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A STRONG LAW FOR VARIABLES INDEXED BY A PARTIALLY
ORDERED SET WITH APPLICATIONS TO ISOTONE
REGRESSION!

By F. T. WRIGHT
University of Missouri-Rolla

In studying the asymptotic properties of certain isotone regression estima-
tors, one is led to consider the maximum of sums of independent random
variables indexed by a partially ordered set. An index set which is a sequence of
B dimensional vectors, {#,}%~,, and the usual partial order on Rg, the B
dimensional reals, are considered here. The random variables are assumed to
satisfy a condition equivalent to a finite first moment in the identically distrib-
uted case and are assumed to be centered at their means. For 4 C Ry, let S,(4)
denote the sum of those random variables with indices #, € 4 and k < n. It is
shown that if the sequence {1, } satisfies a certain condition, then the maximum,
over all upper layers U in Rg, of S,(U)/n converges almost surely to zero. As a
corollary to this result one obtains the strong consistency of this isotone
regression estimator. If the sequence {7} is a realization of a sequence of
independent, identically distributed, B dimensional random vectors and if the
probability induced by such a vector is discrete, absolutely continuous or a
mixture of the two, then the condition on the sequence {,} is satisfied almost
surely. Some nondiscrete, singular induced probabilities of interest in these
regression problems are considered also.

1. Introduction. Let {z,} be a sequence of points in A = x2 (a, b) with
-0 <g<b<owfori=12---,p, and let {X,} be a sequence of indepen-
dent random variables which are centered at their means. The variable X is to be
thought of as associated with the point #, for k = 1,2, - - . For 4 C A let

S, (A) = Z(k:k<n neayXi

with 35 = 0. If »,(4) = card {k : k <n, t, € A} - 00 as n — o and the random
variables X, are identically distributed, then the strong law of large numbers
ensures that S,(4)/7,(4) — 0 a.s. It is of interest to consider M, = max ,c,S,(4)
where @ is a collection of subsets of A. Under what conditions does M, /n — 0 a.s.?
Some restriction must be placed on @; for if the #’s are all distinct and & is the
power set of A, then M, = 3% _,X,* where X, = max(X, 0). (To see this, fix w in
the underlying probability space and consider 4, = {#, : X;(w) > 0}.) In this case,
assuming the X, are identically distributed, M,/n — E(X,") a.s. and E(X;") >0
unless the X, are degenerate at zero.
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The regression application which has motivated this investigation suggests that
we consider for @ the collection of all upper layers, which we now define. Let < be
the usual partial order on R, the B dimensional reals, that is, (55, 55, - - * , 8p) <
(ti, 1y, + - -, tg) provided 5, < ¢, for i =1,2,-- -, B. Let U CA. U is called an
upper layer if + € U whenever ¢t € A, s < t and s € U; we reserve the symbol U,
with or without subscripts, for upper layers and Q for the collection of upper
layers. For the remainder of this discussion we take @ = QL. For this choice of @,
the case B =1 has been considered. Theorem 6.1 of Brunk (1958) shows that
M,/n —0 as., if the X,’s satisfy an rth order Kolmogorov condition with r > 1.
Lemma 1 of Hanson, Pledger and Wright (1973) shows that the variables need not
have finite second moments. In particular, they have shown that

0 F(y) >0 as y—>oo and I=f°°y|dF(y)|< 00
0

suffices where F(y) = sup, P[|X,| > y] for y > 0. Integrals like the one in condi-
tion (1) are to be interpreted as Lebesgue-Stieltjes integrals with respect to the
measure determined by the nondecreasing function F. (A sequence of random
variables is said to satisfy (1) if its tail function F does.) There are sequences of
variables which satisfy the rth order Kolmogorov condition and not (1) and vice
versa. However, we use condition (1) because, in the identically distributed case, it
is equivalent to E|X,| < oo. Of course, implicit in Lemma 1 of Hanson et al. (1973)
is the apparently well-known result:

THEOREM 1. If {X,} is a sequence of independent random variables which are
centered at their means and satisfy (1), then n™'S%_ X, — 0 a.s.

* In the case being discussed, 8 = 1, Makowski (1973) has given some law of the
iterated logarithm type results for M,. To see that the results mentioned above
apply to M, a sequence of order preserving permutations needs to be constructed
from {#,}. This is done on page 886 of Makowski (1973).

If B > 2, conditions must be imposed on the sequence {#.} to obtain the desired
convergence. Consider the following example: let =2, let A= R,, let the variable X,
be identically distributed and let the £, = (£, #?) be distinct and lie on the

negative 45° line; that is, 2 = — #). Fort € A, let U(f) = {s € A : t < 5}. Then
for any n and any nonempty 4}, a subset of 4, = {¢, ¢, - - - , ¢,}, the upper layer

U e A",U(t) contains 4 but none of the clements in 4, — 4F. Hence, M, =

21Xt as before and so M,/n does not converge to zero unless the X,’s are
degenerate. '

In Section 2, assuming (1), conditions are imposed on {#,} which ensure that
M,/n—0 as. and these results are applied in Section 3 to give the strong
consistency of a certain regression estimator. In the regression problems consid-
ered, the £, = (¢, 12, - - -, £{P)) are to be thought of as values of the so-called
independent variable and will be referred to as observation points. In some
situations they may be the values of a sequence of B-dimensional random vectors,
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{T.}. Hence, if the T, are independent and identically distributed as P, a
probability measure on R,, we would want the conditions imposed on the sequence
of observation points to hold for {7} with probability one, at least for a large
collection of probability measures P. In Section 2, it is shown that the desired
strong law holds for {#} obtained in this manner if P is discrete, absolutely
continuous or a mixture of discrete and absolutely continuous probabilities. The
two-dimensional example given above shows that the strong law cannot hold for
such {#,} with P an arbitrary singular probability. However, certain nondiscrete,
singular probabilities of interest in the regression setting are considered. The
primary emphasis here is on stochastic sequences of observation points, that is,
sequences {4} which are realizations of a sequence of random vectors {7}.
However, the results will be stated first for deterministic sequences and then the
conditions imposed on {#,} will be shown to hold almost surely for certain {7}

We now describe the isotone regression estimator which has motivated this
investigation. Suppose that for each + € A C R, there is a univariate probability
distribution D(f) with mean pu(¢) and suppose that u(?) is isotone with respect to <,
that is, u(s) < u(?) if s < t. Let w(¥) be a positive weight function defined on 4, for
k=1,2,---, let Y, have distribution D(#,) with #, € A, and let Y}, Y, - - - be
independent. The variable Y, is to be thought of as an observation taken at the
observation point #, and w(z,) is the weight to be associated with this observation.
Based on the first n observations, Brunk (1958) proposed the following estimator of
w(t,) with k < n:

(2 () = max(y:,e U)min{ U’:tkEU'}Avn(U - U),
where

2{j<n:t/eB}w(tj))j‘
2{j<n:tjeB}w(tj)

for BN {t,, 4, - -, t,} # . This estimator is isotone on {#,, t,, - - - , 1,} and we
let i, denote any extension to A which is isotone on A.

