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ON STATIONARY STRATEGIES FOR ABSOLUTELY
CONTINUOUS HOUSES!

By LesTER E. DUBINS AND WILLIAM D. SUDDERTH
University of California and University of Minnesota

Whether stationary families of strategies are uniformly adequate for a
leavable, analytically measurable, nonnegative gambling problem whose opti-
mal return function is everywhere finite is a question which remains open. It is,
however, given an affirmative answer if, for example, the fortune space is
Euclidean and all nontrivial, available gambles are absolutely continuous with
respect to Lebesgue measure.

1. Imtroduction. Consonant with [6], a gambling problem is an ordered couple
(T, u), where T' is a gambling house and u is a real-valued function, both defined on
the same set F. In [6], # was assumed to be bounded; here # may be unbounded,
but it is assumed that u is nonnegative and that the optimal return function V is

everywhere finite.
If, for each f € F, o(f) is a strategy,  is a plan. If ¥ is a set of plans available in

T and if, for each e > 0 and f € F, 36 € ? such that

(1.1) u(a(f)) > (1 = e ¥(/),
then 9 is an adequate set of plans for (T, ). If, for each ¢ > 0, 36 € & such that
(1.1) holds for all f, then ? is uniformly adequate for (T, u).

A Markov kernel is a gamble-valued function y defined on F. If y(f) € I'(f) for
all f, then vy is a I'-selector or a I'-kernel. The plan y* that prescribes y(f) whenever
the current fortune is f is stationary. The question raised in [6] as to whether
stationary plans are uniformly adequate for leavable problems was settled in the
negative by a surprising example of Ornstein [13]. (A later example [7] shows that
stationary plans need not even be adequate.) It is natural, therefore, to ask whether
stationary plans are uniformly adequate if the problem (T, ) is Borel measurable,
but we have succeeded in answering this query only if T' is Borel absolutely
continuous.

A Borel, or even analytically, measurable house I is Bore!l absolutely continuous
if, for some probability measure a, countably additive on the Borel subsets of F,
every nontrivial gamble y available in I' assigns probability zero to every Borel
subset of F to which « assigns probability zero. (If y € I'(f) and y # 6(f), then y
is nontrivial for T at f.) The principal purpose of this paper is to show that if it is
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also supposed that T is Borel absolutely continuous, then stationary plans are
indeed uniformly adequate.

2. A few conventions and some notation. Every gamble y is assumed to be
defined on the set of all nonnegative, extended-real-valued functions with domain
F and to satisfy the usual conditions;

@) y(u, + up) = yuy + yu,,

(b) y(tu) = tyu for ¢t > 0,

© uy <uy=yu; < vy,

(d) yc = ¢ for all constants c.

By using the same argument given for [6], Theorem 2.8.1, one verifies that every
nonnegative, extended-real-valued, finitary function g can be integrated in a unique
way by every strategy o so as to satisfy oc = ¢ and

@ og = [o[ f](&f) doy(f)-

Notation, such as of f], used often in [6], will ordinarily not be explained here.
From (2.1) follows the more general

(22) og = [o[ p,|(gp,) do,
which holds for every stop rule ¢, as in [6], Equation 3.7.1. Here, p,(h) is the partial
history p =(f;, - - -, f,) of h = (f;, f5, - - - ) and #«(h) = n. It is natural to regard
o[ p,)(gp,) as the conditional o-expectation of g given the past up to time ¢. The time
remaining after p, say ([ p], is defined by
t[p](h) = t(ph) — n,

where h € H, ph is the history which consists of p followed by A, and » is the
number of coordinates of p. Notice that #[p] is a stop rule if #(ph) >n; itis a
nonpositive constant otherwise. As in [6], Section 2.5, o[ p] denotes the conditional
strategy given p. If 7 is the policy (o, ¢), then the conditional policy given p is
7 p] = (o[ p], {{ p). The utility u(x[p]) = [u(f,,) dolp] is well defined if 7[p] is a
stop rule. If, on the other hand, f[p] is nonpositive, set u(w[p]) = u(f,) where
p=f---,f)and t«(f,- - -, f»- - )=k <n. Lets be a stop rule. Then the
formula
(2.3) u(m) = fu('rr[ps]) do
is a special case of (2.2) as well as an extension to stop rules of [6], Formula 2.10.2.

Many of the definitions and results in [6], which were established there for
bounded u’s, extend without difficulty to nonnegative u’s, and will be used here
without comment. Recall that, as defined in [6], the two optimal return functions
for a gambling problem, ¥ and U, satisfy ¥ < U. In this paper, whenever it is
considerably simpler to do so, the problem will be assumed to be a leavable one, in
which event ¥ = U. Nevertheless, when greater generality is to be hinted at or
when the logic of an argument is clarified by doing so, “¥”” will often be used in
lieu of, and sometimes in addition to, “U” even when V = U.
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3. Preliminary lemmas. For 8 € I'(), let V4 be the supremum of u(o) over all
o available in I" at f for which the initial gamble o, is 8.

