is Pe-Suslin.
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5. Metric entropy and inclusion.

DErFINITION. Let (X, @, P) be a probability space and € c &. For each ¢ > 0
let Ny(e) :== N,(¢, C, P) be the smallest n such that for some 4, - - - , 4, € @ (not
necessarily in C), for every 4 € C there exist i, j with 4, C A C 4; and P(4;\ 4))
<.

Let N(¢) := N(e, C, P) be the smallest n such that C = (U 1< <, G for some
sets C; with sup{dp(4, B) : 4, B € G} < 2¢ for each j. Log N(e) is called a metric
entropy and log N,(e) will be called a metric entropy with inclusion.

Dehardt (1971) proved in effect that if N,(e, G, P) < oo for all ¢ > 0, and C is
P-EM, then

Pr{lim, ., sup,cd(P, — P)(4)| =0} = 1.

We recall that C is a G,BUC class if [i(log N(x?)? dx < oo (Dudley (1967b);
(1973), page 71). (Note that the L2 norm of 1, is P(4)Z, hence the x2) If C is the
collection of all finite subsets of [0, 1] and P is Lebesgue measure, C is not a
Donsker class although dp(4, B) = 0 for all 4, B € C. So hypotheses on N(e) will
not imply the Donsker property. The following sufficient condition on N,(e) is the
same as the above condition on N(e) for the G, BUC property. Note however that
if P(4,,) = m~7 with A,, independent for P, then C := {4,},,, is Donsker by
Theorem 2.1, while N,(3, C, P) = + co.

(5.1). THEOREM. If C is P-EM and [}(log N,(xz))% dx < oo then C is a Donsker
class.

ProoF. Since € is totally bounded for dp, it is enough to verify Theorem 1.2b.
Let 0 <& < 1. Since N(x)T as x|0, the hypothesis implies x log N,(x) — 0. So
there is a ¥ > 0 such that

(5.2) N,(x) < exp(e?/ (600x)), 0<x<y.
Take a > 0 small enough so that
(53) exp(—¢2/ (1800a)) < e/4.

The hypothesis on N, is equivalent to

1 1
Jollog N/(»))?y "7 dy < 0
and to
Zi51(27 1og Ny (27))? < 0.
Take u large enough so that
1
(5.4) Zisu(277log N,(279))* < & /64,
and such that
(5.5 50 exp( =242/ (9000(i + 1)%)) < e/32.
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Let 8, := 2" for r > u and r large enough so that §, < min(a, ). For k =
0,1,2,- -, let & = 8k):=8,/2=1/2¥*". Let m(k) = Ny(§,, C, P) and
b, = (2~ log m(k)).

Take sets Ay, * * * » Amgy @8 in the definition of Ny(§, C, P), so that for each
CeCandk=0,1,2,---, there are r(k) := r(k, C) and s(k) = s(k, C) with
Apay C C C Ay and  P(Apgpy \ Apry) < . Let By = B (C) = Appy \
A i1, s+ and Dy = D(C) = Apyy sy \ iy Then P(B,) < §, and P(D,) <
Ops1 <O

Let ny = nye) = e2/(25682). (Note that &, < a <¢’/1800, so that n, >
12,000/ — oo as €0.) For each n > n, there is a unique kK = k(n) such that

(5.6) 1< 88,n1/e < 1.

Then for each n, k = k(n), § = §,, each C € C, r = r(k, C), and s = s(k, C), we
have

(5.7) v,(Ay) — €/8 < v(Ay) — 017 < v,(C) < v,(4y,) + &/8.
We have
(58) Ivn(Aks(k)) - Vn(AOs(O))I

< 20<i<k|”n(Ais(i)) - ”n(A.-+1,s(i+1))|
< 20<i<kl”n(Bi)| + |”n(Di)|-
Let B, be the collection of all sets B = A, \ A;,, , or A;,, ,\ 4; with P(B) <§,.
Then for each C € ©, B(C) and D(C) € B;. The number of sets in B; is bounded
by
(5.9) card(B;) < 2m(i)m(i + 1).
We have log m(i) = 2'b?. Let
d; = max((i + 1)7%e/32, 4b,,,27"/%).
Then by (5.4),
(5.10) 2504 <e/8.
For each i < k = k(n), by (5.6), n18, > n38, > ¢/16. Thus by (5.10), d, < 2n35,.
Bernstein’s inequality (Bennett (1962)) gives for each B € B,
PinB = PT{IV,,(B)! > dx}
<2 exp(—a'f/ (2pq + d,-n_%)),
where 1 — ¢ :=p = P(B) <,
Thus P,, < 2 exp(—d?/(48)). Let M, = 4m(i)m(i + 1) < 4m(i + 1)? =
4 exp(2'*'b?, ). Then using (5.9) we have
P, = Pr{|»,(B)| >d, forsome B € B}
< M; exp(—d?/ (48)) = M, exp(—24d7/ (45,))
< 4 exp(2(26%,, — d?/ (48y))).
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Now by definition of 4}, 2b%,, < d?/(88,), and

