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ON THE ZERO-ONE LAW FOR EXCHANGEABLE EVENTS

By DAVID ALDOUS AND JIM PITMAN
University of Cambridge and University of California, Berkeley

We seek conditions for the exchangeable o-field of an independent non-
identically-distributed sequence of random variables to be trivial. A simple
necessary condition is given, and this condition is shown to be sufficient when
the range space is finite. In the case of a general range space, a stronger
condition is shown to be sufficient.

1. Introduction. Let X = (X,) be a sequence of of independent random vari-
ables defined on a probability space (2, ¥, P). Let & c F be the exchangeable
o-field. That is, & is the collection of events of the form {X € E }, where E is a
measurable subset of sequence space which is invariant under the permutation of
finitely many coordinates. Let p, be the distribution of X,,. If p, is the same for all
n, then the well-known zero-one law of Hewitt and Savage (1955) asserts that & is
trivial: F € & implies P(F) = 0 or 1. The main purpose of this paper is to give
some less restrictive conditions on (p,) which are sufficient for & to be trivial.
These conditions are much weaker than those considered by Horn and Schach
(1970), Blum and Pathak (1972) and Sendler (1975). Moreover, these conditions are
necessary when the range space is finite.

Let the range of the random variables X, be a measurable space (S, S). So p, is
the probability on (S, &) defined by u,(B) = P(X, € B). Note that for a count-
able set S we always assume that & is the collection of all subsets of S, and write
B,(x) instead of w,({x}), x € S.

It appears that the way in which the sequence of distributions (,) influences the
structure of & becomes more complex as the cardinality of S increases. Thus, the
results to be given take on different forms according to whether S is finite,
countably infinite or uncountable.

Let us start with the simplest case of a two point set S.

(1.1) THEOREM. Let S = {h, t} and let p, = w,(h), q, = w,(?). A necessary and
sufficient condition for & to be trivial is that T p, N\ q, = 0 or c.

REMARK. Here a A B denotes the infimum of « and 8. An equivalent condition
is obtained upon replacing p, A g, by p,q,, because of the inequality

(12) 2(aAB)<aB/(a+B)<aAB aB>0, a+p8>0.

The sufficiency of this condition is a consequence of Theorem 1.6 below. We will
prove the necessity now, because the proof is easy and the result is important for
the formulation of conditions on (u,) in more general spaces. Let U, be the
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indicator of the event {X, = h}, and let ¥, = U, — p,. Then EV, = 0 and EV? =
Pndn If 2p,q, < oo then Z = V¥, exists a.s. and satisfies EZ = 0, EZ2 = 3p,q,.
Thus, in view of (1.2), if 0 < I p, A ¢, < o then Z is an & -measurable random
variable which is not a.s. constant, whence & is not trivial.

It will be shown in Section 4 that when & is not trivial, the above random
variable Z takes only countably many values, and that & is (up to null sets) the
o-field generated by Z. This sheds some light on a question raised at the end of the
paper by Georgii (1976), which contains results concerning the exchangeable
o-field for dependent sequences of two valued random variables: see also Pitman
(1978).

When S is the line, it is well known that & includes the tail o-field of the
sequence of partial sums (Z7X;). It is easy to verify that the inclusion is an equality
when S is a two-point subset of the line. This fact can be used to deduce the
sufficiency in Theorem 1.1 from results of Orey (1966) concerning tail o-fields (see
also Mineka (1973)). In general, the tail o-field of (Z}X;) may be trivial under
conditions weaker than those given here for & to be trivial. In this connection,
recall a result of Lévy (1937): P(Z1X; > a, infinitely often) = 0 or 1 for each
sequence (a,) of constants, provided that 3.X; is essentially divergent.

The condition involved in the two-point case suggests consideration of the
following condition for a general range space (S, ).

ConpITION (a). For each B € &, 2 u,(B) N p,(B°) = 0 or oo.
Given B € §, let 15 denote its indicator function. Write &, for the exchange-

able o-field of the two-valued sequence (1, ° X,). Evidently

- (13) Vpesby C 6.
Now the necessity in Theorem 1.1 gives a general necessary condition.
(1.4) CoROLLARY. Condition (a) is necessary for & to be trivial.

It turns out that Condition (a) is not sufficient when S is countably infinite
(Example 7.3). So we are led to consider further conditions.

(1.5) DerINiTION. Let (p,) be a given sequence of probabilities on a countable
S. For x,y € S call x and y linked if 3 p,,(x) N\ p,(y) = o0. Call x and y connected
if there exists a finite sequence of points, each linked to its successor, starting at x

and ending at y.

ConpITION (b). For x,y € S, x is connected to y whenever p,(x) A p,(») >0
for some n.

(1.6) THEOREM. Suppose S is finite. Then each of the conditions (a) and (b) is

equivalent to the triviality of &.
Proposition 2.7 will demonstrate that, for finite S, Conditions (a) and (b) are
equivalent. Then the theorem is an immediate consequence of Corollary 1.4 and
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Theorem 1.8 below. We note that it is not sufficient for condition (a) to hold only
for singleton sets B = {x}, x € S: see Example 7.1.

(1.7) THEOREM. Suppose S is finite. Then & coincides, up to null sets, with the
o-field generated by some countable partition of 2.

This theorem will be proved in Section 4. During the course of the proof it will
be seen that, for finite S, there is essential equality in (1.3)—that is, & coincides
with \/gesbp up to null sets. However, when S has more than two points these
o-fields are not identical (Example 7.2). Thus the sufficiency of condition (a) in the
finite case does not seem to be an immediate consequence of the result (1.1) in the
two-point case.

Let us now consider the case of countable S. It turns out that Theorem 1.6 does
not completely extend to this case, but we have the following partial result, which
will be proved in Section 3.

(1.8) THEOREM. Suppose S is countable. Then Condition (b) is sufficient for & to
be trivial.