Lemma 3.1. V, = BV.
Proor. Apply [6], Corollary 3.3.4, to see that ¥, < BV. For the reverse

inequality, let ¢ > 0, let 6 be a plan satisfying (1.1), and let o be the strategy with
initial gamble B8 and with o f] = &(f) for all f. Then

Ve > u(o) = fu(a(f)) dB(f) > (1 — €)BV. 0

LeMMA 3.2. Let y be a T'-selector. Then y* is optimal if and only if, for all f, both
of these conditions hold:

@ v(NHV = (),

®) u(f) < V()= V(f) < sup u(y*(f), 1),

where the supremum is taken over all stop rules. Moreover, if y* is optimal, then
©) v(f) = 8(f) = u(f) = V().
PrROOF. Suppose y* is optimal. Plainly, Lemma 3.1 implies (a), and

(3.1) V(f) = u(y*(f)) = lim sup,u(y*(f), 1) < sup,u(y*(f), 1),

so (b) holds. For the converse, suppose (a) and (b) hold for all f. Fix ¢ > 0, fE€F, and

a stop rule s. It suffices to find a stop rule >s such that u(y*(f), 1) > V(f) — e. If
u(f) < V(f"), then by (b), there is a stop rule #(f’) such that

(32) u(y=(f), t(f)) > V(f) — e
If u(f’) > V(f"), let t(f’) = 0. Define ¢ to be the composition of s with the family ;
that is,
(3.3) t(h) = s(h) + t_(J;(h))(]}(h)+l,J§(h)+2, ce)
for all . Then
u(y>(f), 1) = fu(y>(£), 1(£)) &r>(S)

> [V(f) dy*(f) — ¢

= V(f) — e
The first equality is an instance of (2.3); the inequality is by definition of ¢; and the
final equation holds for every stop rule s as can be seen using (a) and an induction

on the structure of f,.
The final assertion of the lemma is trivial to verify. []

LeMMA 3.3. If IV is a subhouse of T such that, for every f at which u(f) < U(f),
r "(f) includes every v € T'(f) except possibly 8(f), then U’ = U.

PrOOF. Obviously, U’ < U. The reverse inequality will follow from [6], Theo-
rem 2.12.1, once it is verified that U’ is excessive for I'. For the verification, fix f
and y € I'(f). If u(f) < U(f), then either y = 8(f) or y € I'"(f). The desired
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inequality, YU’ < U’(f), is obvious in the first case and a consequence of [6,
Theorem 2.14.1] in the second. If u(f) = U(f), then

YU’ <yU < U(f) = u(f) <U'(f),
where the first inequality holds because U’ < U; the second because of [6],
Theorem 2.14.1; the equality by hypothesis; and the final inequality by definition
of U'. ]

LEMMA 3.4. At any f at which u(f) < U(f), there is a y € I(f) distinct from
8(f).

4. Stop-or-go houses. Throughout this section, I is a leavable, stop-or-go house
which means that, for some gamble-valued function a defined on F, I'(f) is
{a(f), 8(f)}. A stationary plan y* is promising if, for all f,

@ y(HV = V()
and

®) v(f) = () = u(f) = V().

PROPOSITION 4.1.  For a stationary plan to be everywhere optimal it is necessary
and sufficient that it be promising.

(For predecessors of, and for results closely related to, Proposition 4.1, consult
(5], (6], [8], and [16].)

Proor. The necessity is evident even without the help of Lemma 3.2. Suppose
therefore that y* is promising, in which event condition (a) of Lemma 3.2 certainly
holds. To see that condition (b) also holds, let I'(f) be the one-gamble house
{v(N}- If u(f) < U(f), then u(f) < V(f), for U = V for leavable I'. For such f,
v(f) # 8(f) implies that y(f) = a(f). In sum if u(f) < U(f), then I'(f) contains
a(f) so that the hypothesis of Lemma 3.3 is satisfied. So U’ = U. If u(f) < V(f),
as is now plain, u(f) < U'(f), and there must be, for each ¢ > 0, a policy =
available in I" at f for which u(7) > U’(f) — e. Equivalently, if u(f) < V(f),
sup u(y*(f), t) = U’'(f), where the sup is taken over all stop rules ¢ Since
U’ = U=V, condition (b) of Lemma 3.2 holds. That lemma now yields the
conclusion that y* is optimal for I'. []

The problem of showing that optimal stationary plans exist has been reduced to
showing that promising stationary plans exist. For showing that the latter exist, this
simple lemma is useful.

LeMMA 4.1. At any f at whz:ch u(f) < V(f), a(f) is distinct from 8(f) and
a(f)V = V(f). At any f at which a(f)V < V(f), 8(f) € T(f) and u(f) = V().

