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INFINITELY DIVISIBLE DISTRIBUTIONS
WITH UNIMODAL LEVY SPECTRAL FUNCTIONS

By THoMAs A. O’CONNOR
University of Louisville

The class of infinitely divisible characteristic functions which have uni-
modal Lévy spectral functions is determined. It is shown that membership in
this class is related to solutions of the equations ¢() = ¢"(ru)p,(u), where
r € (0, 1) and ¢ and ¢, are characteristic functions. We point out how elements
of this class can serve as limit laws as well as some connections between this
class and the class of self-decomposable characteristic functions.

1. Introduction. Suppose ¢(u) is an infinitely divisible characteristic function
on the real line, R. It is well known that ¢(x) never vanishes for # € R and the
logarithm of ¢(u) may be represented according to Lévy’s formula as In ¢(u) = iyu
— u%? + fr(e™ — 1 — iux/(1 + x?)) dM(x). The barred integral sign means that
the integration is taken over R \ {0}. The function M occurring in this representa-
tion is referred to as the Lévy spectral function of ¢. M is defined on (— o0, 0) U
(0, + o0) and is nondecreasing on each of the half lines. If, in addition, M is convex
on (— oo, 0) and concave on (0, + ), then M is said to be unimodal.

The following result on unimodal Lévy spectral functions was recently presented

in Alf-O’Connor (1977).

LemMMA 1. Let ¢(u) be an infinitely divisible characteristic function with Lévy
spectral function, M. Then M is unimodal if and only if there exists an infinitely

divisible characteristic function f(u) such that In ¢(u) = [} In f(ut) dt for all u € R.

Let U be the class of infinitely divisible characteristic functions whose Lévy
spectral functions are unimodal. Lemma 1, above, states that elements of U can be
expressed as mixtures of logarithms of infinitely divisible characteristic functions.
The main objective of this article is to further describe U. In this analysis of U, it is
often necessary to identify those functions which are logarithms of infinitely
divisible characteristic functions. Johansen (1966) has given a necessary and
sufficient condition and his result is stated below.

LEMMA 2. Let h be a continuous, complex-valued function on R. Then h(u) =
In ¢(u) for some infinitely divisible characteristic function ¢ if and only if h satisfies (i)
h(@0) =0, (i) A(u) =h(—u) for all u € R and (ii) if u,---,u, € R and
ay, -+ ,a, are arbitrary complex numbers satisfying 27_,a; = 0, then
212k by — w)aa, > 0.

2. Main results. We begin by showing that U consists entirely of infinitely
divisible characteristic functions which satisfy a certain functional equation.
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THEOREM 1. Let ¢(u) be a characteristic function without real zeros. Then ¢ is
infinitely divisible and the Lévy spectral function, M, of ¢ is unimodal if and only if
the following condition (*) is satisfied, where:

(*) ¢'(u) exists on R \ {0} and lim,_,qu¢'(u) = 0 and for
each r, 0 <r < 1, there is a characteristic function ¢,
such that ¢(u) = o' (ru)p,(u) for all u € R.

Moreover, in this case, ¢, is infinitely divisible.

ProoF. First assume that ¢ is infinitely divisible and that the Lévy spectral
function M is unimodal. According to Lemma 1, we may choose an infinitely
divisible characteristic function f(x) so that In ¢(u) = [} In f(ut) dt =
u~'f4 In f(2) dt. Clearly ¢(u) is C' on R \ {0}, and lim,_,u¢'(u) = 0. Let 0 <r <
1 be given. In view of Lemma 2, [!In f(uf) dt is a logarithm of an infinitely
divisible characteristic function. So by letting ¢,(«) = exp(f! In f(ut) dt), condition
(*) is satisfied with ¢, infinitely divisible.

Conversely suppose condition (*) is in effect. For each k = 1,2 - - - define the
characteristic function ¢, () by the rule

M) ) = L.