This theorem and Corollary 1.4 yield the following implications, for countable S

Condition (b) = & is trivial = Condition (a).
Theorem 1.6 asserts that both implications can be reversed, for finite S. But
Examples 7.3 and 7.5 will show that neither implication can be reversed for infinite
S. N
»

Finally, let us_consider the case of a general range space (S, 5). Obviously one
would not expect Condition (b), involving measures of singletons, to be appropriate
_ here.

(1.9) DerINITION.  For a given sequence (p,) of probabilities, let
=N {BES :pu,(B)=0o0rl}.
Observe that condition (a) is just the condition that X y,(B) A p,(B€) = oo for

each B & §,. We now formulate a stronger condition, in terms of a reference
measure.

ConbDITION (c). There exists a probability measure ¢ on (S, ) such that: for
each B & §, there exists ¢ > 0 such that
(1.10) >, 1,(B,€g) =0,  where
(1.11) r,(B, &) = inf{ p,(B\ C) A p,(B°\C) : (C) < ¢}.
If this condition holds for a given ¢, we shall say (p,) is ¢-tame.

(1.12) THEOREM. Condition () is sufficient for & to be trivial.

For the proof see Section 6. If S is countable it is easy to see that conditions (b)
and (c) are equivalent (Proposition 2.7), and so Theorem 1.8 is a consequence of
Theorem 1.12. Nevertheless, we shall derive the results in the countable case
independently of Theorem 1.12, because the proof of that theorem is both technical
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and complicated, and gives no insight into the structure of &. The technique to be
used in the countable case is much simpler and more intuitive, involving the novel
application of some ideas from Markov chain theory.

The statement of Condition (c) is not as simple as one would wish. Sufficient
conditions which may be easier to verify are given below. Their hypotheses will be
shown to imply Condition (c) in Section 6. Let < denote absolute continuity.

(1.13) COROLLARY. Let A denote the set of limit points of (p,) in the total
variation topology. Suppose that for each n there exists N\, € A such that p, <A,
Then & is trivial.

(1.14) COROLLARY. Let ¢ be a probability measure on (S, S). Suppose
() u, < &, for each n;
(i) ¢ < w, uniformly in n.

Then & is trivial.

ReMARKs. Condition (i) means: for each ¢ > 0 there exists § > 0 such that
p,(B) < 8§ implies ¢(B) < &, n > 1. Corollary 1.13 is a generalisation of the result
of Blum and Pathak (1972), who proved & trivial when p, € A for each n.
However, it is easy to construct examples where A is empty but the hypothesis of
Corollary 1.14 holds.

In Section 2 we discuss the relations between the various conditions on ()
which have been described. In Section 3 we develop a “coupling” technique, for
countable S, and use it to prove Theorem 1.8. This technique is extended in Section
4 to describe the strucfure of & when it is nontrivial, and to prove Theorem 1.7. In
Section 5 we digress to show how our results fit into the framework of Markov
chain coupling theory. The case of a general (S, $) is discussed in Section 6, where
Theorem 1.12 is proved. Finally, Section 7 is a miscellany of examples.

We draw the reader’s attention to the recent paper of Simons (1978), who
discusses closure properties of the class of sequences for which & is trivial.

2. Relations between the conditions. Throughout this section S is countable
and (p,) is a fixed sequence of probabilities on (S, §), where & is the collection of
all subsets of S. We shall be much concerned with equivalence relations on S, and
the associated partitions of S into equivalence classes. Note that the relation ~ is
stronger than ~ (that is, x ~y implies x ~y) if and only if the associated
partition R~ is a refinement of R~ (each element of R~ is a union of elements of
Q™). For 4, B € & write 2(4, B) = 2 p,(4) A\ p,(B). Recall Definition 1.5 of
linked and connected. In the present notation,

(2.1) x and y are linked & Z(x, y) = oo.

Clearly the relation of connection is an equivalence relation. Write C for the
partition of equivalence classes. Then

(2.2) celC=3(x,y)< o, ech xeC, yeC.

Now let us say that x and y are weakly linked if 3(x,y) > 0. Define weakly
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connected analogously, and write wC for the weak-connection partition. Since
connection implies weak connection,

(2.3) C is a refinement of wC.
Now recall Definition 1.9 of §,. In present notation S, = {4 € S : Z(4, 4°) =
0} and we clearly have
(2.4) B &S,=>3(x,y)>0
for some x € B,y € B¢,

(2.5) So is a o-field, and wC is the set of atoms of &,
The main result of this section is Proposition 2.7 below. Here is a preliminary.

(26) LemMA. Lete BC S.If
2(x,x)< o, forall x € B, x € B,
then
3(F, F') < oo, for all finite F Cc B, F' cC B°.

PROOF. Apply repeatedly the inequality
B+ Na<BAa+yAa; aB,y>0.

(2.7) PROPOSITION. The following are equivalent.
(@") For each B & S, there exist finite sets F C B, F' C B¢ such that Z(F, F’)
= 0.
(@”) For each B & &, there exist x € B,y € B¢ such that 3(x,y) = oo.
®) CcS,.
(b) For x,y € S, 2(x,y) > 0 implies that x is connected to y.
(c) The sequence (p,) is ¢-tame, for some probability ¢ on (S, §).

REMARK. Here (b) and (c) are just Conditions (b) and (c) of Section I.
Moreover (a’) is the same as Condition' (a) of Section 1 when S is finite. Hence
Proposition 2.7 enables Theorem 1.6 to be deduced from Corollary 1.4 and
Theorem 1.8. The proof of Proposition 2.7 is achieved by proving the circle of
implications (a") = (b") = (b) = (a”) = (¢) = (a’). Observe, however, that since the
implication (a@”) = (a’) is obvious the notion of ¢-tameness is not needed for the
equivalence of the other conditions.