PrOOF. Suppose u(f) < V(f). Then Lemma 3.4 applies to show that a(f) is
distinct from 8(f). Moreover, since u(f) < V(f), there must be for each ¢ > 0 an
e-optimal strategy available at f whose initial gamble is of a(f). As Lemma 3.1 now
implies, a(f)V = V(f). Suppose a(f)V < V(f). Then by Lemma 3.1, there is
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available at f some y other than «(f) which y can be nothing but §(f). That
u(f) = V(f) is the main content of the first sentence of Lemma 4.1. []

COROLLARY 4.1. There exist everywhere-optimal stationary plans. In fact, there
exist T-selectors y with this property: at each f at which u(f) < V(f), v(f) = a(f);
and at each f at which a(f)V < V(f), v(f) = 8(f); for each such vy, y* is
everywhere optimal. Moreover, there are no other everywhere-optimal stationary plans.
If y(f) is a(f) or 8(f) according as u(f) < V(f) or not, then y* is the optimal
stationary plan for which the time until stagnation is a minimum for every history.

ProoOF. That there exist I'-selectors y with the stated property and that, for such
v, Y* is promising is immediate from Lemma 4.1. That each such y* is every-
where-optimal is implied by Proposition 4.1, as is the assertion that there are no
other everywhere-optimal stationary plans. The final assertion is now evident. []

5. There is a stationary family which yields at least (1 — ¢)U,. Let U, = u and,
for k > 1 and f € F, let U, (f) be the most a gambler with initial fortune f can
attain if play is allowed to continue up to time k but not beyond. By [6], Theorem
2.152,fork > Oand f € F,

(5.1 Ues1(f) = sup{yU, : y €T(S)},
which obviously implies that, for 0 < 8 < 1, there exists a (I, 8)-sequence, that is,
a sequence of I'-selectors v, y,, - - - such that, for all K > 1 and all f,
‘ 1
(5-2) Y () U=y = B2 Ui(f).

For each (T, 8)-sequence, y;, v,, - - -, each n > 1, and each f, if k = k(f) =
k(f, n) is the least nonnegative integer which satisfies

(5.3) :BkUk(f) = max0<j<nBjUj(f)a
and if
(54) Y() = wpn(f) if k(f)>1,

= (/) if k(f) =0,
then the T'-selector y is called a (T, B, n)-selector. Here is a generalization of [15],
Theorem 1.2.

PROPOSITION 5.1.  For each ¢ > 0 and n > 1, there is a I'-selector y such that

(5:5) u(y*(f) > 1 - eU,(f) forall f.
Indeed, for each B, n and each (T, B, n)-selector vy,

(56) u(r=(f) > BU).

Proor. Fix B and n, let k = k(f) satisfy (5.3), define y as in (5.4), let W(f) be
1 .
the right-hand side of (5.3), let « = 8™z, and, for any f for which k(f) > 1,
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calculate thus:

(5.7 Y(HW > v(H{ B* U}
= .Bk_l'Yk(f) Uk
> af U, (f)
= aW(/).
For any f at which k(f) = 0, Y(/)W = 8(/)W = W(f).
Fix f and let ¢ = y*°(f). The process W(f), W(f)),- - - is, by the previous

paragraph, expectation increasing under ¢ and, by [6], Corollary 3.3.4, W(o) >
W(o, t) > W(a, s) > W(f) for all stop rules s, # with # > 5. Since W > B"U,, for
(5.6), it suffices to show u(a) > W(o). This is obviously true if u(f) = W(f). So
assume u(f) < W(f), or equivalently, that y(f) # 8(f).

Let 2 = (f,, fo, - - - ) and let t,(h) be the first k such that u(f) = W( f), where it
is understood that f,(h) is + oo if there is no such k.

For each stop rule ¢, write W(o, ) = a, + b, where a, = | >, W(f) do and
b, = [, ,W(f) do. Then

a = {5, W(f,) do = fisii(f) do =[5, 0(f) do < u(o, 1).

The first and third equalities hold because o stagnates at time , [6], Theorem 3.4.3,
the second equality holds by the definition of #, and the inequality holds because
u > 0. It now suffices to show b, — 0 since, in that case,

(58)  u(o) = lim sup,u(a, #) > lim sup,a, = lim sup, W(o, t) = W(o).
To each stop rule #, associate f given by
{(h) = t(h) it t(h) > ty(h),
= t(h) + 1 if  t(h) < to(h).
Then,
(5.9) W(o, 1) = fW(a[p,], f[p,]) do
= fi W) do + [ ()W do
>a,+ [, aW(f) do
= a, + ab,.

The first equality is an instance of (2.3) and the inequality is by (5.7).

For & > 0 choose a stop rule s such that W(a, s) > W(o) — &. (The choice is
possible because W(o) < U(o) < U(f) = V(f) < + oo. The first inequality holds
because W < U, the second by [4], Corollary 3.3.4, and the standing hypothesis
that ¥ is finite.) Let ¢ be a stop rule no less than s and calculate thus.