For B > 2, the consistency results obtained for fi, are a strengthening of
previous results. The rate of convergence given in Wright (1976) could be com-
bined with the Borel-Cantelli lemma to give the almost sure consistency of f,.
However, the result giving the desired rate of convergence requires |, &y2|dF(y)| <
oo rather than (1). More significantly, for stochastic observation points, which are
independent and identically distributed as P, the results given here apply to a much
larger class of P’s than those in Hanson et al. (1973), Robertson and Wright (1975)
and Wright (1976). To show that the rates of convergence given for fi, in those last
thrée papers still hold under the assumptions on {#} considered here, the rate at
which P[M, /n > €] converges to zero is considered in Section 2. '

Smythe (1973, 1974) has considered strong laws for sums of random variables
indexed by partially ordered sets. In the earlier work, the index set was taken to be
the positive integer lattice on R, and in the later work the set is assumed to be a

Av,(B) =
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“local lattice.” (See his Definition 2.1.) In either case, there are only a finite
number of elements in the lattice less than or equal to any given element. This is
too restrictive for our purposes, because the #,’s must be dense in A if the regression
estimator is to be consistent.

2. A strong law. Throughout this section we assume that the X, are indepen-
dent random variables, which are centered at their means and satisfy (1). With
S,(+) and M, defined as in Section 1 we impose conditions on the sequence {#,}
which imply that M,/n — 0 a.s. For A C A define

M, (A) = max,S,(U N A4).

PROPOSITION 2. Let A be a fixed subset of A. If for each € > 0 there exists a set
B C A with lim sup,,_, »,(B)/n < eand M, (A N B)/n—0 as., then M, (A)/n —
0 as.

ProOF. First observe that E|X,| = [§°x|dP[|X,| > x]| < I and that I < oo by
(1. (Recall, I = [§x|dF(x)| and that integrals of the form [g(x)|dF(x)| are taken
with respect to the Lebesgue-Stieltjes measure determined by the nondecreasing
function- F.) Hence, F*(x) = sup, P[|| X,| — E|X|| > x] < F(x — I) for x > I and
so F* satisfies (1). (For future reference observe that, if the sequence { X} satisfies
(1) and {/.} is bounded, then {X, + /.} also satisfies (1).) With ¢ > 0, fixed,

Mn(A N B)/n < (Vn(B)/n)(Vn(B))—lz{k:k<n,tk<B}|Xk|'

If v,(B) > o as n— oo, then applying the strong law given in Theorem 1, we
obtain lim sup, , . M,(4 N B)/n < Ie as. If »,(B) is bounded then lim
sup, M, (4 N B)/n=0 as. Since M,(4) < M,(AN B)+ M,(4N B°) and
since ¢ was arbitrary the desired result follows.

It is convenient to consider those points ¢ for which lim sup,_,»,({t})/n is
positive or zero separately. For stochastic observation points, which are indepen-
dent and identically distributed as P, this first type of points would correspond to
the possible values in the discrete part of P. Let B, = {#.: lim sup,_, v, ({#})/n >
0}. At first it might seem that no conditions need to be placed on the elements of
B, since »,({t}) - oo for each ¢ € B, (which together with (1) implies that the
strong law holds at each such 7). However, for infinitely many » there may be a
substantial number of # with &k < n which occur only once in ¢, #,, - - - , ¢,. If the
points {#,} are such that any subset of {#,: k =1,2,- - - } can be included in an
upper layer without including an element of {#, : k = 1,2, - - } not in the given
subset, then M,(B,)/n need not converge to zero. In fact, in the example that is
given.below lim inf, »,({#,})/n >0 for k=1,2,--- but M,/n = M(B,)/n
does not converge to zero in probability.

ExaMpPLE. Let {s,} be a sequence of distinct points with s; and s, unordered for
eachj and k with j # k. (For instance, let 8 = 2, A = R,, and let each s, be on the
negative 45° line.) Let {# } be a sequence of points with £, € {5, : k =1,2,- - - }
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and lim inf,_, »,({s;})/n > Oforj =1,2,- - - . (If {7} } is a sequence of indepen-
dent, identically distributed random vectors with support {s, :k=1,2,- - - },
then, with probability one, {7} } is such a sequence.) From {7, } a new sequence is
constructed with #;,_, = ¢ forj = 1,2, - - - . Next the #;; are chosen to be distinct
forj=1,2--- withty; €E{s, :k=12,---}—{t),8,- -+, a} for 2* <2j
<2**'anda =0,1,2,- - - . Letting »,(4) denote the function card {j <n: €

A} defined for 4 C Ry, we see that lim inf, , v({5})/n>0forj=1,2,---
and that card {j<n:y({f})=1}/n>; for n=2*"" and a=0,1,- - .
Hence, Mya + 1 (B,)/2°*' > 330 X, a5 /2% —,E(X[")/4 if the {X;) are
independent and identically distributed.

The crucial elements in the example were the ordering relationship among the
observation points and the fact that

lim sup,_, card{j < n:v({f}) <M}/n>0

for some M positive. (Observe that inf, ., E(X; + X, + - - - +X,)* > 0 for
{X,} independent, indentically aistributed, nondegenerate and centered at their
means.) Thus this example provides a partial converse for the next theorem.

THEOREM 3. If the sequence {t,} satisfies the following:
(3) card{k<n:t € Bandv,({t,}) <M}/n—>0 for M=1,2,--,
then M,(B;)/n — 0 a.s.

Proor. If card (B,) < oo the conclusion is obvious and so we suppose card
(B,;) = oo and show that lim sup,_, . M,(B,)/n can be made arbitrarily small with
probability one. Let ¢ > 0, let M and K be positive integers to be chosen later, let
"M*=M-K and let By., = {4 : k <n,({t)) < M*). Since M,(B,) is
bounded above by the sum of

Vn = EIEB,,nBM-,"(Sn(t))+ and Wn = ZtEBdnB,f,-.,,(Sn(t))‘F ’
we consider V,/n and W,/n separately. Setting Sy(4) =2, ., en(X" —
E(X;")) for A C R, and recalling that 0 < E(X,*) < E|X,| < I = [§y|dF(y)|, we
have
V,/n < S¥B,;N By, ,)/n+ I-card{j <n:t €B,;N By ,}/n
= S¥(B,)/n — Sx(B, N Byys )/ + o(1).