PrROOF. (a’) = (b’). Consider C € C. By (2.2) and Lemma 2.6 we see that
2(F, F’) < oo for each F C C, F’' c C°. Thus (a’) implies C € §,,.

(b") = (b). If (1) holds then (2.5) implies that wC is a refinement of C. Thus by
(2.3), w€ = C, and the relations of connection and weak connection are therefore
identical.
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(b) = (a”). Consider B & §,. By (2.4) and (b) there exists a point x € B which
is connected to some point y € B°. Hence some points x’ € B, y’ € B€ are linked.
Now use (2.1).

(a”) = (c). Let ¢ be a probability on (S, S) such that ¢(s) > 0 for each s € S.
Consider B & §,, and let x, y be as in (¢”). Choose 0 < & < ¢(x) A ¢(»). Recall-
ing Definition 1.11, we see that r,(B, &) > p,(x) A\ u,(y). Hence X,r, (Be) >
2(x,y) = oo, and (p,) is ¢-tame.

(¢) = (a’). Suppose (p,) is ¢-tame for some ¢. Consider B & S,. Choose ¢ > 0
such that 2 ,r,(B, €) = o0. Now choose a finite set F,, such that ¢(Fy) > 1 — ¢, and
let F = FyN B, F' = Fy N B°. The definition of r, shows that r,(B, &) < p,(F) A\
w,(F’). Hence Z(F, F’) = oo, and (a’) holds.

We end this section by proving, for use in Section 4, a partial analogue of (2.5)
for the connection partition.

(2.8) DerINITION. Let &, = {B C S: 3(B, B°) < }.

(2.9) PROPOSITION. Suppose S is finite. Then S, is the field generated by the
connection partition C.

Proor. Consider B € S, . Suppose x € B and x is linked to y. Then y € B,
because (B, B€) < . Hence B is a union of sets in C. Conversely, suppose B is
a union of sets in C. Then 3(x, y) < oo for each x € B,y € B°. Now Lemma 2.6
and the finiteness of S imply 3(B, B°) < oo, ie., B € S,.

ReMARK. If S is countable it is easy to see that S is a field contained in the
o-field generated by C. But S, is not necessarily a o-field: see Example 7.4.

3. The coupling argument. We begin with an informal outline of the proof of
Theorem 1.8, which exploits a particular kind of coupling of processes. Let a
sequence (X,) of independent random variables and points y, z in S be given.
Suppose that on some probability space (2, ¥, P) one can define copies (Y,) and
(Z,) of (X,) such that for each w € £ the sequence (y, Y,(w), Y3(w), - - - ) is a finite
permutation of (z, Z,(w), Z5(w), - * ). Suppose further that for each m > 1 this can
also be done with (X,,, » > 1) replaced by (X,,, ,, n > 1). We shall then say that y
and z can be coupled. The proof of Theorem 1.8 divides into two parts. The first
(Proposition 3.13) shows that the exchangeable o-field is trivial provided that each
weakly linked pair of points can be coupled. The second (Proposition 3.14) gives a
construction to show that linked points can be coupled. From these facts and a
transitivity argument it follows that & is trivial provided that weakly linked points
are connected: this is Theorem 1.8.

The coupling construction involved here can be represented as a coupling of
Markov chains of the kind described by Griffeath (1975). This point of view will be
developed in Section 5, but it is not adopted here.

It is convenient to set up the formal machinery on sequence space. Let S be a
countable set. Write S * for the space of sequences x = (x;) of elements of S. Write
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X, : §®° — S for the coordinate map X, (x) = x,, and let 5 be the o-field on S
generated by the coordinate maps. Let G be the group of finite permutations of
N={1,2,...}, and note that G is countable. We regard 0 € G as acting on
X € §%:(0x); = X,()- Then the exchangeable o-field & is defined as the collection
of sets E € 5 such that x € E, 0 € G = ox € E. Now let Q be an arbitrary
probability measure on (S*, §®). Under Q, (X,) forms a sequence of S-valued
random variables, which may be dependent.

(3.1) DEeFINITION. Lety, z € S, m € N. A Q post-m coupling which exchanges y
and z, or more briefly a (Q, m,y, z) coupling is a pair (Y, Z) of sequences of
random variables Y = (Y,), Z = (Z)) defined on a common probability space
(Q, ¥, P) and such that:

3.2) Y, =y, Z =z

(3.3) Y,=2, 2<i<m

(3.4) (Y, i>m)and (Z, i > m) have the same distribution as (X, i > m)
under Q;

(3.5) there exists a random permutation ¢:2 — G such that Y = oZ.

(3.6) DErFINITION. Let Q be given. For y, z € S say y and z can be coupled, and
write y ~ z, if for each m there exists a (Q, m, y, z) coupling. Call ~ the coupling
relation.

~ (3.7) PROPOSITION.  The coupling relation is an equivalence relation.

PrROOF. Only transitivity needs verifying. Suppose there exists a (Q, m, w, z)
coupling (W, Y) and a (Q, m, y, z) coupling (Y’, Z'). Let s € S be arbitrary. We
may clearly assume that W, = Y, = Y/ = Z/ = s for 2<i<m. Let Y* be a
sequence with the-common distribution of Y and Y’; then let W* and Z* be
conditionally independent given Y*, with the conditional distribution of W* given
Y* equal to that of W given Y, and the conditional distribution of Z* given Y*
equal to that of Z’ given Y’. Then there exist random permutations o and 7 such
that W* = ogY* a.s. and Y* = #Z* a.s. After discarding the null sets, one sees that

* = (om)Z* and hence that (W*, Z*) is a (Q, m, w, z) coupling.

(3.8) REMARK. If there exists a (Q,m,y,z) coupling, there also exists a
(Q, n, y, z) coupling for each n < m. .