P, < 4 exp(—2d?/ (85,)

< 4 exp(—2*7e2/ (8(32)%(i + 1)%)).
Thus by (5.5),
(5.11) SocickPin <e/8.
Now with k = k(n), § = §,, let
V, = sup{|»,(4s,) = v,(Ap)|: Ay, C Apsr P(Ai N\ Ay,) <8, r,5 =1, -+, m(k)}.
Let Q, == Pr(V, > ¢/8). Then by Bernstein’s inequality, and (5.6),
Q, < m(k)® exp(—e%647/ (26, + 8~ 'n "))
< m(k)* exp(—e2/ (1285, + 1288,))

< exp(2¢(2b7 — €%/ (2568,))).
Now forj =k + r,

262 = 2'"* log N,(27)
= 2*1(27 log N,(27))

< 2€%/300 by (5.2).
Thus

0, < exp(—2¢*7?/1800)
< exp(—272/1800) < ¢ /4

by (5.3) and choice of r.

If ¥, <e/8 then by (5.7), |1,(C) — v,(4; s, c)| < &/4 for all C € C. Then by
(5.8), (5.10) and (5.11),

Pr* {supc e dv,(C) = v,(Aoso, o)l > &/2} <e/2.
We also have
Py = Pr{sup{|r,(4¢;) — v,(Ag)| : P(Ag,0Ay;) < 38,} >e/4)
< m(0)* exp(—8216“/ (68O + s4‘ln‘%)).
For n > ny, as in (5.6), n"e /4 < 48, so
Py < m(0)* exp(— €2/ (1608,)).
Now by (5.2) and choice of 8, we have m(0)> < exp(2¢*/(6008,)), so
P, < exp(— €2/ (2508,)) < &/4
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by (5.3) since 8, < a. Thus, for n > n,,
Pr*{sup{|»,(C) = »,(D)| : C, D € C, P(CAD) < &,) >¢} <¢,
proving (1.2b) in this case. []

Note. If C is, e.g., the collection of all half-planes in R?, the sets A,; cannot be
chosen in C. In this case, for suitable P, the A4  can be chosen as intersections of
two half-planes.

We recall some definitions from Dudley (1974). Given a continuous function f
from the sphere $*~! := {x € R* : |x| = 1} into R¥, let I(f) denote the open set of
all y € R* \ range (f) such that in R* \ {y}, f is not homotopic to a constant map.
For a > 0 and M > 0 let G(k, a, M) be the set of all f which with all their partial
derivatives of orders < a are bounded in norm by M (as in Dudley (1974), page
229).

Let J(f) = I(f) U range (f). Let I(k, a, M) = {I(f): f €
Gk, a, M)}, J(k, a, M) = {J(f) : f € G(k, a, M)}. (To correct equation 3.2 in
Dudley (1974), put J(k, a, M) in place of I(k, a, M).)

If |f(8) —g(8)| <e for all § € S*~1, then I(f) c I(g) C J(g) C J(f): by
Lemma 2.1 of Dudley (1974). Also, J(f)* \.I(f) C (range f):.

I understand from R. Pyke that Sun (1976) has found a theorem along the
following lines. At this writing I have not seen his precise statements or proofs.

(5.12). THEOREM (Sun). For any law P on R*, k > 2, which has a bounded density
with respect to Lebesgue measure N, any M < + oo and a >k — 1, I(k, a, M) and
J(k, a, M) are Donsker classes for P.

PrROOF. Since « > k — 1 > 1, the proof of Theorem 3.1 of Dudley (1974) shows
that for some N = N(k, a, M) < + oo, A\J()* \I(f)) < Ne for all f €
G(k, a, M). Let T == N ess.sup(dP/dA\).

If fi,- -,/ € G(k, &, M) are such that for each f € G(k, a, M), sup{|f —
fI0): 0 € Sy < /T for some j, let d; =, I(f), A, = JF)'7,j =
l,- - -, r, to obtain N,(¢, C, P) < 2r, for C = I(k, a, M) or J(k, a, M).

Thus by Theorem 3 of Clements (1963) as in the proof of Theorem 3.1 of Dudley
(1974) the hypothesis on N, in Theorem 5.1 above holds.