Clearly {X,*} satisfies (1) since {X,} does, and since E(X,") is bounded {X," —
E(X")} also satisfies (1). So S¥(B,)/n — 0 a.s. by Theorem 1. By relabelling and
applying Theorem 1 again, we will show that the second term in the above
expression converges to zero almost surely. Let n, be the smallest integer for which
B, () Bije ,, # J; then there exist 1 < k; <k, < - -+ <kpp <kppoyy = ny With
4, =t, fori=12,---, M* Set Z, = X - EX )fori=1,2,- -+, M*+ 1.
Denote by n, the next integer after n, at which another summand (or summands)
occurs in S¥(B; N By ,), and if ¢, = ¢, denote this summand by Z,.,, (or if
t,, # t, denote these summands by Zye 5, Zye 3, * * * 5 Zope ). Continuing this
process we obtain an infinite sequence of independent random variables which are
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centered at their means and satisfy (1). Next observe that |S¥(B, N Bjp ,)|/n <
|S*(B; N Bi )|/va(B; N Bipe ,) and that the latter is a subsequence of
™ ,Z;/m which converges almost surely to zero. Hence, V,/n — 0 as.

In considering W,, we denote by s,,s,, - - - the distinct points in By, in the
order in which they become elements in Bjy. ,; that is, if 7, is the smallest integer n
for which B, N Bf. ,# & then s, =1,, etc. For i=1,2,---, let j{ <j9

< - -+ be the integers for which ty =s and set Z®, = (Xg,,
. +X;2i)+l)M)+/M for a=0,1,--- and i=1,2,---. For i with s; €
Bipe, » let 6,,‘3 be the largest integer 8 for which j{’ < n and let af? be the largest

integer a for which aM < §; then
W, < Z(ineng ) (MEEZO + S 800 01 X1 ()}

where the last sum is zero if af? = §©. Applying Lemma 6 of Hanson et al. (1973),
we choose M large enough so that E(Z{?) < ¢/2 for all i and a. Since

E{i:s,ea,f,.,,,}Maff)/n < z{i:s,-ea,f,.,,,}sr(:i)/n <1
W,/ n is bounded above by the sum of

“) M3, seps,) Zat1(Z9 — E(ZD))/n + ¢/2
and
) z{i:sies;,.,,,}zfi'i,yu1Xj+g)/n.

Clearly {Z® — E(Z()} satisfies (1) since E(Z{) is bounded and P[|Z{] > y] <
MF(y) and so Theorem 1 can be applied to show that the limit superior of (4) is
less than or equal to e/2 almost surely. In considering (5), we observe that
" Zpigesg. )00 — ) <Mcard {i:5; € By ), n > KM card {i : s; € By ,}»
and as we have seen before E(X;) < L. Hence, if K is chosen so that I/K <&/2,
then (5) is bounded by

PR B Sup (X T — E(X*0))/n +¢/2
= S¥(B; N By, 2)/n— z{i:s,EBﬁ,._,,} Zaﬁ";(XR") _E(Xt&')))/”
+e/2.
We have already seen that S*(B, N Bf. ,)/n — 0 a.s. For fixed i, a is increasing
in n and s5; € Bj. , for some n, implies 5; € By , for each n > n,. So
IS s,EB,f,.',,}zaaﬁ)l(X*-j H— E(X';g)))/n —0as.
or lim sup,_,., W, /n < & and the proof is completed. '

COROLLARY 4. If {(T,) is a sequence of independent, identically distributed,
B-dimensional random vectors, then {T,} satisfies (3) almost surely.

Proor. Choose A = Rg. For almost all w in the underlying probability space
the set B, = {¢ : lim sup,_, card {k < n: T(w) = t}/n > 0} is the collection of
points in Rg; which are assigned positive probability under P, the probability
induced by T,. Fix a positive integer M. Let C denote the support of the discrete
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part of P and for an arbitrary ¢ > 0 let C, be a finite subset of C with P(C — C,)
<e. Since card {k < n: Ti(w) = t}/n— P({t}) a.s. for each ¢t € C, with probabil-
ity one there exists an n, (possibly depending on w) with card {k < n : Ti(w) = ¢}
> M for each t € C, and n > n,. So for almost all w and n > n,

card {k<n:T,€B, andcard {j<n:T(w) = T(w) <M}}/n
<card {k<n:T(w) €C~-C}/n

The proof is completed by noting that the last expression converges almost surely
to P(C—C)<e

In considering points not in B,, we partition R, into disjoint rectangles and
group these rectangles into “chains.” A chain has the property that a set composed
of one element from each rectangle in the chain is linearly ordered and so
one-dimensional results can be applied. For i =1,2,---,8, let {x(J, 1) ;!i,o
partition (g, b); in particular, let b, = x(0, i) > x(1, ) > x(2,i) > - - - > x(n;, i)
=g fori=12,---,8 LetI(j, i) =[x(j, ), x(j— Li))forj=1,2,---,u; —
1 and let I(v;, i) = (a;, x(n; — 1,0)). Fori =1,2,- - - , B, let j({) be an index with
possible values 1, 2, - - - , n; and let I(ji(1), i), - - - , j(B)) = XE ,I(j(i), i). This is
the desired partition of A. A collection of sets of the form {I(j(1) + 7,/(2) +
7,- -+ ,j(B) + 7)}FZ} is called a chain provided j(i) € {1,2,- - -, )} for i =
L,2,---,B; j(ip) =1 for some iy; and p — 1 = min {7 : (i) + 7 = n;}. With A
the number of chains we arbitrarily label the chains 1,2,- - -, A and for k =
1, 2,- - -, A we relabel the sets in the kth chain as follows: set C, .., = I(j(1) +
nj2)+ 7, ,j(B)+ 1) for r=0,1,---,pm_, where g, is the number of
rectangles in the kth chain. One of the hypotheses of the next result involves a
‘ sequence of such partitions, {C :7=1,2,-- -, p® k=12, ,A®J%_,.
We will denote the ath element in the sequence by @@ and its partition points by
x93, i). .

While the sequence {7} need not be stochastic, it is convenient to pose the
restrictions on this sequence in terms of a probability measure Q defined on the
Borel subsets of A.