(3.9) REMARK. If y %z, there cannot exist kK < co such that each random
peri)nutation o(w) moves only the first k co-ordinates. For this would imply
1+ 3k_,1(Y, = y) = 2_,1(Z, = y), which is impossible because P(Y;=y) =
P(Z,=y)fori=2,---,k.

(3.10) DerNiTION.  Given a probability Q on (S %, ), points x;, - - -, x, € S
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and 4 € 5%, let
Q(xl’ ttt ’xn’A) = Q{(xl’ t ’xn’ Xn+l’Xn+2’ ct ) GA}.

(3.11) ReMArRk. If E € & then Q(x,,- - * , x,, E) is a symmetric function of
xl’ LK N x".

(3.12) LemMmA. Suppose E € & and z; ~y;, 1 <i <n. Then Q(y, * * , Y, E)
=0z, "2, E).

ProoF. Because (z;) may be changed to (y;) by altering one term at a time, we
may assume that (z;) and (y,) differ only at a single index. And by the symmetry of
Q(—, E) we may assume this index to be 1. So suppose y, #z,, y;, = z; for
2<i<n. Let(Y,Z)bea(Q,n,y,, z;) coupling. By Definition 3.1 we may assume
that Y, = Z, = y,, 2 < i < n. Now by (3.4)

Q1"+ »¥w E) = P(Y € E)
oz, ,2,E)=PZEE).
But the events {Y € E} and {Z € E} are identical, because Y(w) = o(w)Z(w).
The preceding results are valid for an arbitrary probability Q. But now we need
to assume that Q is a product measure, i.e., that (X,,) is an independent sequence of

random variables. So let (p,) be a sequence of probability measures on S, and
recall the definition of weakly linked from Section 2.

(3.13) PROPOSITION. Suppose Q = Il p,. If y and z can be coupled whenever y and
z are weakly linked, then & is trivial under Q.

ReEMARK. The converse also holds: see Proposition 5.5.

Proor. Fix E € &. Write ¥, for the o-field generated by (X, - -, X,). By

independence, Q(E|%,) = Q(X,, -+, X,, E). Now let (y, - ,y,) and
(zy, - -, z,) be two sequences, each of which is a sequence of possible values of

(X, -, X,): that is, p(») > 0 and p(z) >0, 1 <i < n. Then y; and z; are
weakly linked; by hypothesis y;, ~ z;. Using Lemma 3.12, we see that Q(E|%,) is
a.s. constant for each n. But Q(E|%,) — 1 a.s., whence Q(E) = 0 or 1.

This completes the first part of the argument. We now state the result of the
second part, but before embarking on the proof we will show how to deduce
Theorem 1.8.

(3.14) PROPOSITION. Suppose Q = Il p,. If y is linked to z there exists a
(Q, L, y, 2) coupling.

ProoF oF THEOREM 1.8. Let (p,) be a sequence of probabilities satisfying
Condition (b). Suppose y and z are linked under Q = II,u,. Fix m > 1, and let
W, = W,4n,- Then y and z are linked under Q' = II,,u, also. Applying Proposition
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3.14 to Q’, there exists a (Q’, 1, y, z) coupling (Y, Z). Now define

(Y, Z) = (»,2);

(Y!, Z)) = (s, 5); 2<i<m

= (Yi_ s Zicms1)s i>m

where s € S is arbitrary. Then (Y’, Z") is a (Q, m, y, z) coupling. Thus y and z can
be coupled under Q = I p,. We have proved this for any linked pair y, z but the
coupling relation is an equivalence relation, so
(3.15) y and z can be coupled whenever y and z are connected.

Now Condition (b) asserts that y and z are connected whenever y and z are weakly
linked. Thus Condition (b) implies the hypothesis of Proposition 3.13, and hence
the triviality of &.

(3.16) DeEerFINITION. Given x = (x;) € S®,y € S, let
M,(x,y) = Zi_,1(x; = »).

Let M,(x) denote the vector (M,(x, y); » € S). Then M,, considered as a random
vector defined on (S®, 5%, Q), describes the empirical distribution of
(X} c 0+, X,) under Q.

The next lemma is an immediate consequence of the definition.
(3.17) Lemma. M,(x) = M,(y) if and only if there exists a permutation ¢ of
{1, -, n}such that x; = y,;, 1 <i <n.

PRrROOF OF PROPOSITION 3.14. Let y and z be linked. Let Y, =y, Z, = z. Let
. (Y,, Z,), n > 2) be a sequence of independent S X S valued random variables,
whose laws are specified as follows: -

(1) Y, has law p,;

(i) if Y, € {y,z} then Z, = Y,;

(iii) conditional on {Y, = y} or {Y, = z} the law of Z, is p, conditioned on
{», z}.
It is clear that both (Y,, n > 2) and (Z,, n > 2) have law II3°w,.

Notice that M, (Y, s) = M, (Z, s) for all s & {y, z}. Hence M, (Y) = M, (Z) iff
MY, y) = M,(Z, y). Define

Dn = Mn(Y,y) - Mn(z’y)’
T =inf{n: D, =0},

and suppose we can prove

(3.18) P(T < ) = 1.
Then we can define
(3.19 Z¥w)=2Z,(w) if n<T(w) <0

Y,(w) otherwise.
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We claim that the sequence (Z}¥, n > 2) has the same law as (Z,, n > 2). It clearly
suffices to verify this conditional on {7 = m}, for each m > 2. But conditional on
{T = m}, each of the sequences (Y,, n > m) and (Z,, n > m) is independent of
(Z, - -+, Z,) with law ]I, ,.p,, and we have Z* equal to Z,(2 < n < m) and
equal to Y,(n > m).