Observe that ¢, (1) % 0 for all u € R and k. For u # 0, In ¢(x) = In ¢(ku/k — 1)
+ u(ln ¢p(ku/k — 1) — In ¢(u))/u/(k — 1). As k — + oo, the right-hand side of
this equation converges to In ¢(u) + u¢'(u)/Pp(u); whence it follows that
lim,_, , & (u) = ¢(u)exp(u¢’(u)/dp(u)). Set f(0) =1 and for u # 0, set f(u) =
o(u) exp (ud'(u)/d(u)). It follows from the continuity theorem and a result of
Feller (1966), page 534, that f(u) is an infinitely divisible characteristic function.
But this last equation may be rewritten In ¢(u) = u~'f4 In f(¢) dt for u € R. In
view of Lemma 1, the Lévy spectral function of ¢ must be unimodal and a
repetition of the arguments used in the necessary part of this proof show that the
characteristic function ¢,(#) occurring in (*) must be infinitely divisible. This
completes the proof of this theorem.

THEOREM 2. Let ¢(u) be a characteristic function such that ¢(u) # 0, and assume
for each r € (0, 1) a characteristic function ¢, may be chosen so that ¢(u) =
&’ (ru)p,(u) for all u € R. Then if ¢, is infinitely divisible for each r € (0, 1), ¢ is
infinitely divisible and the Lévy spectral function of ¢ is unimodal.

Proor. If ¢, is infinitely divisible for all » € (0, 1), then so is ¢ since ¢(u) =
lim, ,y, ¢, (u) for all u € R.
- Let M and M, be the Lévy spectral functions of ¢ and ¢, respectively. Using the
uniqueness property of the Lévy representation, it follows that M(x) — rM(x/r) =
M,(x) for all x € R\ {0} and r € (0, 1). Thus for each r € (0, 1), M(x) —
rM(x/r) is an increasing function on (— oo, 0) and on (0, + c0). Let us now show
that M must be convex on (— oo, 0).
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Let u < v < 0. Then M(u) — M(v) < rM(u/r) — rM(v/r) for all r € (0, 1). In
particular with » = v/u we have M(u) — M(v) < r(M(u — (v — u)/r) — M(u)) or
M) < (/1 + nM(v) + (r/1 + PM(u — (v — u)/r). Hence M is convex on
(— 00, 0). Similar reasoning will show that M must be concave on (0, + o) and so
M is a unimodal Lévy spectral function.

It may be worthwhile to point out how elements of U serve as limit laws.
Consider the class of characteristic functions which are limits in distribution of the
random variables S, = Z,X,, subject to:

(i) the array {X,, :n=1,2,---; k=1,---,n} is a v.a.n. system of row-
wise independent random variables;

(ii) there exists a sequence of characteristic functions {¢,(x)} such that the
characteristic function of X, is given by the formula f,, (1) = (I}, ¢;(u/ n))'/" for
n=1,2---;k=1---,nandu €R.

According to the central limit theorem (Loéve (1963), page 309) all limit laws of
S,, provided assumption (i) is met, must be infinitely divisible. We shall now show
that the additional condition (ii) is necessary and sufficient for the limit law to
belong to U.

THEOREM 3. Following the notation above, a characteristic function ¢ belongs to
U if and only if ¢ is a limit law of S, where both conditions (i) and (ii) are assumed.

Proor. First suppose ¢ is a limit law of S, and choose ¢, and f,, to satisfy
conditions (i) and (ii). Then we have that ¢ is infinitely divisible and ¢(u) =
lim, ,, %, fu(w) = lim,_, (T%_ ,0&(u/n))"/". Let r € (0, 1). Select a sub-
sequence {m} such that m/n —r as n - + co. Then

() = lim, _ , (7= &f((m/ n)u/ m) /™ (I, b (u/m)) "
The first product converges to ¢'(ru) and hence by the continuity theorem, the
second product converges to a characteristic function—call it ¢,(u). Since
(e 1B/ )" = frok L T, o s 2 fru(4), it follows from the central limit
theorem that ¢, must be infinitely divisible. By Theorem 2, ¢ belongs to the class
U.