Let d be the usual Euclidean distance on R*. For the distance s(f, g) ==
sup, d(f(9), g(8)), G(k, a, M) is a compact set of functions, for any a > 0, by the
Arzela-Ascoli theorem. The map g — I(g) is continuous from G(k, a, M) onto
I(k, a, M) with the metric h, as defined after 4.3 above, since if s(g,, g) = 0 and
e > 0, then for m large, I(g,) D.I(g) and ,I(g,) C I(g) as in Dudley ((1974),
Lemma 2.1, proof of Theorem 3.1). (Note however that g — I(g) is not continuous
for the Hausdorff metric 4,.)

So, I(k, a, M) is compact for k., and hence absolutely Borel. Note that all sets
in I(k, a, M) are included in a fixed compact set, so that there is no need to use a
totally bounded metric on all of R* to obtain the Effros Borel structure. Then by
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Propositions 4.4 and 3.2 above, I(k, a, M) is strongly P-EM. Then by 5.1 it is a
Donsker class.

Likewise, g — J(g) is continuous from G(k, a, M) onto J(k, a, M) with the
Hausdorff metric 4,, so J(k, a, M) is compact and absolutely Borel. By Proposi-
tions 4.3 and 3.2, J(k, a, M) is strongly P-EM and by 5.1 a Donsker class. []

In the unit cube of R¥ let R(k, a, M) be the class of sets defined by Révész
(1976), of the form

{x f;({xj}j;m) <X <gi({xj}j9ei)’ i=1---, k},

where f; and g;, each defined on the unit cube of R*~!, have partial derivatives of
all orders < « bounded by M in absolute value. Aside from differences in the
values of M, the classes |J y Rk, a, M) == R(k, ) and U Ak a, M) =
I(k, a) are different: for k = 2, I(2, 1) contains a set bounded by a “figure 8”
which is not in R(2, 1). I do not know whether R(k, a) C I(k, @). For P with
bounded density, one can show as in (5.2) that R(k, a, M) is a Donsker class if
a>k-—1 )

For any set U C R* let cno(U) denote the class of all open convex subsets of U.
The following result, in the case of the uniform Lebesgue probability on the square
I?, is due to Bolthausen (1976).

(5.13). THEOREM (Bolthausen). For any law P on R? having a bounded density with
respect to Lebesgue measure, and any bounded convex open U, cnv(U) is a Donsker
class for P.

Proor. We apply Theorem 4.1 of Dudley (1974) and its proof, and Theorem
5.1 above and its proof, as in Theorem 5.12. To see that cno(U) is P-EM we apply
4.4 as in the proof of Theorem 5.12, noting that cro(U) is compact for hy- Thus
5.13 is proved.

In R3, a collection cno(U) is not G, BUC (Dudley (1973), page 87, Remark), and
a fortiori not Donsker.

6. The two-sample case. We will call © 2-sample P-EM iff for any indepen-
dent empirical measures P,, and Q, for P, P,, — Q, is completion measurable into
(Dy(C, P), B,). Note that if C is strongly P-EM, it is 2-sample P-EM (let
by=---=b,=1/mb,,,=-++=b,,,=—1/n). Thus Propositions 3.2,
4.3 and 4.4 give conditions which imply that Suslin classes of closed or open sets
are 2-sample P-EM.

(6.1). THEOREM. Let (X, @, P) be a probability space and C a Donsker class,
C c @, with C 2-sample P-EM. Let {P,)} and {Q,} be independent empirical
measures for P. Then as m and n — oo,

E((mn)*(m + n)"3(P,, — 0,)) > £(G,) in D@, P).
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Proor. Since C is a Donsker class, it is G, BUC, and £(Gp)(T) = 1 for some
separable set T C Dy(C, P). According to Wichura ((1970), Theorem 2), there is a
probability space (R, &, p) with random variables A4,, and B, such that the
sequence {A4,} is independent of {B,}, 4, and B, are measurable into
(Dy(C, P), B,), £(4,) = (B, = B(n%(P,, —~ P)) for all n,A,,—» H as. as m —
o and B, — J as. as n— oo in (D(C, P), || - ||,) where R(H) = £(J) = £(G,),
and H and J are independent.

As noted in the discussion of almost uniform convergence in the introduction
above, since wW(H € T) = 1, sup.c4,, — H|(C) is actually a measurable random
variable, converging to 0 a.s. as m — oo, and likewise for |B, — J|. Let

D, = (m+ n)"%(n%Am - m%B,,).

Then
e((mn)2(m + n)"2(P,, = 0,)

= B((mn)fl(m + n)"%(m'%Am + P - n"%B,, = P)) = £(D,,,)-
Let

E,,=(m+ n)_%(n%H - m%.l), and

Fpy = (m + n)"3(ni(4,, ~ H) — m3(B, = J)).
Then D,, = E,, + F,,, £(E,,) = £(G,) for all m and n, and F,,, — 0, uniformly
on C almost surely, and almost uniformly in /*(C), as m and n — . (I do not

claim that F,, is measurable.) Now Theorem 6.1 will be a consequence of the
following, letting « = (m, n), Y, = D,,,and Z, = E,_ .