THEOREM 5. Suppose that the sequence {t,} satisfies the following:

(6) for each € >0 there is a set D with lim sup,_ . v,(D)/n<e a
probability measure Q, a constant M, a sequence of constants c¢,—>0
as n—oo and a sequence of partitions {C@}*_ ~ with x“(y; —
Ji)—>a; as a—>oo for each fixed j and i, for which the follow-

ing hold with Q) = Q(C&) — B),
@ r(C®~B,—D)/n<Q®+¢c, foral k,v and a

and
() 27}((:)1 w® max, Q) <M forall a.
Then M, (A — B,))/n—0 as.
Before the proof is given we wish to comment on condition (6) and prove a
lemma. It should first be noted that x“(n;, — j, i) — g; for each i and j implies that
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71® >0 asa—>o0 fori=1,2,---,B and, as we shall see in the proof of the
theorem, this in turn means that for any ¢ € A the length of the chain containing ¢
tends to infinity with a. This with 6(b) forces Q to be continuous except possibly
on B,. Condition 6(a) essentially requires that these special rectangles contain no
more observation points than if the observation points were generated by a
sequence of independent random vectors each distributed as Q. However, as we
have already seen this is not sufficient. Certain continuous singular measures (for
example, the continuous probabilities whose supports are contained in the negative
45° line in the plane) do not yield suitable sequences of observation points.
Condition 6(b) is clearly not optimal since it also excludes some continuous
singular probabilities whose supports are contained in linearly ordered sets, such as
a uniform distribution over the line segment joining (0, 0) and (0, 1) in the plane.
However, it will be shown that 6(b) is satisfied almost surely if the observation
points are generated stochastically by a probability whose continuous singular part
vanishes and some continuous singular probabilities will be considered in Theorem
8 and Corollaries 9 and 10.

Let 7, = (i(1, n), i(2, n), - - -, i(n, n)) be a permutation of the first n integers for
n=1,2---.1If the nth permutation is obtained by assigning a place to the
integer n between two of the successive values or at the end or the beginning of the
permutation 7,_, for n = 1,2,- - - | then the sequence has been called an order
preserving sequence.

LEMMA. Let {W,};>_, be a sequence of independent random variables which are
centered at their means and satisfy (1). Let {m,}_, be a sequence of order preserving
permutations and set S; , =3,_ W, Sy ,=0), T, ,=max,_q ;... ,S;, and
" Vy=max,_, ,... T, ,. For each 8 > 0, there exists a positive integer Ny, depend-
ing only on & and F, for which |E(Vy/N)| < & for all N > N,

Proor. Consider the first quadrant in the plane and place W, on the liney = 1
at a point (x;, 1) with x; > 0. Next place W, on the line y = 2 at a point (x,, 2)
with x, > 0 and x, < x, if i(1, 2) > i(2, 2) or x, > x, if i(1, 2) < i(2, 2). Continue
this process until W,, W,, - - - , Wy, have placed on the linesy = 1,y =2, - -,y
= N with x;, x,, - - -, x,, ordered according to the permutation =,. Drawing the
vertical lines through the N points (x;, i) for i=1,2,- -, N forms an N X N
grid with the random variables W, at some of the grid points. Assign random
variables degenerate at 0 to the other grid points and with x;) < x) < -+ - <X,
the ordered x;’s, denote the grid point (x;, j) by (i, /) and the associated random
variable by W, ; fori,j=1,2,- -+, N. For each n < N and k <n, S, , can be
written as 3, e )W, for some (i,j) < (N, N) and Vy =
max; <, M2, )< W,y 1he inequality given by Gabriel (1974) then shows
that

P[Vy > Ny] < 9y"'E|Sy, |/ N.

Lemma 6 of Hanson et al. (1973) shows that there exists an N, depending only on ¢
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and F for which E|Sy y|/N <& for N > N,. The conclusion of this lemma follows
just as inequality (30) of Lemma 6 follows from (20) of Lemma 3 of Hanson et al.
(1973).

ProoF oF THEOREM 5. Because of Proposition 2 it suffices to show that with ¢ a
fixed, arbitrary positive number, M, (A — (B, U D))/n — 0 as. If there are only a
finite number of indices k for which 7, € A — (B, U D), the proof is trivial.
Otherwise, we consider the subsequence of points in A — (B, U D) and, for
simplicity, denote it by {#} also. With a fixed but to be chosen later, we select a
partition, C ), from the sequence in (6). (In the argument that follows many of the
quantities depend on «; however, since a is fixed, this dependency will not be
shown.)

With k fixed, those of the first n elements in {#} which are in the kth chain are
grouped into “strings.” In forming these strings # and #, with j, #j, will be
considered different elements in {4} even though £, = 7, and a string will contain
at most one element from each rectangle in a chain. Such a grouping will be
referred to as a string at time » in chain k. If none of the first » elements are in
chain k, there is one string in chain k at time » and it is empty. Denote by /(j) the
Jjth smallest index of an element of the sequences {#,} which is in the kth chain.
(There may be a finite or countably infinite number of such indices, but in either
case, /() increases with j and the collection of all such I(j) is {i: t; € C, , for
some 7=1,2,---,u}.) Let 7(j) denote the index of the rectangle in the kth
chain which contains #;, that is, 4, € G ,,. At time n, n <I(1), there is one
string in the kth chain and it is empty and at », /(1) < n < I(2), there is one string
_in chain k and it contains one element 7. If 4, & G .y then at time n,

I(2) < n <I(3), chain k has one string with elements #,, and f,; but if 5, €
Cy, -1y there are two strings in chain k at time n, /(2) < n <I(3), the first contains
Y and the second contains #,. With the requirement that once an element is
placed in a string it remains in that string, we now describe the strings inductively.
At time n there are y,(k) = max,»,(C, ,) strings in the kth chain. Suppose that at
time n = [(m) — 1 the v,(k) strings in chain k have been determined. If one of
these strings does not contain an element from C, ,,, then place 7, in the string;
but if each of these strings contains an element from C ., then a new string is
started with one element, . Let »{") denote the number of elements in the jth
string in the kth chain at time n and let G{") denote the collection of these »{")
elements. Let », ; = lim,_, ,»{"), observe that », ; < y, and set

Z, ; = max,max;S,(U N G{).
Hence, M,(A — (B, U D)) /n is bounded above by
(7) n~'2¢U2Z, ; — E(Z)))
(®) +n"'ZPE(Z, ;)

n) —
where 23", = E{k,j:Gk‘."#ra,k=1,2,-~-,x,j=l. 2, )
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The number of summands in (7) is less than or equal to the number of strings,
Gk"}, which are nonempty at time n, which in turn is less than or equal to n. Hence,
expression (7) converges to zero almost surely if {Z, ; — E(Z, ;)} satisfies (1).
However, |E(Z, ;)| is bounded by

) 2{v<n e G,fy}Elel < I < T-max; ¢ty
and similarly,
(10) P[|Z, ;| > x] < mF(x/m)-

Since there are only a finite number of p’s, {Z, ;} satisfies (1) and, as was noted
earlier, this and (9) imply that {Z, ; — E(Z, ;)} satisfies (1).