(5.10) a, + b, = W(o, t) > W(o,s) > W(e) — & > W(o, f)—¢e>a + ab — e

So b, < ¢/(a — 1), which proves that b, converges to zero. []



ON STATIONARY STRATEGIES 467

As contrasts with Proposition 5.1, there may be no stationary family which yields
as much as U, — ¢ even when n = 2:

ExAMPLE 5.1 (a modification of an example of Blackwell in [3]). Let F be the
set of integers; let u(n) = 0forn > 0, u(n) = 27" — 1 forn < 0; I'(n) = {8(n)} for
n <0, I(n) = {8(n), 3(8(n + 1) + 8(0)), 8(—n)} for n > 0. Then Uy(n) =2" —
1/2 for n > 0. But, if y is a T-selector, then either y(n) = 3(8(n + 1) + 8(0)) and
u(y*®(n)) = 0 for all n > 0 or there is a positive n with y(n) = 8(n) or §(—n) in
which case u(y*(n)) < 2" — 1 = Uy(n) — 1/2.

6. Analytically measurable gambling problems. This section shows that measur-
able stationary plans are adequate for leavable, analytic problems. As is consonant
with Blackwell, Freedman, and Orkin’s paper [4], a gambling problem (T, u) is
analytic if T is analytic and u is semi-analytic. Analytic problems include the
measurable problems defined and studied by Strauch [14], and, a fortiori, the
continuous gambling problems studied in [6].

Recall that a separable metric space X is analytic if there is a continuous
function from the set of irrationals in the unit interval onto X (Kuratowski [11]).
Let B(X) and @(X) denote the sigma-field of Borel subsets of X and the
sigma-field generated by the analytic subsets of X respectively. An extended
real-valued function g whose domain is X is called semianalytic if it is nonnegative
and, for all real numbers c, the set of x for which g(x) > c is analytic. For a
discussion of these concepts see [4] or [11], Section 39, XI.

If X is analytic and 9 (X), the set of countably additive probability measures
. defined on B (X), is equipped with the weak-star topology, then @ (X) too is
analytic [4], Lemma 25.

A house T is analytic if F is analytic and the set {(f, v) : v € I'(f)} is an analytic
subset of F X 9 (F). (Here each gamble v is identified with its restriction to % (F)
and the integral yg of a semianalytic function g is the conventional, countably
additive one.)

LemMA 6.1 (Lemma 1(3) of Meyer and Traki [9]). Let u be semianalytic on F.
Then the mapping v — yu from P (F) to the extended real numbers is semianalytic.

Define the operator I'* by ‘
(6.1) (T*u)(f) =sup{vu:y €T()}, fEF
As was noted in [6], Theorem 2.15.2, if T is leavable, then for all positive n,
T*U, = U,,,. With the convention that U, = u, the equality holds for » = 0 too.
Throughout the remainder of this paper assume that (T, u) is a leavable, analytic
problem.

. LEMMA 6.2. T*u and, consequently, each U, is semianalytic. Furthermore U,1 U
as ntoo, so U, too, is semianalytic.

Proor. For any real number c, the set of f such that (T*u)(f) >c is the
projection on F of {(f, y) : yu > ¢, v € T(f)}, which set is analytic by Lemma 6.1
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and the hypothesis that I' is analytic. Hence, its projection is also analytic.
Consequently, I'*u = U, is semianalytic.

Induction and the comment following (6.1) show that each U, is semianalytic. By
[6], Theorem 2.15.5g, U, 1 U. So U, too, is semianalytic. [J

Demonstrations of the existence of measurable strategies require the measurable
choice of gambles, which makes this selection lemma useful.

LeEMMA 6.3. Let 7 be the projection of the product X X Y of the two analytic sets
X and Y onto X; -+ DA_ 1D AyD A,- -+ be a doubly infinite sequence of
analytic subsets of X X Y; B; = w(A;) for all i; and let B, = N B,. Then, for each
integer k, there is an analytically measurable mapping, s, of the union of the B; into Y
which satisfies these two conditions:

(i) x € B, — B, implies (x, s(x)) € A, for all i,

(i) x € B, implies (x, s(x)) € A,.

(That s is analytically measurable means s~'(D) € @(X) for each D € B (Y).)

PROOF. According to a selection theorem of Mackey and von Neumann [4],
Proposition 15, for each i including i = oo, there exists an @(X)-measurable
mapping s; : B, > Y such that, for all x € B,, (x, s;(s)) is an element of A4, or 4,
according as i is finite or not. If x € B, let s(x) = s (x). If x € UB, — B, let
s(x) = s;,(x) where i is the unique integer such that x € B, and x & B, ,. That s
satisfies (i) and (ii) is easily verified.