(6.2). LeMMA. Ler (S, d) be any metric space and Y,, Z, nets of random variables,
measurable into (S, B,), with d(Y,, Z,) =0 almost uniformly (we do not assume
d(Y,, Z,) is measurable) and £(Z,)— p as a— o, where p(T) =1 for some
separable T C S. Then £(Y,) — p.

PROOF. Let f be continuous and B,-measurable on S with sup|f| < 1. Given
e > 0, for each x € T take §, = 8(x) > 0 such that whenever d(x, u) < 36,, we
have |f(x) — f(u)| < &. By Lindel6f’s theorem, the open cover {B(x, 8,)},cr of T
has a countable subcover. So there is a finite set K T such that w(U(K)) > 1 — ¢
where U(K) = U __ B(x, 8,). Let g(u) = max(0, min(l, 2 —
min, ¢ x d(x, 4)/8,)). Then Ly, < g < lyy, where V(K) = U __, B(x,25)),
and g is continuous and 9B, measurable. Thus lim, Eg(Z,) = [gdp > 1 — ¢, so
for some g,

Pr(Z, € V(K)) > Eg(Z,) > 1 — ¢
for a > B. Let 6 :== min . ,4,. For some y > B, we have |EAZ,) — [f du| < € and

Pr*(d(Y,, Z,) > §) < ¢ for a > v. Then, except on some event W with Pr(W) <
2¢, we have Z, € V(K) and d(Y,, Z,) <4, so that for some x € K, d(Z,, x) <
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28,, d(Y,, x) < 38, and |f(Y,) — AZ,)| < 2e. Thus |EAY,) — Ef(Z,)| < 6e, so
|EAY,) — [fdul <7Te. [0

If X = R' and C is the class of intervals, sup, < ¢Gp(4) has the same law for all
continuous P. Likewise, £(sup, o Gp(4)|) is the same for all P without atoms.
Then, results like Theorem 6.1 apply to testing whether two unknown continuous
distribution functions, from which finite samples have been taken, are equal. If
X = RF for k > 1, such laws depend on P, but perhaps they are the same for more
restricted classes of laws P.

Limit theorems in the literature for the two-sample case have often been stated
under restrictive conditions such as m/n converging to a positive constant. Theo-
rem 6.1 shows that no such restriction is necessary. The proof will give rates of
convergence in the two-sample case if one has them (in a suitable form) in the
one-sample case.

7. Universal Donsker classes and Vapnik-Cervonenkis classes. Given a set X, a
collection C of subsets of X will be called a universal Donsker class (UDC) iff it is a
Donsker class for every probability measure on the o-algebra generated by C.

ExampLes. If X = R*, the class of all rectangles I, ;¢,la;, b] is a UDC
(Donsker (1952), for k = 1; Dudley (1966), for k > 1).

DEFINITIONS.  Given a class C of subsets of a set X and a finite set F C X, let
AY(F) be the number of different sets C N F for C € C. For n = 1,2,---, let
mS(n) = max{AX(F) : F has n elements}. Let

V(@) = inf{n : m®(n) < 2"}
=+ if m®n)=2"Vn.

Vapnik and Cervonenkis (1971) introduced AS, m® and V(C). If m§(n) < 2" for
some n, i.e., if ¥(C) < + oo, we will call C a Vapnik-Cervonenkis class (VCC).
Here is the main result of this section:

(7.1). TueoreM. If C is a VCC and for some c-algebras @ D C in X and S in C,
(X, @; C, &) is Pe-Suslin, then C is a Donsker class for P.

Before proving Theorem 7.1 we will go through some other facts. First, recalling
Proposition 4.5, here is one way to generate VCC’s. It is related to results in Cover
(1965).

(7.2). THEOREM. Let G be any m-dimensional real vector space of real functions on
a set X. Then V(pos(G)) = m + 1 (or, if card(X) = m, pos(G) contains all subsets
of X).

ProoF. First, suppose 4 C X and card(4) = m + 1. Take the map r : G — R4
which restricts functions in G to the set 4. Then r, as a linear map of an
m-dimensional real vector space into one of higher dimension, cannot be onto. For
the usual inner product (- , - ) on R?, let v # 0 be a vector orthogonal to (G). We



CLT’S FOR EMPIRICAL MEASURES 921

may assume 4, = {x € 4 : v(x) > 0} is nonempty, since otherwise we can take
— v (thanks to M. Artin for this remark). If 4, € pos(G), take f € G with
{f>0}=4,. Then (r(f),v) >0, a contradiction. So A, & pos(G) and
V(pos(G)) < m + 1.