Noting that expression (8) is nonnegative, the proof is completed by showing that
its limit superior can be made arbitrarily small by choosing the partition fine
enough. Fix 8 > 0. One can choose a sequence of random variables satisfying the
assumptions in the lemma and a sequence of order preserving permutations so that
a given Z, ; can be written in the same form as the Vy considered in the lemma
with N = », ;. If , ; <  then by adding random variables degenerate at zero Z; ;
can be written in the same form as ¥V with N = p,. Applying the lemma, there
exists an integer Ny = No(8, F) for which E(Z, ;/m) <8 for each (k,;) with
W > N,. Expression (8) is bounded above by

(11 "_lz{k : e > No) ﬂkz}’é('f)E(Zk j/#k)
+n” E{k e <No} 2 DE(Z, ,)
The first expression in (11) is bounded by
8 (k- ooy i Ye(M) /1 < 8Z (i o> vgy (Max,. Q. + ¢,)
< OM + 8, 7P m;
and since E(Z, ;) < Iiy, the second expression in (11) is bounded by
NoIZ (k. yo<ngyVe(n)/n K NoIZ (., <npy(max, Oy . + ¢,)
< NoIQ( U {k,'r:p.k<No}Ck,‘r) + Nolc,card{k : g, <No}.
Now lim, ., U s r: pcng G r = D, for if £ = (1@, 1@, - - - tP) € A then there

is an a, for which x®(n, — Ny, i) <D for i=1,2,- -+, B and a > &, So for

@ > ap, ¢ is a member of a chain which has length greater than N,. Select a large

enough so that Q(UJ o i <N Ci..) <08/N, and then the limit superior (as

n — o0) of expression (8) is less than or equal to 6(M + I ) The proof is completed.
Combining Theorems 3 and 5 we obtain

THEOREM 6. If the sequence {1} satisfies (3) and (6), then M,,/n — 0 a.s.

COROLLARY 7. Let {T,} be a sequence of independent, identically distributed,
B-dimensional random vectors defined on some probability space and let P denote
their common probability distribution. If P = aP, + (1 — a)P,, where 0 <a < 1, P,
is discrete and P,, is absolutely continuous, then {T,} satisfies (6) almost surely.
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PROOF. Choose A = R;. If a >0, then for almost all w in the underlying
probability space, the set B, is the support of P, and if a = 0, then B, = & almost

surely.
If a = 1, then (6) holds almost surely with D =&, Q = P;, ¢, =0, M =0 and
{C @} any sequence of partitions satisfying lim,_,, x®(y, — j, i) = — oo for each

fixed j and i. Hence, suppose a < 1 and consider ¢ fixed with 0 <e <1 — a.
Choose v, and vy, positive reals with P((x2.,[—v,, y,)]‘) <e¢/2and P, {t:p(t) >
Y,} < &/2 where p is the density of P,,. Set D = [x£,[— vy, Y)IF U {2 : p(d) > v,)
— B,. Since P(D) < &, the law of large numbers ensures that lim sup,_, .»,(D)/n
< ¢ almost surely. Set Q(¢) = ) and let {€©®} be the sequence of

partitions determined by x(0,7) = o0; x(j, )=y, +a—jforj=1,2,---,a;
x(,)=v -2 —a)y,/aforj=a+1, a+2,---,20; x(j, )= —v,— (U
—2a) for j=2a+1, 20 +2,---,3a—1; and x(Ba,i) = — o0 for i=
1,2,---,B. If for some i=1,2,---,8, j(i) <a or j(i) > 2a +1 then

1G(1),j@), - - - ,J(B) € D U B, and so QUI(j(1),j@2), - - -, j(B))) = 0. Other-
WiISs€,

P (I(j(1),J2), - - - ,J(B)) N D)/ P(D) < (1 = e(1 — a)™") 'v,2v1/ )"

Recalling the definition of a chain, it is clear that A < B(3a)?~! and p, < 3a for
k=1,2,---,\ Hence, (6b) holds with M = B(1 — &(1 — @)~ ")~ ly,(6v,)".

In considering (6a), we note that »,(B; U D) — oo almost surely and if T, (w) =
T, (w), where e is the ith smallest of the positive integers k for which 7T, (w) £ B, U
‘ D then {T}, , are independent and identically distributed as Q. Since Q is
continuous, the law of the iterated logarithm for empirical distribution functions
proved by Kiefer (1961) shows that there exists a constant ¢, for which

lim sup,,_m(Zn/lnln(n))%supk, nafcard{i <n: T, e C@Y/n— 0] <¢

almost surely. So for almost all w there is a constant c¢(w) such that (6a) holds with
¢, = c(w)cp{Inin(v,(Bi N D°))/v, (B N D‘)}%. (Notice that in (6) ¢, may depend
~ on the sequence {#.}.)

Corollaries 4 and 7 show that if the 7} are independent and identically distrib-
uted as P, with the continuous singular part of P identically zero, then {7}
satisfies (3) and (6). However, the assumption on the continuous singular part of P
is only needed for (6b). '

As we have seen, condition (6) excludes certain stochastic sequences of observa-
tion points which might be of interest and so we prove a theorem designed to treat
some of these cases. Let 1 < B’ < B and let A C XA ;(a;, b) with A linearly
ordered with respect to the coordinate-wise ordering being considered here. If
B’ > 11let Ay = XPTYa;, b) and if B’ =1 we agree Ay X A=A.For ' >1a
sequence of partitions of Az X A like the one used on A in Theorem 5 is needed.
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Let x(0, 8") > x(1, B’) > - - - > x(ng, B’) be elements of A with
A=UmI(j, ) where I(j,B)={x€A:x(j,B)<x<x(j—18))

for j=1,2,---,m5 —1 and I(ng, B") = {x € 4 : x(ng, B) <x <x(ng —
1, 87)). Let x(0, i) > x(1,i) > - - - > x(w;, i) partition (a,, b)) fori=1,- - - B’ —
1 and with j(i) an index fori = 1,2, - - - B’ with j(i) = 1,2, - - - , m;, form the sets
I(j(i), i) as in the discussion before Theorem 5. Then set I(j(1), j(2), - - - ,j(B") =
XA I(j(i), i). As was done previously, these sets can be grouped into chains, with
the elements of the kth chain denoted by C, , for 7 =1,2,- - -, and k =
1,2, ,A

THEOREM 8. Suppose that there is a positive integer B’ < B, a linearly ordered
set A c XE pa; b)), and if B > 1 suppose that the sequence {1} satisfies (6) with
{C@}2_, a sequence of partitions of Mg X A, then M,((Ag. X A) — B)/n—0a.s.

Proor. If B’ = 1, then by ignoring those #, € B, the desired conclusion follows
from the case B8 = 1 discussed in the introduction, and in fact M,(4)/n — 0 a.s. So
we assume B > 1 and observe that for U an upper layer in 4, (Az: X 4) N Uis an
upper layer in the space Ag X A with the partial order it inherits from Rg. The
remainder of the proof is like the one given for Theorem 5.