Clearly

Mp(Z*) = M(Z) = M(Y) on{T< oo}
Zr=Y, on{T<n}.

n n

So by Lemma 3.17 there exists a finite permutation ¢(w) such that Y(w) =
0(w)Z*(w). Thus (Y, Z*) is a (Q, 1, y, z) coupling. To prove (3.18) observe that (D,)
is a random walk on the integers with nonstationary jump probabilities
P(D,=D,_;*1)=aq,
P(Dn = Dn—l) =1- 2(1',,
where a, = 1, (»),(2)/(1,(¥) + 1,(2)). But y and z are linked, so the inequality
(1.2) implies S a,, = oo. Thus (D,) jumps infinitely often a.s. by the Borel-Cantelli

lemma. But (D,) watched only when it jumps is a simple symmetric random walk.
This motion hits zero a.s., hence so too does (D,).

4. The structure of nontrivial 5. We continue working in the framework set
up in the last section, but now aim to describe the structure of &, when it is not
trivial. We start with some definitions and simple lemmas. No measure is involved
yet.

Let &} be a partition of S. Recall the definition (3.16) of M,(x, y).

(4.1) DermimoN. Forx € S, 4 C S let M,(x, ) = S, ,M,(x, ). Let M%(x)
be the vector (M, (x, A), A € R).

(42) DerINITION. For x € S let X,%(x) be the element R € R which contains

X, (X).
Thus (X}, X,% - - - ) describes the coordinate sequence (X, X,, * - - ) modulo
@, and M,* is the empirical distribution of X%, - - - , X*

(4.3) NotatioN. Let &(Y,; n > 1) denote the exchangeable o-field of a
sequence (Y,; n > 1), and I(Y,; n > 1) the tail o-field.

The first two lemmas below are obvious.
(44) LemMA. If 9 is a refinement of R then &6(X,%n > ) c &6(X7;n > 1). In
particular 56X} n > 1)C &.

4.5 LemMa. MHx) = M,,m(y) if and only if there exists a permutation o of
{1, - -, n} such that, for each i, the pair x,, Yoti) lie in the same element of R .

(46) LemMa. 66X n> 1) =M% n > 1).
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PrROOF. Let §, be the o-field generated by (M}, M2, - - - ). Then 8, is also
generated by (M, x.%  x* . ...). It then follows from Lemma 4.5 that §, is
the collection of sets of the form {(X,®) € E,}, where E, C S* is a measurable set
invariant under permutation of coordinates {1, - - - , n}. Hence & (X% n > 1) =
NS, =3M%n>1.

We now introduce a product law Q =1y, on S®. Let ® be the partition
generated by the coupling relation (3.6). Let C be the partition generated by the
connection relation (1.5). Given a o-field %) C &, let us say that % = & a.s. if for
each set E € & there exists D € %) such that (D \ E) = Q(E \ D) = 0.

4.7) PropositioN. &E(XXn> 1D)=6XS%n>1)=6 aus.

ProOF. By (3.15) C is a refinement of R.. So by Lemma 4.4, 6(X*; n > 1) c
&XC:n>1)c &. Now fix E € &. Using Lemmas 4.5 and 3.12 as in the proof
of Proposition 3.13, we see that Q(E|%,) is a function of M, Hence E is a.s. equal
to some event in T(M.*; n > 1), and the result follows from Lemma 4.6.

(4.8) PROPOSITION. Suppose S is finite. Then there exists a countably-valued
random variable Z such that 6¢(Z) = & a.s.

Proor. By Proposition 2.9,
(4.9) Su(CO)AR(C)< o each CeC.
Now C has at most |S| elements. Thus we may choose n, so large that

L(C) Am(CHYLI1/|S], C€C, n>n,

~ Then there exist elements C,, n > no, of C such that

(4.10) m(C) >3,

for otherwise u,(C) < 1/|S| for each C € €, which contradicts 3 u,(C) = 1.

Choose x € S such that x, € C,, n > ny. Let m be the vector M,%(x). Consider

the random vector Z, = M,° — mS. For each K > ng

oz, #Zx forsome n > K)=Q(X, & C, for some n > K)

<Z,5kba(Cp)
=25 kt(C) N\ 1 (C) by (4.10)
<22 nskta(C) N 1, (C°)

which converges to zero as K — oo, by (4.9). Thus there exist an a.s. finite random
variable N and a random vector Z such that

(4.11) Z,=2Z, n>N.

Now Z has a finite number of integer components, and so is countably valued.
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TJMEn>1)=93(Z,;n>1)
= 0(Z) as.by (4.11).
The result now follows from Lemma 4.6 and Proposition 4.7.

5. The associated Markov chain. In this section we show how the empirical
distribution process may be regarded as a Markov chain. We show that Proposition
3.13 (if weakly linked points can be coupled then & is trivial) is a special case of a
result concerning Markov chain coupling, and prove its converse.

We begin with a general discussion of Markov chains. Let A be a countable set,
and let p = (p(k, A) : k, A € A) be a Markov matrix. A A-valued process L is
Markov (p) if L is a Markov chain with discrete time set {0, 1,2,- - - } and
stationary transition probabilities p. A bivariate process (K, L) = ((K,, L,), n > 0)
defined on a probability space (2, ¥, P) is a (k, A, p)-coupling if

(a) K, = « and K is Markov (p);

(b) L, = A and L is Markov (p);

(¢) K,(w) = L,(w) for n > T(w),

where T: 2 — {0, 1, - - - } is an a.s. finite random time. Two points k, A in A can
be p-coupled if there exists a (k, A, p)-coupling. According to Theorem 4 of
Griffeath (1975),

5.1) k and A can be p-coupled iff A(k, A) =0,  where
A(K’ }‘) = limn—»oo”pn(n’ ') - pn(A, .)”
and || - || is the total variation norm (see also Pitman (1976)). Now suppose M is a

process, and for each y € A let P, be a probability under which M, = y a.s. and M
is Markov (p). From (5.1) and Proposition 1 of Griffeath (1975), the following
assertions are equivalent.