On the other hand, dim(G) = m implies that for some subset 4 of X with
card(4) = m, (G) = R4, so all subsets of 4 are of the form B N 4, B € pos(G),
and m < V(pos(G)) = m + 1. []

One example of a finite-dimensional G on X = R¥ is the collection of all
polynomials of degree < d for any fixed d < .

Vapnik and Cervonenkis (1971) proved inequalities relating m&(n) to its values
for the special case of half-spaces of R¥, as follows. Let

(7.3) nCoai = Ef,o(‘]JY), where (]j\’) =0 for j>N.

Recalling the notation ,C, :=(N ) for the number of k-element subsets of an
N-element set, yC, is the number of subsets with ar most k elements.

By r-flat 1 will mean a linear variety of R* of dimension 7, i.e., a set of the form
{x € R*: A(x — v) = 0} where v € R and 4 is a k X k matrix of rank k — r. A
(k — 1)-flat in R* will be called a hyperplane.

Let JC be the collection of all half-spaces {x : (v, x) > ¢} for x, v € R¥, v # 0,
and ¢ € R. Let JC(0) be the subcollection of half-spaces bounded by hyperplanes
through 0 (i.e., with ¢ = 0). Let 1,(N) be the maximum number of open regions

into which R¥ is decomposed by N hyperplanes H, - - - , Hy of Hy. Then the

maximum is attained for H,, - - - , Hy in “general position,” i.e., if
H={x:(x0)=c), j=Le N,

then any k or fewer of the v; are linearly independent. Schléfli (1901) shows that

(74) M(N) =nCes

Steiner (1826) had proved this for k < 3. If F is a set of N points in R¥, then

(75) N(F) < 22 N T 1) = 21 Can

and equality is attained if the points of F are in general position, i.e., no k + 1 of
them are in any hyperplane (Cover (1965), page 330; Harding (1967); Watson
(1969)). One also has

(7:6) AYO(F) < 2y_Cgpoy

with equality iff every nonempty subset of F with at most k elements is linearly
independent (Schlifli (1901), page 211; Cover (1965), noting varying definitions of
“general position” on page 230; Harding (1967)). More generally, if for a fixed
Jj-flat A, JC()) is the set of all half-spaces bounded by hyperplanes including 4,
then

(7.7) AXO(F) < 2y _,Cqy
(Harding (1967)).
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Without using (7.4)-(7.7), but directly from the definition (7.3) and the re-
currence relation

(7.8) vCk =n-1Cck + n-1Cci-1s
Vapnik and Cervonenkis ((1971), Lemma 1) prove:

(7.9). THEOREM (V. apmk-éervonenkis). If X is any set, C any collection of subsets
of X, and V(C) < v, then mS(n) <yC, for all n > v.

They note that ,C_, < n* + 1. (Their 1974 book, pages 214-219, shows that
m(n) < +C<me@—-1- Note: in the 1971 paper and the 1974 book, pages 97 and 214,
are three disagreeing definitions of “®(k, n).”) They prove that for n >k > 1,
2C<i < 1.5n%/k!. Hence

(7.10) for n>0=V({C) > 1,
m®(n) < 1.5n°71/ (v — 1)1 < n®

For n <v, mS(n) =2" < 2° < n® If v =0, C is empty. Thus (without using
(7.10)) we have: :

(7.11)  For any collection C of sets, m(n) < n¥©  forall n>2, and
min) <n"© +1 forall n>0.

Now for any sets 4}, - - - , 4,,, let €(4,, - - - , A,,) denote the algebra of subsets
of X generated by 4,,- - - , 4

m*

(7.12). PrROPOSITION. For any VCC € and any k < + oo,
@k(@) = U {@(Al,' ‘e ’Ak):Al’. ¢ ,Ake@} iSdVCC.

ProoOF. By induction, we may assume k = 2. Let @ = {4 N B: 4, B € C}.
Then m®(n) < mS(n)? < (n"© + 1)> < 2" for n large, so D is a VCC.

We may assume ¢ €C and X € C. If S == {4A\B:4,B € C) then S is a
VCC as above. A finite union of VCC’s is likewise a VCC. Now every set in
@(4, B) is a union of some of the four atoms A N B, A\ B, B\ 4, and (X \ 4)\
B. Unions of at most four sets can be treated also as above, completing the proof.

(7.13). LemMA. If (X, @, P) is a probability space, C c &, C is a VCC and
v = V(C), there is a constant K = K(v) (not depending on P) such that for
0<e< %,

N(e, C, P) < Ke™°|ln ¢|°.