It is clear that the cylinder considered in Theorem 8 need not have its base a
subset of the product of (g, b,) fori = B’, B’ + 1, - - -, B but the result has been
stated this way since other cylinders could be transformed into such by relabelling.
Also if Ag X A4; fori=1,2,- - -, m are disjoint cylinders with the hypothesis of

_Theorem 8 satisfied for each one, then M, (UZ(Ag, X 4;) — B;)/n—0 as. The
following example illustrates this remark.

ExamMpLE. Let 8 =3, let A= R; and let P = (P, + P,)/2 where P, is induced
by T = (T, T®, T®) with T® = 0 and (T, T®) absolutely continuous and P,
is induced by T with T® =0 and (T, T®) absolutely continuous. Set 4, =
{(0, x) : x € R} and 4, = {(x, 0) : x # 0} and note that R X 4, and R X 4, are
disjoint. If the 7, are independent and identically distributed as P, then for almost
all w, the sequence {# = T,(w)} satisfies the hypothesis of Theorem 8 for both of
the cylinders R X A,, has B, = &, and is contained in (R X 4,) U (R X 4,). To
obtain the desired sequence of partitions of R X A,, one should first partition R,
as in the proof of Corollary 7 using the marginal distribution of (7, 7®) under
P, instead of the P considered there and then for each rectangle I(j(1),/(2))
obtained, construct a new rectangle 1(ji(1),(2)) X {0}. These new rectangles pro-
vide the desired partition of R X 4, for @ odd. (If « is odd then none of the
partitions of the sides has zero as an endpoint. This is important since (0, 0) & 4,.)
The desired partition of R X A4, is obtained similarly. So for such sequences {7},
M, = M, (U~ (R X A;) — B,) and we have M,/n— 0 as.
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COROLLARY 9. Suppose that the sequence {1} satisfies (3) and the following:

(12) there is a positive integer B’ < B; there is a sequence of dlSjoznt linearly
ordered sets A, C XL g(a, b) with lim inf, . »,B,u U - (A5 X
A)/n =1, for each & > 0, there is an integer m = m(6) with
lim sup,_ .7 (U Qg X A4)— B)/n <8 and if B >1,
there is for each i = 1 2,- -+ a sequence of partitions of Ag X A4,
{CDY>_ " which satisfies (6).

Then, M,/n — 0 a.s.

ProOF. Because of assumption (12), Proposition 2 and Theorem 3 it suffices to
show that M(U Qg X 4)— B)/n—0as. for m=1,2,---. This is ex-
actly what was shown in the discussion after Theorem 8.

CoRrROLLARY 10. If the T, are independent and identically distributed and if
T) = (TF*D, - - TP) is discrete for some 1 < B’ < B and (T, - -, T{#)
given T is absolutely continuous, then {T,} almost surely satisfies (3) and (12) with
Bd = Q.

ProOF. Let (a,b)= R for i=1,2,---,p. Since the discrete part of the
probability induced by T vanishes, B, = @ almost surely and consequently (3)
holds almost surely. Let sy, s,, - - -+ denote the distinct values of T which occur
with positive probability and let 4, = R X {s;}. The 4; are disjoint, linearly
ordered sets and by the strong law of large numbers »,( U (B X 4)) /n—1as.
(as before, we agree that Ag, X Ai = A, if B’ = 1). For each § > 0, let m = m(d)
be chosen so that PT ({Sm> Sm+1>* =+ }) < 8 where Py, is the probability induced by
- T}, then »,(U _ (4 X A))/n—>PTl({ Spess - - ) as. With i fixed, the
desired sequence of partitions is constructed as in the example following Theorem
8. First RB is partitioned as in the proof of Corollary 7 with the distribution of
(T, - - -, T glven T used rather than P and with Tj(w) the kth T(w) with
T =5 and ( T(') -+ +, T{#%) & D. The desired partition of A X {s;} is obtained
by taking the cartesian product of each rectangle in the partition above with {s;}.

We now wish to consider the weak rate of convergence of M, /n, that is, the rate
at which P[M,/n > €] converges to zero. The rates that will be established are
generalizations of the following known results.

THEOREM 11. If the sequence { X, } satisfies
(13) lim, ., y"F(y) =
Jor some r > 1, then for each ¢ > 0
P[|n7'Si_ X, > €] = o(n™"").

Proor. This is a special case of Theorem 2 of Franck and Hanson (1966) and
was proved in the identically distributed case by Baum and Katz (1965).
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THEOREM 12. If the sequence {X,} satisfies

(14) F(y) < O(exp(— o))
Jor some ¢ > 0, then for each ¢ > 0 there exists a p < 1 with

P[|n™'Z5_1X,| > €] < 2p".

Proor. This is a special case of Theorem A of Hanson (1967) and was proved
in the identically distributed case by Cramér (1938).

THEOREM 13. Suppose the sequence {t.} satisfies (3) and either (6) or (12). If the
sequence { X} satisfies (13) for some r > 1, then for each ¢ > 0

P[M,/n>e]=o(n"""").

If, in addition, the sequence {X, )} satisfies (14) for some ¢ > O, then for each ¢ > 0
there exists a p < 1 and a c* > 0 for which
P[M,/n >¢€] < c*p".

Proor. It suffices to establish the desired rates for P[M,(B,)/n > ¢/2] and
P[M,(A — B,)/n > ¢/2). The first step is to establish an analogue to Proposition 2.

Suppose that for each § > 0 there is a set B with lim sup,_ ,»,(B)/n <38.
Observe that (14) implies (13) which in turn implies (1) and so, in either case being
considered, E(X") < I < co. Furthermore, if {X,} satisfies (13) then so does
(X — E(X ")) and if {X,} satisfies (14) then so does {X,* — E(X,")}. For
future reference we note that, if {X,} satisfies (13) ((14)) and {/.} is bounded then
{X, + I} also satisfies (13) ((14)). For A C A, M,(4 N B)/n is bounded above by

2y X < Zpa, (X — E(X)) + v, (B)/n

‘where a, , = 1/nif k <n and t, € B and a, = 0 otherwise. For n sufficiently
large, Iv,(B)/n < €/2. If (13) holds then Theorem 2 of Franck and Hanson (1966)
shows that P[Z,a, (X" — E(X*)) > e/2] = o(n~"*") for each ¢ > 0, and if (14)
holds then Theorem A of Hanson (1967) shows that for each ¢ > 0 there exists a
p < 1, for which P[3,a, (X' — E(X;*)) > ¢/2] < p". Hence, if A C A and if for
each § > 0 there exists a set B C A with lim sup,_, . »,(B)/n < é, then for each
¢ >0, P[M,(A)/n > €] converges to zero at the desired rate if P[M, (4 N B°)/n
> €] does for each ¢ > 0 and each such B. '