(a) All pairs of states can be p-coupled.

(b) For each 4 in the tail o-field J(M), either P (4) =0 for all y € A or
P(A4)=1forally € A.

However, we require a slightly different form of this result which applies when
there is a given initial distribution, and where (M) may be trivial for this initial
distribution but not for others.

(5.2) PROPOSITION. Let M be Markov (p), and let g, be the distribution of M,
The following statements are equivalent. :

(a) The tail o-field T (M) is trivial.

(b) Two states k and A can be p-coupled whenever q,(k) N\ q,(A\) > 0 for some n.

PrROOF. By virtually the same argument as that used to prove (3.12), if x can be
p-coupled to A then for 4 € (M), P(A|M, = k) = P(A|M, = X\). Then if (b)
holds P(4|M,, - - - , M,) is a.s. constant for each n and (a) follows by martingale
convergence.
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Suppose now that (a) holds. Let J; be the o-field generated by (M, M, ,, - - - ).

Define
e(j, G) = supFegj|P(F|G) — P(F)|; G €9, P(G) > 0.
According to (1.129) of Freedman (1971), triviality of (M) implies lim ; e(j, G) =
0 for each G. By considering G = { M, = k}, where P(G) = g,(x) > 0, and F of
the form F = {M,,; € B}, B C A, we see that
“pj('c’ ') - qn+j(')” < E(j, G)'

So if g,(x) N g,(A) > 0 we deduce that A(k, A) = 0 and then (b) results from (5.1)

Now as in Section 3 let (M,) be the empirical distribution process for the
coordinate sequence (X,,) on S *, and recall from Lemma 4.6 that the exchangeable
o-field & is identical to T (M).

(5.3) PROPOSITION. Under a product measure Q = Ilp, the process (M,) is a
Markov chain with stationary transition probabilities.

ProOF. Let A be the set of finite counting measures, i.e., functions A : § —»
{0, 1,2, - -} such that |]\| = ZA(x) < oo0. Note that A is countable. The process
(M,) takes values in A, and is easily verified to be Markov with the following
transition matrix { p(k, A)}:

p(k,A) = p, . (x) if |k|=n and A=«k+3,
=0  otherwise,

where §, is the unit mass at x € S.
We keep the above notation for the remainder of the section.

"(54) LeMMA. Let k, A\€ A and y, z € S, and suppose that |k| = |\| = m and
k — A = 8, — §,. The counting measures k and A can be p-coupled if and only if there
exists a Q-post-m coupling which exchanges the points y and z.

REMARK. The “if” part of the lemma is obvious. From this and Proposition 5.2
we deduce Proposition 3.13, using the transitivity of the p-coupling relation (cf.
3.6).

Proor. Let (K, L) be a (x, A, p) coupling defined on (R, %, P), but index
(K, L) by {m,m+1,- - -} instead of {0, 1,- - - }. By discarding a null set we
can assume that for all n > m there exist S-valued random variables Y, and Z,
such that for all w € Q, n > m the following is true: K, , (w) equals K (w) plus a
unit mass at Y, (w), and L, (w) equals L (w) plus a unit mass at Z (w). Define also
Y,=y,Z,=2Y,=2Z =y,2 <i<m,where (y, 2 <i < m)is a sequence with
empirical distribution k — 8, =A — §,. Then (Y, Z) is evidently a (Q, m,y, z)
coupling.

Now we can prove the converse to Proposition 3.13.

(5.5) PROPOSITION. Suppose & is trivial. Then y and z can be coupled whenever y
and z are weakly linked.
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PrOOF. Suppose & is trivial, and fix y %z, m > 1 such that p,,(») A ,.(2) >
0. Let y be a sequence with y,, = y and p,(y,) > O for all n, and let z,, = z, z, =
v, for n # m. Let k, = M,(y), A, = M (2). Then k, — A, =8, — §,, n > m, and
Q(M, = \) > 0 for both A = A, and A = «,. Since & = J(M), k, can be p-coupled
to A, by (5.2). Thus we see by (5.4) that for each n > m there exists a (Q, n, y, z)
coupling, i.e., y is coupling equivalent to z.

REMARK. It is now clear that the following are equivalent:
(i) & is trivial,
(ii) y is coupling equivalent to z whenever y and z are weakly linked,
(iii) the coupling relation is identical to the relation of weak connection,
(iv) the partition generated by the coupling relation is identical to the collection
of atoms of the o-field S,.

Recall Theorem 1.8 asserted that & is trivial provided weakly linked points are
linked. This was proved via Proposition 3.14, which showed that linked points can
be coupled. Now the converse to Proposition 3.14 is false (Example 7.5). So any
method for constructing couplings under hypotheses weaker than those of Proposi-
tion 3.14 would lead to an improvement of Theorem 1.8. We do not know of any
general method, but in Example 7.5 an ad hoc coupling is constructed where no
pair of distinct points is linked.

A version of Proposition 3.14 can be proved for more general (i.e., uncountable)
range spaces. So it would be natural to try to prove the zero-one law on more
general spaces using this same technique. However, on more general spaces the
problem of constructing couplings using hypotheses on (u,) seems very difficult,
since obviously one cannot merely watch singletons. We are therefore forced to use
different methods.

6. The general range space. Here we consider independent random variables
with values in an arbitrary measurable space (S, &). Our aim is to prove Theorem
1.12. The proof is quite different from that given in the countable case: it is based
upon a detailed and somewhat technical analysis of the behavior of
Q(xy,* * + , X, E) as n — oo for a typical sequence (x,) € S® and an exchange-
able set E. The central part of the proof is Lemma 6.6, which establishes a certain
property of Q(x, E). This property is then shown to imply that & is trival: the
arguments used may be useful for proving other kinds of zero-one law (see Remark
6.13).