Now assume that ¢ belongs to U. By Lemma 1, we may choose an infinitely
divisible characteristic function f(u) such that In ¢(u) = f} In f(ut) dt. Define the
sequence of characteristic functions {¢ : k= 1,2,- - -} by the rule ¢ (u) =
o(ku) /%~ D/*((k — 1)u). By virtue of Theorem 1, each ¢, is infinitely divisible
and In ¢, (u/n) = (n/k)ffk/f,/,,) In f(ut) dt. Set £, (u) = ;?=k¢j(u/n))1/" forl <k
<n=12--- .Let T >0 and j, < n be an arbitrary sequence of integers. It
follows from the Toeplitz lemma that In f,, (u) = 27_; (1/)) f{l/ﬁ 1y/n 10 f(ut) dt con-
verges to 0 uniformly on [— 7, T]. Hence {f,, : 1 <k <n=1,2,- - }isauan
system of characteristic functions. Since for any n, 11, _, f,.(#) = ¢(u), the necessity
of conditions (i) and (ii) is justified. This completes the proof of Theorem 3.

The above results present a solution to a problem posed by Medgyessy ((1977),
page 36), who asks for a functional equation characterizing infinitely divisible
distributions which have unimodal Lévy spectral functions.
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The functional equation given in condition (*) is similar to the defining func-
tional equation for self-decomposable characteristic functions. Recall that a char-
acteristic function ¢ is said to be self-decomposable if for each r € (0, 1), there is a
characteristic function ¢, such that ¢(u) = ¢(ru)p,(u). Let L be the class of
self-decomposable characteristic functions. If ¢ € L, then ¢ must be infinitely
divisible and its Lévy spectral function, M, has the property that xM’(x) does not
increase on (— oo, 0) and on (0, + o). (See Lukacs (1970), page 164). Hence M’(x)
is nondecreasing on (— o0, 0) and nonincreasing on (0, + c0) and so M must be
unimodal. Thus L C U and from Theorem 1, all self-decomposable characteristic
functions are C' on R \ {0}. We wish to further explore the relationship between
the classes L and U.

THEOREM 4. Suppose ¢(u) is an infinitely divisible characteristic function which
satisfies the equation ¢(u) = ¢'"(ru)p,(u) where r € (0, 1) and ¢, is a characteristic
function. Further assume that [\o ™" In ¢(uv) dv is a continuous function of u. Define
the function f(u) by the rule

2 f(u) = ¢(u)exp(f5o~" In ¢(uv) dv).
Then f belongs to the class L and ¢ belongs to the class U.

ProoF. Because In ¢(u) satisfies (i), (ii), and (iii), of Lemma 2, it is easy to see
that [Jv~! In ¢(uv) dv does also. Hence f(u), defined in (2), is an infinitely divisible

characteristic function.
Using the partition {0, 1/n,2/n, - - -, n/n} of [0, 1], we have that

fio™" In ¢(uv) do = lim,_, , ,2f— 1k " In ¢(ku/n).
Hence

f(u) = limn-—»+oo¢(u)H’;c=]¢l/k(ku/n)
= limn—>+oo¢(u)Hn—l¢l/k((k - l)u/n)lirnn—»+oo¢]/n(u)
X M —p9' /O ((k = Du/n).

The second limit is identically 1 as can be seen by taking logarithms of the
product term and using the Toeplitz lemma. So

f(u) = lim,_, , ,$()IT;- 19"/ *((k — D)u/n)
= lim,_, , ,[l%- $(ku/n) /¢~ D/*((k — Du/n).
Let r € (0, 1) and let m < n be a sequence of integers with m/n — r. Then
fw) = lim,_, , JII7_¢((ku/m)m/n) /6%~ /5 ((k — D)u/m)m/n)
X I = s 1 (ki /) 6% D 5((k = 1)u/n).
The first product converges to f(ru). The assumption on ¢ together with the

continuity theorem insure that the second product converges to a characteristic
function; hence f(u) = f(ru)f,(u) and thus f € L.
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In view of the above remarks, fis C' on R \ {0}, and since In ¢(») = In f(u) —
[% =" In ¢(v) db, it follows that ¢ is C! on R \ {0}. By Theorem 1, ¢ belongs to the
class U.

THEOREM 5. Let ¢ be an infinitely divisible characteristic function with distribu-
tion function F(x) and suppose F(x) = 0if x < 0. Let b € R, 0* > 0 and A > 0 and
set
3) A(u) = exp(ibu — w’o® + iA[§ In ¢(7) dt).