PROOF. Suppose A,---,4, €C, and P(4; A4)) > ¢ for i #j. We may
assume m > 2. If n > 2 is so large that m(m — 1)(1 — ¢)" < 2, then Pr{P,(4, A4))
>0 for all i #,} > 0. In that case, m < mS(n) < n® by (7.11). If we take the
smallest n for which m*(1 — &)" < 2, thenm*(1 —¢)*"' >2son— 1< Q2lnm —
In2)/|In(1 — €)|, n < 2 In m)/e, and m < (2 In m)% ~°.
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For some my = my(v) < + o0, (2 In m)* < m'/®*D for m > m,, and then m <

e "', solnm < (v + 1)|In ¢|. Hence

m < K(v)e *[lnegl> for 0<e

1

<3

if K(v) = max(my, 2°*!(v + 1)°). Thus, choosing at most m points > € apart, the
balls of radius ¢ with these centers cover C, proving Lemma 7.13.

Now to prove Theorem 7.1, given a probability space (X, &, P) and VCC
C c @, with (X, &; C, §) Pe-Suslin for some &, € is totally bounded for d, by
Lemma 7.13, and P-EM by Proposition 3.2, so it will suffice to verify 1.2b.

For any § >0, let C(8) ={4A\B:A4,B € C, P(A\ B) < §}, D) =
{({4,B) € € X C : 4\ B € C(8)}.Note C(8) c C(1).

Let df? be the product pseudometric on C X C,dP({4, B), {C, D)) =
dp(A, C) + dp(B, D). Then D (8) is closed in € X C for d. By (7.13), (C, dp) is
separable, so %) (8) is measurable for the product o-algebra & X §.

We can define »,(-)(w) for w in a product X of copies of (X, &, P),

w = <xl’ Xyttt >’ x(])(“’) =X
For any r > 0, let
Es = {{w, 4, B) : |,(4 \ B)(w)| >r, {4, B) € D(8)}.
Then as in the proof of Proposition 3.2, Ej, is jointly measurable in the Suslin
measurable space (X° X C X €, @° X & X &). The projection of Ej, into X ® is
measurable for the completion of P®. Thus supcegp)|¥,(C)| is a measurable

random variable. By 1.2b, it will suffice to prove that for any ¢ > 0 thereisa é > 0
and an n, such that

Pr{supcee@)?,(C)| >€} <e  for n > n,

By Proposition 7.12, (1) is a VCC. By Lemma 7.13, take a w with V(C(1)) := v
<w< + o andN < oo such that N(y/2, €(1), P) < Ny " for 0 < y < 1. Given
a 0, 0<8d< 1, to be chosen later, for each j=0,1,2,- -, take sets
Ay, - v Ay € C(8) such that for each 4 € C(8), P(4A4;) < 8/2j for some i.
Then we can take m(j) < N2V /8%, m(0) = 1, and 4, = ¢.

For each integer j > 1 and 1 < i < m()), take a k = k(J, i) such that

P(A; A4, ) < 28/2.
Let C; be the collection of all sets A\ Bor B\ A4, A = A;, B=A;_, ;. , There

are at most 2m(j) such sets, all with probability < 2§/ 2’j Take O < e < 1. Then
P, == Pr{|»,(4)| > e/j for some A € C;} < 2m(j)sup{Pr{|v,(4)| > e/j* : P(4) <
28 /2}}. Given p < 28/2/, we have by Bernstein’s inequality (Bennett (1962), or
Hoeffding (1963))

E,, = E(np + £n2/j n, p) exp(—ez/ (2]pq + j%n %))

< exp(—ezni/ (4j4n782_j +j2€)).
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We will treat this by cases according to which term in the denominator is larger.
In case 4/138 > e, we say j € J(n, ¢, §). Then E,, < exp(—¢&’2//8;%). If

J & J(n, ¢ 8), then E;,, < exp(—en7I /2j%). Setting B, = B(np — en? / jl'z, n, p) we