Next P[M,(B;)/n > €] is shown to converge at the desired rate for each ¢ > 0.
The proof of this part is very similar to the proof of Theorem 3. If card (B,) < oo,
then the desired conclusion follows by applying either Theorem 11 or 12 at each
point at B,. So we suppose that card (B,) = co. It is sufficient to show that for each
€>0,P[V,/n >¢land P[W,/n > 2¢] converge at the specified rates. It has been
shown that V,/n < S¥(B; N By, ,)/n + o(1) and so for n sufficiently large we
consider P[SF(B; N By ,)/n > €/2]. Since S¥(B; N By ,)/n = Zia, (X5 —
E(X,*)) with a, , = 1/nif t, € B, N By , and a, , = 0 otherwise, an argument
like the one at the first of this proof shows that P[V,/n > €] converges at the
desired rate.
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Since W, /n is bounded above by the sum of (4) and (5) and since (5) is bounded
by 2; :siegﬂ.‘"}zﬁ"(ia;oﬂ(X;, — E(X{5))/n + ¢/2 we need to show that

P[2(iseny. ) 229 — E(Z9))/n > ¢/ 2M)]
and

P[2 (e Zdap+ (X5 —E(XYp))/n > /2]

converge to zero properly. These conclusions follow from Theorem 2 of Franck
and Hanson (1966) and Theorem A of Hanson (1967) provided {Z — E(Z{)}
and { X' — E(X,*)} satisfy (13) or (14), depending on which conclusion is desired.
It has already been shown that the needed assumption holds for the latter. Since
P[|Z®| > y] < M- F(y) and E(Z) < ¢/2 the same is true for {Z) — E(Z{)}.

Finally, we consider the rate of convergence of P[M,(A — B;)/n > €] assuming
(6) or (12). If we assume (6) the argument is like that given for Theorem 5 and if we
assume (12) the argument is like that given for Corollary 9. Since these two
arguments are very similar we give only the former. Clearly, it suffices to show that
P[M,(A — (B; U D))/n > €] converges at the appropriate rate for each ¢ > 0 and
for an arbitrary D as specified in (6). Again the proof is trivial if there are only a
finite number of k for which #, € A — (B, U D) because for each k, P[|X,|/n > €]
has the appropriate rate of convergence. So we assume there are an infinite number
and denote them by {#.}. Choose a partition and group the elements ¢}, #,, - - - , ¢,
into strings as in the proof of Theorem 5. For ¢ > 0 fixed, choose a partition so
that for n sufficiently large (8) is less than or equal to ¢/2. Then we need only show
that P[|n"'EPUZ, ; — E(Z; )| > €/2] converges at the desired rate. However,
. (9) shows that E(Z, ;) is bounded and (10) shows that {Z, ;} satisfies (13) ((14))
provided {X,} satisfies (13) ((14)). Again appealing to Theorem 2 of Franck and
Hanson (1966) and Theorem A of Hanson (1967), the proof is completed.

3. Consistency results. Suppose that u(7) is an isotone regression function with
domain A C Rg, that w(?) is a positive weight function and that fi,(¢) is the
estimator based on the first n observations, Y,, Y, * - - , Y,, described in Section 1
(cf. (2)). Assume that there exist constants w, and w, such that

(15) O0<w, <w(?) <w,< o0 foreach €A
THEOREM 14. Let u(*) be continuous, let {1} satisfy (3) and (6), and with ky a
positive integer suppose that

(16) lim inf, ,»,(J)/n >0 for each nondegenerate rectangle J which
contains  t .

If {Y, — w(t,)} satisfies (1) then fi(t; ) —> p(t) a.s-; if { Y — p(5)} satisfies (13) for
some r > 1, then for each e > 0

Pl (1) =~ B8] > €] = o(n~
and if {Y, — w(t))} satisfies (14) for some ¢ > O, then for each ¢ > 0 there exist
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positive constants c* and p < 1 for which
P[|a(t) — w(n,)| > €] < c*p.

Proor. Consider ¢ > 0 and choose , € A with ¢’ >t fori=1,2,---,8
and p(f) — (%) < e/3. Let U*(,) denote the upper layer which is the comple-
ment of {s € A: 5 < ¢,}. Then

fn(te,) — w(te,) < max(y ., cvydo,(U — U*(1o)) — p(t,)
< max(y ., cv}A0,(U — U*(t)) — p(to) + /3.

Letting X, = w(#)(Y, — p(%)) and D* = {5 : f, < s <y}, the above expression
is bounded above by

wl“max{'u:,koey}ls,,(U — U*(t))|/va(D*) + ¢/3

and by assumption »,(D*) > én for some § > 0 and for sufficiently large n. Hence,
for sufficiently large n, the latter expression is bounded by

(1) [maxy ) S,(U U U/ +S,(U@)I/n] + /3
< (w,8) ™' [max(M,, M{7)/n + IS, (U*(2))l/n] + €/3,

where M) is defined as M, with X, replaced by — X,. Because of (15), {X,} and
{—X,} satisfy (1), (13) or (14) provided {Y, — u(z,)} satisfies (1), (13) or (14)
respectively. Theorem 1, Theorem 2 of Franck and Hanson (1966) and Theorem A
of Hanson (1967) show that S,(U*(¢,))/n — 0 a.s. and that P[|S,(U*(¢y))|/n > €]
converges at the specified rate. Applying Theorems 6 and 13 to M, and M~ and
< noting that p(% ) — fi,(%, ) can be bounded similarly completes the proof.
There are several comments that need to be made concerning Theorem 14.

CoMMENT 1. While condition (16) was not assumed in establishing the conver-
gence of M, /n, Hanson et al. (1973) have shown that a condition on the placement
of the #’s is needed if i, is to be strongly consistent. (See their Theorem 2 and the
discussion after Theorem 6.) Condition (16) requires that, in the limit, the rectan-
gles containing #, contain a positive proportion of the observation points.

Suppose ¢, = T;(w) and the T} are independent and identically distributed as P.
If B =1, (16) holds almost surely for each k, This follows from the Glivenko-
Cantelli theorem and the fact that

P{x:P[x,x+¢) =0o0rP(x — & x] = 0for somee >0} = 0.