Then f, is an infinitely divisible characteristic function and its Lévy spectral function,
H,, has support contained in (0, + o0) and satisfies [{*x dHy(x) < + co. If, in
addition, the Lévy spectral function of ¢ is unimodal, then f, belongs to the class L.

Conversely, if f is any class L characteristic function whose Lévy spectral function,
H, has support on 0, + o) and satisfies [{ °x dH(x) < + oo, f can be written as in
(3) where ¢ € U.

PrROOF. Let ¢ and F have the stated properties and let @ = inf{x : F(x) > 0}.
Let M be the Lévy spectral function of ¢. According to Theorem 11.2.2 of Lukacs
(1970), the support of M is contained in (0, + ), [}, x dM(x) is finite, and so

In ¢(u) = iau + [§2(e™ — 1) dM(x)  forall u € R.
Let b € R, 0> > 0 and A > 0. Then
iAf81n ¢(£) dt = —Aaw?/2 + Alim, o, [ *(e™ — 1 — iux) dM(x)/x
= ichu — Aau*/2 + Mg 2(e™ — 1 — iux/1 + x*) dM(x)/x

where ¢ = [&x*(1 + x*)~!' dM(x). Thus, f,(u) = exp(ibu — u’c® +
iAf4 In ¢(?) df) is infinitely divisible and its Lévy spectral function H,(x) is given
by

Hy(x)=0 if x<0 and H,(x)= —A[}®z""dM(z) if x>0.
Clearly the support of H, is contained in (0, + ), [ *x dH,(x) < + oo, and if M
is unimodal, then f, belongs to the class L.

Next suppose f belongs to the class L and In f(u) = iyu — u’e* + [§.°(e™ — 1
— iux/1 + x?) dH(x). Also, suppose [{ *x dH(x) < + oo. Let h(x) = H'(x). De-
fine p(x) = xh(x) and let M(x) = 0 if x < 0 and M(x) = — [} *p(u) du if x > 0.
Since p is nonincreasing on (0, + o0), M is a unimodal Lévy spectral function with
J8.x dM(x) < + 0. Define ¢(u) by the rule

o(u) = exp [3=(e™ — 1) dM(x).
Then ¢ is infinitely divisible and by using the above mentioned theorem of Lukacs

(1970), its distribution function satisfies F(x) = 0 if x < 0. Repeating the argu-
ments above we have

In f(u) = iu(y — fFex*(1+ x)7! dM(x)) — u%? + if% In ¢(2) dt.

This completes the proof of the theorem.
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3. Final remarks.

1° Let g(u) be any infinitely divisible characteristic function which has the
property fivo~!In g(uv) dv is a continuous function of u. By setting f(u) =
exp(fov ! In g(uv) dv), it is easy to see that for all r € (0, 1), f(x) may be factored
f(w) = f(ru)f(u) for a characteristic function f(u). If we let ¢(u) =
exp(fs In g(uv) dv), then ¢ belongs to U and ¢ and f are related as in (2).

20, Using the notation of Theorem 5, let f,() be written as in (3) with o> = 0.
First note that f, has a normal component if and only if @ = inf{x : F(x) > 0} >
0. Also, as a consequence of Theorem 2 of Wolfe (1971), [ *x dH\(x) < + oo if
and only if the distribution function of f, has a finite first moment p. In this case,
u=if©) = b.

3% Let ¢(«) be an arbitrary characteristic function with distribution function
F(x). F is said to be unimodal with vertex d if F is convex on (— o0, d) and
concave on (d, +o0). For A > 0, define f,(u) by the rule f, (1) = exp(A(¢(x) — 1)).
Then f, is an infinitely divisible characteristic function and its Lévy spectral
function M, is given by

M(x) = AF(x) ifx <0,
=ANF(x)—1) ifx>0.

Obviously M, is unimodal at 0 if and only if F is. However, if M, is unimodal at 0
one cannot infer the distribution function of f, is unimodal. The following example
is taken from Wolfe (1970).

Let ¢(u) be a characteristic function of a random variable with density p(x) =
e~ if x > 0 and 0 otherwise. For each A > 0, let f,(#) = exp(A(¢(«) — 1)). Then f,
belongs to U for all A > 0, but the distribution function of f, is unimodal if and
only if A < 2.
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