We start with some preliminary lemmas. Let (7, 9) .be another measurable
space. Let 4 be a product measurable subset of S X T. Let

A={y:(x,y)EA}cT, x€S,

A4, ={x:(xy)€A}CS, yeT
Let A and p be probabilities on (S, $) and (7, T) respectively.
6.1) LemMA. If p{y : 0 < N4,) < 1} = 0 then
A{x: p(4) =A X p(4)} = L
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The easy proof is left to the reader (verify that 4 coincides, up to some product
null set, with S X {y € T: M4,) = 1}).

(62) LemMA. Let 0 <u <3. Then
AMx:p(4) <u} Ap{y:M4y) <u} <2u.

PrOOF. Put P = A X p, and denote the projections by X and Y. Let f(x) =
p(A4), F = {f(x) <u}, g(»y) = M4)), G = { g(Y) <u}. We must prove
(6.3) P(F) A\ P(G) < 2u.
But uP(F) > P(FA) > P(AG) — P(F°G) > (1 — wP(G) — P(F°)P(G). This
yields after rearrangement
(P(F) — 2u)(P(G) — 2u) + u(P(F) — 2u) + u(P(G) — 2u) <0

and (6.3) follows.
Now let ¢ be a reference probability on (S, $), fixed for the rest of the section.

(64) LEMMA. Let A be an exchangeable subset of S X S, w a probability on
(S,8).Let BE S,e> 0. Then

¢{x : |w(4,) — 15(x)| > 57(B, e)} >,
where r(B, €) = inf{ u(B \ C) A pf(B°\ C) : ¢(C) < ¢€}.
ProOOF. By definition, 4 is exchangeable iff 4 is product measurable and

A, =,A for all x € S. Thus taking A = p in Lemma 6.2 shows that for an
exchangeable set 4
~(65) p{x s p(4,) <u} Ap{x:p(dy) <u} <2u
Now given B and ¢ with r(B, &) > 0, let u =3r(B, ), C = {x : | w(4,) — 15(x)| >
u}. So B\C C {x:m4,) <u}, B\C C {x: ) <p}. If $(C) <e then
w(B\ C) A\ (B \ C) > 2u by definition of r(B, &), and this contradicts (6.5).
Now let (u,) be a given sequence of probabilities on (S, S). Let Q be the
product measure [[,u, on (S*®, §%), & C & the exchangeable o-field. For 4 €
&%, xp 0+ ¢, x, € S let Q(xy, -+ -, x,, A) be defined as in (3.10), and note that
(3.11) still applies. Let r,(B, €) be as in (1.11), i.e., the value of r(B, ¢) in (6.4) for
p = m,. Here is the central result in the proof of Theorem 1.12.

(6.6) LEMMA. Let E € &, B € 5. Suppose € > 0 is such that 3 ,r,(B, €) = .
Then

¢{x : |Q(x, E) — 15(x)| > 3¢} > je.

PROOF. Since the definition of Q(x, E) does not depend on p,;, we assume
B, = ¢. Observe first that

|Q(x, E) — 15(x)| = Q(x, D)
where D is the symmetric difference of (X; € B) and E, so it suffices to show that
Q(D) > e. Now for 4 € &* write Qg,(4) for O(X,, - - -, X,, A), which is a
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version of Q(4|%,). Consider for each n > 2 the random variable

(6’7) Hn = an—l(an(D) > %) = h(Xl’ ) Xn—l)’
where h can be specified as follows: fory = (y,, - * * , y,_1), h(x,y) = |g(x, y) —
15(x)|, where g(x,y) = m,{z : Q(x, Y, z, E) > %}. For each fixed y, the symmetry
of Q and Lemma 6.4 imply that for a, =37,(B, ¢)
o{x : h(x,y) >a,} >

Because p, = ¢ this implies
(6.8) O(H, >a,) >e, n>2  where Z,a, = .
But an elementary argument shows that (6.8) and the positivity of the random
variables H, imply

Q(E,H, = o) >e
Now (6.7) and the conditional Borel-Cantelli lemma (Breiman (1968), Corollary
5.29) yield

0(Qg,(D) > 1 infinitely often) > e.

Hence Q(D) > ¢ by martingale convergence.

(6.9) LemMmA. Let E € &. If (p,) is ¢p-tame, then
m{x : Q(x, E) = Q(E)} = 1.
ProoF. Let S;° be the product of all copies of S excluding the first, and let Q,

be the probability II3°y, on S;°. Observe first that by martingale convergence, for
¢ X Q, almost all (x,y) € S® =S X §;°,

O(x, ¥, E) > 1g(x, y) as n— o,
where y = (y,, 535, - - - )and y, = (¥ - *,»,) Thus for Q, almost all y € S;°
(6.10) ¢{x : Q(x, ¥, E) > 1p(x, y)} = 1.
Now let E, C S be the section of E aty € S,°, and define F C S;° by
F={y:0<p(E)<1}.

By Lemma 6.1 it suffices to prove Q,(F) = 0. Suppose, to obtain a contradiction,
that Q,(F) > 0. Choose and fix a y € F such that (6.10) holds. Then

(6.11) o{x: O(x,y, E) > 15(x)} =1

where B = {x:(x,y) € E} is such that 0 < p,(B) < 1. But because (u,) is
¢-tame there exists € > 0 such that 37,(B, €) = oo. Thus Lemma 6.6 can be applied
with Q' = p; X I, , w, substituted for Q and the section of E at y, substituted for
E to yield

(6.12) #{x 1 1Q(x, v, E) = 15(x)| > 3¢} > je.

There is now a contradiction between (6.11) and (6.12).
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PrOOF OF THEOREM 1.12. Suppose (u,) is ¢-tame and E exchangeable. By
Lemma 6.9, Q(X,, E) = Q(E) a.s. Now fix y = (x;,* - -, x,) and apply Lemma
6.9 to Q' = II®, , ; and the section of E at y to obtain

Q(xl’ Ty X Xpaps E) = Q(xl’ Tt Xy E) a.s.