The above lemma, as well as its proof, were abstracted out of Blackwell,
Freedman and Orkin [4].

A selector y for T' is Borel (analytic) if it is a Borel measurable (analytically-
measurable) function from F to 9 (F), where in each case, &P (F) is equipped with
the sigma-field of its Borel subsets. It can happen that there is no Borel selector for
a nonleavable, Borel measurable house [14]. There are, however, analytic selectors,
not only for such houses, but for all analytic houses as is immediate from the
Mackey-von Neumann selection theorem, which theorem is the important special
case of Lemma 6.3 in which the 4; do not vary with i.

LEMMA 6.4. For each € > 0, there is an analytic T-selector vy such that

(6.2) Y(N)u> (1—-eU(f) foral f,
and
(6.3) v(f) = 8(f) = u(f) = Uy(S).

(The assumption, otherwise in force, that T" is leavable, is not needed for this
lemma.)

Proor. Choose a positive 8 such that
1+8)'>1—e
For each integer n, let A, be the set of all (f, y) such that y is available at f, y is
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different from &(f), and yu exceeds (1 + 8)". It is easily verified, with the aid of
Lemma 6.1, that each A4, is analytic. Hence, with X and Y replaced by F and
% (F), the hypothesis of Lemma 6.3 is satisfied. Let s be the map which Lemma 6.3
delivers and let y be s on the domain of s which is the union of the B, in the
notation of Lemma 6.3 and which contains the set [U; > u]. Define y to agree with
& off the domain of s. It is straightforward to verify (6.2) and (6.3). []

For predecessors of Lemma 6.4, see [4], No. 43 and [6], Section 16.

COROLLARY 6.1. For each ¢ > 0 and o € P (F) there is a Borel T-selector y such
that (6.2) holds except for a set of f’s which has a-probability zero.

Proor. By Lemma 6.4, there is an analytic selector y* which makes (6.2) true
when v is replaced by y’. Choose a Borel, Markov kernel 8 such that the set of f for
which y(f) is different from B(f), call it A,, has a-probability zero. Then choose a
Borel subset A of F such that A, C A and a(4) = 0. Define y(f) = B(f) if f & 4

and y(f) = 8(f) if f € 4. []
A stationary family y* is Borel (analytic) if the selector vy is Borel (analytic).

PROPOSITION 6.1. For each positive integer n and ¢ > 0, there is an analytic
T-selector vy such that

(64) u(y*(f) > (1 = &) U,(/)
Jor all f € F.

ProOF. Choose 8 such that 0 < 8 < 1 and 8” > 1 — &. By Lemma 6.4, there
is, for 1 < k < n, an analytic I'-selector v, such that v, (f)U,_, > BU(f) for all .
Proposition 5.1 now applies. []

Since U, — U, it follows from Proposition 6.1 that analytic, stationary plans are
adequate. In fact, Borel stationary plans are adequate as Proposition 7.1 below
implies.

No assertion about the measurability of the left-hand side of (6.4) is made here.
Indeed, we do not know whether u(y>(+)) is analytically measurable even if y is
Borel measurable, unless # is bounded [17], Theorem 2.

7. Borel stationary plans are almost uniformly adequate. There is a notion of
the adequacy of a set ¢ of plans which is intermediate in strength between
ordinary adequacy and uniform adequacy. Namely, a set & of plans available in T
is almost uniformly adequate if, for each ¢ > 0 and each measure a countably
additive on the Borel subsets of F, there is a ¢ € % such that the set of f for which
(1.1) fails to hold has measure zero under a. Of course, if F is finite or denumer-
able, almost uniform adequacy is the same as uniform adequacy.

PROPOSITION 7.1.  Borel stationary plans are almost uniformly adequate for T.
This proposition has predecessors in [1], [2], [6], [13] and [15]. Because the present
proposition treats unbounded, albeit nonnegative, utilities and because it covers
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analytic problems rather than Borel problems only, the proof given here differs
from that of its predecessors. But the reader will easily discern the underlying
similarity of the arguments and, in particular, our debt to Ornstein [13], who was
the first to settle the problem of stationarity for a large class of countably additive
problems (T, ) based on a denumerable fortune space F. The result which
corresponds to Proposition 7.1 in the case of positive dynamic programming was
stated by Frid [10, Theorem 1], but his proof has an error. (The sets G and H
defined in Lemma 3 of [10] need not be Borel.)

A leavable house I defined on the analytic set F is (Borel) countably parame-
trized if it is the union of (the graphs of) a countable number of Borel measurable
Markov kernels. A house I" is a subhouse of T, written I C T, if, for each f,
I"(f) € T(f). A house I" is a union of houses I', if, for each f, I'(f) is the
set-theoretic union of T',(f).