Since Hanson et al. (1973) have shown that assumptions (3) and (6) can be omitted
in Theorem 6 if 8 = 1, condition (16) is the only assumption that needs to be made
concerning the #’s in order for fi,(# ) to be strongly consistent in this case. If
B > 2 some restrictions must be placed on P for (16) to hold almost surely. For if
B =2 and P is continuous with probability concentrated on the negative 45° line,
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then for almost all w, any k, and any rectangle with T} (w) as the upper or lower
vertex there is only one observation point in the rectangle. We will discuss a
version of Theorem 14 for the continuous singular case later. If the continuous
singular part of P vanishes and if the boundary of the support of the absolutely
continuous part of P has Lebesgue measure zero, then (16) holds almost surely for
each k,. To see this, let (P),. denote the absolutely continuous part of P, let 4, be
the union of the interior of the support of (P),. and the support of the discrete part
of P, and let {G;};2, be a countable basis for Rs. Set

i=1

N, = U :;1{‘0 : T(w) & 4o)

N,= U :—.1{"" :card{k < n: T(w) € G;}/n+» P(G)} and

Ny= U (i my>oy{w: card{k <n: Ty(w) = t}/n» P({t})}.

If ¢ is in the interior of the support of (P),, and J is a nondegenerate rectangle
containing ¢, then there is a G; contained in J and in the support of (P),. with
P(G;) > 0. Hence, (16) holds for each k, if w € (N, U N, U N3)°.

CoMMENT 2. For B > 2 the strong consistency results given here improve on
those in the literature in that they have weaker moment assumptions and the
conditions imposed on the sequence {7,} are satisfied almost surely by a larger
class of stochastic observation points. For 8 > 2 the results which yield strong
consistency in Hanson et al. (1973), Robertson and Wright (1975) and Wright
< (1976) require at least finite second moments in the identically distributed case, but
the results given here only require finite first moments in this case. In these three
papers, the conditions imposed on {#,} essentially place a uniform upper bound on
the density of the observation points. In the case of stochastic observation points,
this excludes probabilities whose discrete part does not vanish or whose absolutely
continuous part has an unbounded density.

CoMMENT 3. For —o0 < ¢q; <a*f <b*¥ <b < oo the convergence of
SUP, &5 (o, ¥l Bx(f) — p(?)| has been investigated in the three papers mentioned in
Comment 2. The same techniques could be applied here to obtain these more
global types of results.

CoMMENT 4. In Theorem 14 the continuity assumption can be omitted for
points in B,. The proof given for Theorem 14 with ¢, = #; establishes the following
result: if lim inf, , »,({#,})/n > 0, if (3) and (6) hold and if { Y, — p(z,)} satisfies
(1), then ji,(% ) — w(t,) as. If {Y, — w(z,)} satisfies (13) or (14) then the rates of
convergence given in Theorem 14 also hold. Furthermore, if the {#,} are generated
by a discrete probability P, the results just stated apply at each point in the support
of P.
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CoMMENT 5. Consistency results can also be obtained in the case discussed in
Corollary 9. Suppose that {z} satisfies (3) and (12) and that {Y, — pu(,)} satisfies
(1). We first consider points in B,. If lim inf,  .»,({# })/n > 0, then f, (%) —
(%) as. This is essentially the same observation as was made in Comment 4,
except there (3) and (6) were assumed to obtain M, /n — 0 and here (3) and (12)
serve that purpose. Next we consider points in Az X 4; for one of the linearly
ordered sets A,. If (17, - - -, {{P) € 4, is the limit of a sequence of points in 4;
converging from above, as well as the limit of a sequence of points in 4; converging
from below; if p restricted to Ag X 4, is continuous; and if lim inf,  v,(J X
[a, b])/n > 0 for each nondegenerate rectangle J C A and for each a, b € 4,
with a < b, then (% ) — n(%,) as. If (13) or (14) is assumed in place of (1) the
rates of convergence obtained in Theorem 14 also hold in this case. The proof is
like the one given for Theorem 14 except that ¢, is chosen so that (£§#7,- - -, #)
€ A,

CoMMENT 6. In the case B = 1, Makowski (1973) established a law of the
iterated logarithm for M, and applied it to obtain a strong rate of convergence for
fi,(f) — u(¢). This strong rate established by Makowski (1973) states that with

probability one, lim sup,_,(n /lnln(n))%|ﬁ,,(t) — w(®)| < ¢ for some constant c.
Can similar results be obtained for 8 > 1?

Acknowledgment. The author is indebted to the referee and the Associate
Editor for their helpful comments. The proof of the lemma and part of Comment 1
are due to the referee.

REFERENCES

[1] Baum, L. E. and Katz, MELVIN (1965). Convergence rates in the law of large numbers. Trans.
Amer. Math. Soc. 120 108-123.

[2] BrUNK, H. D. (1958). On the estimation of parameters restricted by inequalities. Ann. Math. Statist.
29 437-454.

[3] BRUNK, H. D. (1970). Estimation of isotonic regression. In Nonparametric Techniques in Statistical
Inference. (Madan Lal Puri, Ed.,) 177-195. Cambridge Univ. Press.

[4] CraMER, H. (1938). Sur un nouveau théoreme-limite de la théorie des probabilitis. Actualities Sci.
Indus. No. 736.

[5] FRANCK, W. E. and HaNsoN, D. L. (1966). Some results giving rates of convergence in the law of
large numbers for weighted sums of independent random variables. Trans. Amer. Math. Soc.
124 347-359.

[6] GABRIEL, JEAN-PIERRE (1974). Loi des grands nombres, séries et martingales a deux indices. C.R.
Acad. Sci. Paris Ser. A 279 169-171.

[7] HansoN, D. L. (1967). Some results relating moment generating functions and convergence rates in
the law of large numbers. Ann. Math. Statist. 38 742-750.

[8] HansoN, D. L., PLEDGER, GORDON and WRIGHT, F. T. (1973). On consistency in monotonic
regression. Ann. Statist. 1 401-421.

[9] 'KIEFFER, J. (1961). On large deviations of the empiric distribution function of vector random
variables and a law of the iterated logarithm. Pacific J. Math. 11 649-660.

[10] Makowskl, G. G. (1973). Laws of the iterated logarithm for permuted random variables and
regression applications. Ann. Statist. 1 872-887.
[11] MakowsKi, G. G. (1975). A rate of convergence for a nondecreasing regression estimator. Bull.

Inst. Math. Acad. Sinica 3 61-64.



A STRONG LAW AND ISOTONE REGRESSION 127

[12] RoBERrTsON, TiM and WRIGHT, F. T. (1975). Consistency in generalized isotonic regression. Ann.
Statist. 3 350-362.

[13] SmMyTHE, R. T. (1973). Strong laws of large numbers for r-dimensional arrays of random variables.
Ann. Probability 1 164-170.

[14] SMYTHE, R. T. (1974). Sums of independent random variables on partially ordered sets. Ann.
Probability 2 906-917.

[15] WriGHT, F. T. (1976). Algebraic rates of convergence for isotonic regression functions. Bull. Inst.
Math. Acad. Sinica 4 281-287.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF MISSOURI
RoLLA, MissourI 65401