have the same upper bounds for B,,, just shown for E,,,. Let j(n) := [n?]. Then

ZicjcimP; <S8+ S,  where
Sl = 22j<j(n),j€](n, €, 5)N2jw6 - exp( - 822j/8j48)9
Sz = 22j<j(n),j$.l(n, €, 5)N2jw8 v exp( - en%/2j2).
Now S, is a partial sum of a convergent infinite series, whose value approaches 0
as § — 0 for fixed ¢ and w. Thus for some 8,(¢) > 0, S, <¢/3 for 0 <& < §,(¢).
- 1
We now choose & = §,(¢). Next, S, < 2nIN 2w —w exp(—ens/2) -0 as n — o0,
so for some ny(8), S, < &/3 for n > ny(9).
Let D,; .= A, ;- Since Ay = ¢, we have
2u(Da)] < ZX2i|p,(C)| + [2,(D,)]
for some C, and D, € C,. Then since 3 ,,,,j % = 7?/6 < 2, we have.
(7.14) Pr{max,|»,(D,)| > 4e} <2¢/3, n > ny9).
Let
D, = {<4, By € D(8) : P(4\ B) AD,)) < §/2"}.
The functions {4, BY) — P((4A \ B)\ D,;), {4, B) - P(D,;\ (4 \ B)), and hence
(A, BY - P((A \ B) AD,,), are all continuous on the separable pseudometric space
C X C for d¥, thus § X § measurable, so D,,, € S X §. For each j and i, the
map
<(0, A, B> e d Sx(j)(w)((A \ B) \ Dm')
is measurable (8° X & X &) by the e-Suslin assumption. Thus the function
<w’ A> B> - pn(w)((A \ B) \ Dni)
is jointly measurable. Likewise, so is
<(0, A> B> - Vn(w)(Dm' \ (A \ B))‘
As in the proof of Proposition 3.2, since 9,5, € S X S,
w — sup{»,(w)(D,;\ (4 \ B)) : {4, B) € D5}

is completion measurable for P*, and likewise if sup is replaced by inf or
sup{|- -+ |: -+ },or D, \(4\ B)by (4 \ B)\ D,,. For each E € C(8) there is
some i such that dp(E, D,;) < 8/2/™. Let B ,5 = B (n, §) be the collection of all
sets F= E\ D, or F= D, \ E where E € C(8) and P(F) < §/2™. Now w—
sup{|v,(F)| : F € B} is P -completion measurable. Let

0, = Pr{sup{|r,(B)| : B € B,5} > ¢}.
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Then by (7.14),

(7.15) Pr{sup, cew)|v.(4)] > 6e} < 2e/3 + Q,.
Let

Cpsi = (<0, 4, By €EX® X D5, : ,((A\ B)\ D,)) > ¢}.

Then C,,; is measurable (8° X & X §). By Theorem 3.3, let w — {C;;, C;,>(w) be
a universally measurable selector for C,;, mapping a universally measurable
subset of X into %,. Let Ci(w) = (C;;(w) \ Cyp(w)) \ D,;. Then w — P(C(w)) is
universally measurable, and so is w — »,(C(w)).

Uhlmann ((1966), Satz 6) and Jogdeo and Samuels (1968) showed that the
median of a binomial distribution is within 1 of its mean. Thus for any fixed set
A €&, Pr(v,(4) < n‘%) >3. Let », and », be two independent copies of the
normalized empirical measure n%(P,, — P), with »,(-)(w) and »,(-)(«’) defined for
{w, w’) in a product space X *® X X * with product probability. We write “3Cy(w)”
iff C(w) is defined, i.e., iff 3<4, B) : {w, A, B) € C,4, so that »,(C(w)) > &.
Then for each i, {w : 3C(w)} is a universally measurable event. If 3i3C(w), let
i(w) be the least such i, and write “Ji(w).” Then since v, is independent of w, we
have

(7.16) Pr{3i(w) and ¥(Cww) < n=3} > Pr{3i(w)}/2.

Likewise, if we replace (4 \ B)\ D,; by D,, \ (4 \ B) in the definition of C,z,
we get another measurable set D, with a selector {D,,, D,,>(w). Let D (w) :== D,
\ (D, \ D,,)(w). Let d(w) be the least u, if one exists, such that 3D, (w). Then
Pr{3d(w) and v,(Dy,(w)) < n“%} > Pr{3d(w)}/2.

Replacing “> €” by “< — ¢” in the definition of C,, we get a measurable set
E,s with a selector <{E,, E,), E(w) = (E;; \ Ep) \ D,;, and let e(w) =
min{i : 3E(w)}. Doing the same for D,;, we get {F,,, F,,>, F(w), and f(w) =
min{u : 3F,(w)}. Then
(7.17) Pr{3e(w) and #(Ew) > —n~7} > Pr{3e(w)}/2,
and likewise for f(w).