For each a € ?(f) and each Borel Markov kernel v, let ay be that element of
P (F) defined by
(7.0 (1)) = [Y(A)(4) da(f)
for A € B (F). The trivial fact that a subset 4 of F which has probability one

under the completion of ay also has probability one under the completion of v( f)
for a-almost all f is used twice in the proof of this lemma.

LEMMA 7.1. For each a € 9P (F), there is a countably parametrized subhouse I" of
T" and a Borel measurable, nonnegative function w' on F such that

(i) «' < u everywhere, and

(ii)) U’ > U a-almost everywhere,
where U’ is the optimal return function for (I, u’).

ProOF. The weaker lemma obtained by replacing (ii) with the weaker condition
(7.2) ‘ U>1-¢U, a — as.
will be proved first. To this end, choose A in (0, 1) such that A” > (1 — &). By (5.1)
and Corollary 6.1, there is a Borel I'-selector v, such that

(7.3) Y1(NU,_y > AUL(S) a — as.
Use the notation of (7.1), set a; = ay,, and again call on Corollary 6.1 to obtain
another Borel I'-selector y, with

Y2(AU,_, > AU,_(f)  a; —as.

Continue thus to define inductively Borel I'-selectors y,, - - - , vy, and measures
ay=a, a,* - ,a,so that, for 1 <k <n, o, = a,_,v, and
(74) (D Un—k 2 AU, 1(f) Q1 — &S,
Let T'(f) = {(vi(f)s - * - » ¥.(f), 8(f)}. Since u is measurable with respect to the

completion of a,, there is a Borel ' > 0 which satisfies (i) and which agrees with u
on a set of a,-probability one. So v,(f)[w’ = u] = 1 a,_, — a.s. and, hence,

(7'5) Yn(f)u/ > Yn(f)u Qp_1 — a.s.
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Let U/ be the optimal j-day return for the problem (I, u'). As will now be shown,
for1 <j <n,

(7.6) U >NU  a,;as

n—J

To verify (7.6) for j = 1, calculate thus:
Ui(f) > v(NH'
> v,(Nu a,_, as.
> AU(H a,_, as.

" The first inequality is by definition of Uj, the second is (7.5), and the third is the
instance of (7.4) in which k = n. Suppose (7.6) holds for an integer j which is at
most n — 1. That is, the set of f; such that

U/ (f) > MU(f)

has (a,_;_,v,—,)-probability one. So, for a,_ j—1-almost all f, the same set has
Y.—;(f)-probability one. Now calculate:

Uj'+ () = Yn—j(f) U}/
> Ny, (NG, a,_j—1as.
SN ayas

The first inequality is by (5.1) and the third is by (7.4). The inequality (7.6) is now
established for j + 1 and, by induction, for 1 < j < n. Inequality (7.2) follows from
(7.6).

Thus, forn = 1,2, - - -, there is a countably parametrized house I', C I" and a
nonnegative Borel utility function u, < u such that, if R, is the return function for
T,, then R, > (1 — 1/n)U, a-almost surely. Let I be the union of.the T',, and
u' = sup u,. Obviously, (i) holds and, since U = sup U, (ii) is easily verified. ]

LemMMA 7.2. Suppose T is countably parametrized, u is nonnegative Borel, and ¢ is
a positive number. Then the functions U,, U,, - - - and U are Borel; for each positive
integer n, there is a Borel T-selector y such that u(y* (-)) is Borel measurable,

(7.7) u(y*(f) > (1 — ¢/2)U,(f)  forall f,
and, for each a € P (F) and all sufficiently large n,
(7.8) u(y*(f)) > (1 — e)U(f)  with a-probability at least 1 — .

Proor. For a proof of the first assertion, use Formula 5.1 and Lemma 6.2 or
[15], Theorem 4.1. Next choose 8 in (0, 1) such that 8" > 1 — e/2. Let vy}, v3, * * -
be the Borel Markov kernels comprising I. For each k and f, let v,(f) be the first
element of the sequence ¥i(f), Y5(f), - -+ - satisfying (5.2). Then v,, v,, - - - are
Borel measurable and constitute a (I', 8) sequence as defined in Section 5. That the
corresponding I-selector v satisfies (7.7) is evident in view of Proposition 5.1. Since
U,tU (Lemma 6.2), (7.8) holds for all sufficiently large n.
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The proof would be complete if u(y*(-)) could be shown to be Borel measur-
able. Whether it is or not, we do not know and, for present purposes, need not
know, for, as will now be shown, there is a Borel I'-selector A such that u(A *(N) >
u(y*(f)) for all f and u(A*(-)) is Borel. Consider the Borel gambling problem
(I, u) where T'(f) = {8(f), v(f)} for all f. Then U’ is Borel measurable. So, if
A = y or 8 according as u < U’, or u = U’, then A, too, is Borel measurable. Of
course, U'(f) > u(y*(f)) and by Corollary 4.1, uA*(f)) is U’(f) for all f. So
u(A*(-)) is Boreal measurable and is no less than u(y*®(-)). [J

Incomplete stop rules, as defined in [6], are here called stopping times. A stop rule
is simply a stopping time which has only finite values. As in [6], the partial history
(1> - -+, f,) of the history & = (f,, f,, - - - ) is denoted by p,(h). Strategies o and o’
agree prior to a time 7 if 6, = o) and, for every h and n with 0 <n < 7(h),
a(p,(h)) = o'(p,(h). If 7(h) < + oo, abbreviate Pri(B) to p.(h).

LemMMA 73. If o is available in T, ¢ and o' agree prior to time 7, € 20, and
u(o’[p. (W] > (1 — e)V(f,(h)) whenever T(h) < + oo, then u(c’) > (1 — e)u(a).

PrOOF. This lemma is one of the implications in [9], Lemma 3. []

Given ¢ and & > 0, introduce 7 = r(o, €) as the first time (if any) when ¢ is not
conditionally e-optimal; that is,

(7.9) 7(h) = r(o, €)(h)
= inf{n : u(o[ p,(h)]) < (1 —¢) V(f,,)}

The infimum of an empty set of n’s is, by convention, + oo.
The next lemma states that a strategy which agrees with a very good strategy
until that strategy is conditionally less than good is itself a good strategy.

LEMMA 7.4. Let o be a strategy available at f and let € > 0. If o’ is any strategy
which agrees with o prior to time T = r(o, €), then u(co’) > u(o) — ¢ | V(f) — u(o)].
Therefore, if u(o) > (1 — €/2)V(f), then u(o’) > (1 — &) V(f).

Proor. This lemma is part of [9], Lemma 4. []

In view of Lemma 7.1, it suffices to prove Proposition 7.1 under the additional
assumption that I' is countably parametrized and u is Borel, which assumption is in
force for the remainder of this section.

To each stop-or-go house 2, associate the house I » = which is defined by

(T > 2)(f) = =(f), if =(f) contains two elements,
=T(f), otherwise.
Plainly,zgl‘=>2gl"ozgl‘éndEQE’:I‘oE’gl‘oz.
If A is Borel measurable and 3(f) = {A(f), §( )} for all f, then = is Borel and is

countably parametrized, as is I' © 2. So, by Lemma 7.2, the optimal return function
W for Z is Borel measurable, as is the optimal return function R for I o 3.
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LEMMA 7.5. Suppose Z is a leavable, Borel, stop-or-go subhouse of T, a € P (F),
and € > 0. Then there is a leavable, Borel, stop-or-go house 3 such that
@ ZCcZCT,
@) a[W' > (1 —¢eR]>1—¢ and
@iii) R" > (1 — ¢)R.
(Here, W’ and R’ are the optimal return functions for £’ and I' o X', respectively.)

ProOF. By Lemma 7.2, there is a Borel I' o Z-selector y such that
(7.10) a(S)>1—ce¢,
where S = {f: u(y2(f) > (1 — e2/2)R(f)}. Let T = {f:u(y>(f) > (1 —
€)R(f)}, and let 3’ be the smallest leavable, stop-or-go house which is at least as
large as = and in which y(f) is available at each f in 7. That is,

2(f) = {(v(),8(), if fET and 3(f) = (8(f)),
= 3(f), if Z=(f) contains two elements,
= {8(f)}, otherwise.
Obviously, 2’ satisfies (i). To check (ii), let A be the =’-selector which equals y on T

and is 8 on T°. Then, for each f € S, A*(f) agrees with y*(f) prior to the time of
the first exit from 7. So, by Lemma 7.4.

w'(f) > u(A=(f)) > (1 = &)R(/)
for f € S. Condition (ii) now follows from (7.10).

There remains to verify (iii). Since y is a I' o Z’-selector, the inequality of (iii)
certainly holds for f € T. For f & T, let ¢ be any strategy available at fin T o =
and define o’ to be that strategy which agrees with ¢ prior to the time 7 of first
entrance into 7 and such that the conditional strategy o'[p,(h)] is y*(f.(h))
whenever 7(h) < 0. Then R'(f) > u(o’) > (1 — €)u(o), where the first inequality
holds because ¢’ is available in I at f and the second is by Lemma 7.3. []

LEMMA 7.6. Let o € ®P(F)and e > 0. There is a sequence 2o C 2, C - -+ of
leavable, Borel stop-or-go subhouses of T whose optimal return functions
Wo Wi, - - - satisfy
(7.11) a[W, > (1 - UL

PROOF. Let 2, be the trivial house in which only 8(f) is available at f for every
f. Then T ° 2, =T and R, the return function for I' o =, is U.

Suppose that =, has been defined and that 0 <e¢, < 1. Let R, be the return
function for I ° 3. Then, by the previous lemma, there exists 2, ; such that

(7.12) a[ W1 > (1 —¢,)R,] > 1—¢,
and

(7.13) R,.,>(1—¢)R,.