Let X(1), - - -, X(2n) be independent and identically distributed with law P,
v, = ni(P, = P),v, = ni(P, — P), where P, = n"'S, ;20 As in Vapnik
and Cervonenkis (1971), conditional on P,, = P, + P,, the distribution of

{X(1), - -+, X(2n)) is obtained by averaging over all permutations of the integers
1,2, - -, 2n. For fixed P,, and a set A with r,(4) = 2nP,,(A4),

Pr{nP,(A4) > s, nP)(4) < t|P,,}

is the hypergeometric probability of choosing at least s white balls and at most ¢
black balls in a random sample of r := r,(4) balls without replacement from an
urn containing » white and n black balls. For fixed s and ¢, this event is equivalent
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to drawing at least s white balls if » < s + ¢, or at most ¢ black balls if r > s + ¢.
Thus the probability is maximized when r = s+ ¢, and then it is H:=

— n "\ /(2n
Hermam =3, )7 )/(% )'.
On the event in (7.16), s > np + en2 and ¢t < mp + 1 where p .= P(4), so
1
s —t>enz— 1> 2 for n large enough. Hence, by an inequality of Uhlmann

(1966), hypergeometric tails are smaller than corresponding binomial tails; specifi-
cally H < E(s, n, (s + t)/2n). Then by Lemma 2.7 above, H < ((s +

1)/2s)y exp((s — t)/2). Now
s-In((s + 1)/2s) = s-In(1 = (s = £)/25) < — (s — 1)/2 — (s — £)*/8s,
so H < exp(—(s — t)?/8s). The same inequality holds for s > np — 1 and 7 < np
— en?, as in (7.17), if n is large.
By (7.11), A%(X(1), - - , XQn)} < @), A®O(X(1), - - -, X@n)} < 2Q2n),
and using (7.16) and (7.17),

Qne = E(Pr{sup{lpn(B)I :B € %nG} > 8|P2n})
< sup(Pr{sup{|»,(B)| : B € B,5} > €| P,,})

< 8(2n)* sup(H) < 8(2n)* sup(exp(— (s — 1)’/ (8s)))

where the supremum is over values of p < §/2/®, j(n) = [n3], and either s > np +
1 1 .

enzandt <mp+ l,0ors >np — 1 and ¢ < np — en3. The function s — (s — £)?/s

is increasing for ¢ < s, so for n > 2¢~2 we have

0 < 8(2n)*° exp(— (en% - 1)2/8(np + sn%))
< 8(2n)** exp( —&e%n/32(nd /2™ + en%)) -0

as n — oo for fixed ¢ > 0,8 > 0. So for some n, = n,(8, €), 0, <¢/3 forn > n,.
Hence by (7.15), for 8§ = 8,(¢) and n > max(ng, n,)(8, €), Pr{|»,(4)| > 6¢ for some
A € C(8)} <&, proving Theorem 7.1.

(7.18). CoROLLARY. If X is a Polish space, C is a VCC in X, and C is a Suslin
measurable collection of closed sets, or of open sets, for the Effros Borel structure, then
C is a universal Donsker class.

Proor. We apply Theorem 7.1, Proposition 3.2, and 4.3 or 4.4. []

Note also that the VCC’s of open sets given by Theorem 7.2 (and /or their closed
complements) are Suslin by Proposition 4.5 if X is locally compact and separable,
and G consists of continuous functions.

If P is Lebesgue measure on [0, 1] and C = {{x} : x € E} where E is non-
measurable, then € is a VCC but not P-EM. In this case, € can be enlarged to the
set of all singletons, a VCC with good measurability properties. We may ask



CLT’S FOR EMPIRICAL MEASURES 927

whether any VCC can be enlarged in such a way. The following shows that closure
for the Hausdorff metric may lose the VCC property.

(7.19). PropositiON.  In [0, 1] there is a VCC C, consisting of finite sets, whose
closure C for the Hausdorff metric contains all (closed) sets in [0, 1].

PrOOF. We enumerate the primes: p, = 2,p, =3,p; = 5,... . Let C consist
of all finite sets 4 = {x;,- - -, x} with x; €[0, 1] such that for each j =
L, k—1,x, =pp9x/pji? for some integers m(j) and n(j). Then for any
set E with 3 elements, if E C 4 € C, then E = {x,, x,, x,} for some x; as above.
By unique factorization, whenever x, € B € C and x, € B, then x, € B so
{x,x,} # B N E. Hence C is a VCC.

For each j, the set of rationals of the form p;;_,/pj; is dense in ]0, oo[ (since their
logarithms are dense in R: for any irrational £ the multiples m§ are dense mod 1).
Thus any finite set {y,, - - -,y } C [0, 1] can be approximated as well as desired
by some {x,,- - -, x.} € C. []

For classes C with V(C) = + oo, it may still happen that A X, - - : , X,) < 2"
with high probability. Then, even if © is not a P-Donsker class, one may use A®in
proving that sup..qP, — P|(C)—0, as in the original work of Vapnik and
Cervonenkis (1971). Steele (1977) has substantial further results along these lines.

Acknowledgment. Many thanks to a referee for finding an error in an earlier
version of Theorem 5.1.
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