Forn > 1,

R, > (H::ll(l = Ei))RO’
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as follows from (7.13). Thus the event
[Wn+l > (I7-,(1 - ei))U]

includes the event occurring in the left-hand side of (7.12) and, therefore, has
a-probability at least 1 — ¢,. The proof is complete once the ¢, are chosen so that

Ie.,(1 —¢)>1—ce 0
To complete the proof of Proposition 7.1, let 2, Z,, - - - be as in Lemma 7.6

and let 3 be the union of the =,. Then X is a leavable, Borel, stop-or-go subhouse
of T whose return function W is at least (1 — &)U a-almost surely. Suppose
2N = {Af), 6(f)} and vy is that Z-selector which agrees with § on the set
[u = W] and with A on the complementary set. Then vy is Borel measurable and, by
Corollary 4.1, u(y*(f)) = W(f) for all f. The proof of Proposition 7.1 is now
complete.

8. Absolutely continuous houses. As defined in the introduction an analytic
house T is Borel absolutely continuous with respect to a € 9 (F) if, for every f € F
and y € I'(ff), y # 8(f) implies y is Borel absolutely continuous with respect to a.

For this section the rather innocuous assumption is made that every available
gamble vy is regular on the nonnegative functions which means that the integral of
every nonnegative function is the supremum of the integrals of the bounded
functions which it majorizes. Consequently, if two nonnegative functions agree on
a set of y-probability one, their y-integrals are the same.

THEOREM 8.1. If T is leavable and Borel absolutely continuous with respect to
some o € P (F), U is everywhere finite, and 0 < & < 1, then there is an analytic
T'-selector y such that

u(y*(f) > (1 —eU(f) forall f€EF.

A final lemma, which does not use the assumption of absolute continuity, is

needed for the proof.

LemMA 8.1. There is an analytic T-selector v, such that

@ v(HU > (1 = &) U(S) for all f,
@) [y, = 8] C[u = U]

PrROOF. Choose ¢, so that 0 <&, < 1 and (1 — &,)*> > (1 — ¢;). By Lemma 6.4,
there is, for each n > 0, an analytic I'-selector A, such that

(83) MNAU, > (1 - &)U, (f)  forall f,
and '
(84) A(f) = 8(f) = U,(f) = U, i)

If u(f) = U(Y), define v,(f) to be 8(f). If u(f) < U(Y), let n(f) be the least n such
that U, ,(f) exceeds the maximum of u(f) with (1 — &) U(f), and define y,(f) to
be A, ;(f). It remains to verify (i) and (ii). Both are trivial if u(f) = U(f), so
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suppose u(f) < U(f) and set m = n(f). By definition of m, U,(f) < U, ,,(f) and,
hence, condition (ii) follows from (8.4). Condition (i) is a consequence of the
following calculation: v,(f)U 2 Y,(N)Up, = M(NU, 2 (1 = &) Uppy(f) 2 (1 =
&)’U(f) > (1 — epU(N. 0

PrROOF OF THEOREM 8.1. Choose ¢, so that 0 <¢; < 1 and (1 —¢)* > 1 —e.
By Proposition 7.1, there is a Borel selector y, and a Borel subset S of
{f:u(y(f) > (1 — &)U(Sf)} for which a(S) = 1. Since T is absolutely continu-
ous with respect to a, S has probability one under every gamble available at a
fortune f € S. Thus, for each f € S, f, € S for all n with y{°(f)-probability one. If
v is any selector which agrees with vy, on S, then for each f € S and every stop rule
t, u(y>(f), £) = u(y°(f), 1), as can be proved using induction on the structure of f,
and the assumption that all available gambles are regular. Hence, u(y®(f)) =
u(YP(f) > (1 — e)U(f) > (1 — eU(f) for f € S. Set y = v, on S° where v, is
the analytic selector given by Lemma 8.1. If f € S¢ and y(f) = 8(f), then
u(y*(f)) = u(f) = U(f). If f € S° and y(f) # 8(), then ¥(f)(S) = 1 and, there-

fore,

u(y>(f) = [u(y*(f)) dv(£ilf)
= [u(y{(f)) @v(fil )
> (1 — &)/ U(f) av(fil )
=1 -e)v(HU
=(1 - e)r(NU
> (1 - ¢)’U(f)
> (1-U(f).

The proof is complete.

If T is Borel countably parametrized and u is Borel measurable, then, as is not
difficult to verify, the selector y, of Lemma 8.1 and, hence, the selector y of
Theorem 8.1, can be chosen so as to be Borel.

It would not be difficult to use Theorem 8.1 to obtain certain generalizations of
itself, but not very interesting ones. What would be interesting would be to
ascertain whether the hypothesis that T' is Borel absolutely continuous can be
simply deleted from the statement of the theorem. But this question we leave open.
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