Hence by induction Q(X,, - - -, X,,, E) = Q(FE) a.s., and martingale convergence
shows Q(E) =0or 1.

(6.13) ReMARk. The argument after Lemma 6.6 establishes the following result,
which might be useful for proving zero-one laws in other circumstances.

PROPOSITION. Let ¢ be a probability on (S, S). Let © be a set of product
measures on S®, and let G be a sub o-field of 5. Suppose

@) 0 =1ln, € O implies Q" =1l ,14,4, € O;
(ii) G € 8 implies G' = {(x;): (s, X, Xp, - - )E G} E §,eachs € S;
(iii) for each B € § either
(@) Jor each Q =11, € © and each n > 1, p,(B) =0o0r 1;
or
(b) there exists € > 0 such that the conclusion of Lemma 6.6 holds for each
QEBEES.

Then Q(G) =0 or 1 for each Q €0, G € §.
Finally, we must prove Corollaries 1.13 and 1.14.

ProOF OF COROLLARY 1.13. We verify that (p,) is ¢-tame for ¢ = I27"A,.
Observe first that for any n, j > 1; B, C € S we have

B (BN C) > N(B\C) = [N — |
> N(B) = 26(C) — N — mll-
Using the same inequality for B¢,
r.(B, &) > N(B) AN(BS) — Ye — |\, — I
Now let B & §, be given. Then 0 < A(B) < 1 for some j. Since A EA,
lim sup,_,,.7,(B, €) > N(B) AN(B°) — 2.
For small enough ¢ > 0 this is positive, so Zr,(B, ) = co.

PrROOF OF COROLLARY 1.14. Again we verify that (y,) is ¢-tame. If B & §, then
0< ¢(B)<1. Let 2e =¢(B) AH(B). Then ¢(B\C) ANB°\ C) > ¢ when
¢(C) < &. But by the uniform absolute continuity, there exists § > 0 such that
&(4) > e implies p,(4) > 8 for all n. So r,(B, €) > & for all n.
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7. Miscellaneous examples.
(7.1) ExampLe. Let S = {a, b, c, d}, and let
(@) = p,(b) =

=1, neven;
p(c) =p,(d) =3, n>3, nodd;
7

pi(c) = m(a) =
Then (p,) does not satisfy Condition (a) although the requirements of that
condition are satisfied by each singleton.

(72) Exampie. Let S =1{0,1,2}. Let & be the exchangeable o-field on
sequence space, and for B C S let &, be the exchangeable o-field for (15(X,)). Let

= {(%) : (%3i_1» X5;) = (0, 1) for infinitely many i}. Clearly E € &. We shall
descnbe a distribution for (X;) under which each & is trivial, but P((X)) € E) =3

Hence & is strictly larger than \/z65.
Let (Y;) be an independent sequence distributed uniformly on S. Let a be

independent of (Y;), with P(a = 0) = P(a = 1) =3. Define
X; =Y, + a modulo 3, ifiisevenand Y,=Y,_, +1 modulo 3;

1

=Y otherwise.

Then {(X;) EE} ={a=0,(Y) € E}, and so P(X;) € E)=3P((Y;) €EE) =1.
But it may be verified that, for each B C S, the sequences (15(X})) and (1,(Y)))
have the same distribution. So & is trivial by the Hewitt-Savage result.

(7.3) ExampLE. Let S be the set of binary rationals in the interval [0, 1]. We
shall describe (p,) so that Condition (a) is satisfied but & is not trivial. Given
n>1,writtn =2+ mfori > 0,0 <m < 2 and define

pn(m27") = p,((m + 1)277) =3.
By applying the argument of Theorem 1.1 to V, = X, — EX,, observing that
EV? =27%"2 50 that TEV;? < oo, we see that & is not trivial. But consider a
proper subset B of S. Then there exists j > 1 such that the points {m2~7; 0 < m <
2/} are neither all in B nor all in B¢. So for each i > j there exists 0 <m < 2/ — 1
such that exactly one of the points (m2~', (m + 1)27') is in B. So p,,,(B) =3.
Hence 3 p,(B) A p,(B€) = o0, and Condition (a) is satisfied.

(7.4) ExampLE. Let S ={0, 1,2, - - }. Define
1(0) = p,(n) =3, n>1

Recall'that S, = {B C 5 : 3 p,(B) A m,(B) < o). In this case, {1, - - ,n} €
S, foreachn,but {1,2,: - - } & S,.So S, is not a o-field.

(7.5) ExampLE. Let S be a countably infinite set, and K > 2. Let (u,) be an
enumeration of all the probability measures uniform on K-point subsets of S. If
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K > 3 then each pair of points is linked, so Condition (b) holds and & is trivial by
Theorem 1.8. Suppose now that K = 2. Then each distinct pair of points is weakly
linked but not linked. So Condition (b) is not satisfied. Nevertheless we shall show
that & is trivial. By Proposition 3.13 it suffices to show that each distinct pair of
points can be coupled.

Fixy #z € S, m > 1. Write n(0) = m. Define (x,, j(i), k(i), n(i)) inductively as
follows. Choose x; € S such that p(x;) = 0 for each j < n(i — 1). Then we can
choose j(i), k(i) > n(i — 1) such that

Hj(i)(x.-) = Py-(i)(J’) = %
I"’k(i)(xi) = ﬂk(i)(z) = %

Let n(i) = j(i) \/ k(i). We now describe a (m, y, z) coupling. Let (Y,, n > 2) have
distribution II3°y,. Let Z, = Y, if n & U,{/j(D), k(i)}. Let

(Ziiy Ziy) = (> %) i (Y Yagiy) = (x5 2)
=(xy2) if (Yy Yew) = (> %)
= (Y4 Yiy)  otherwise.

The (Z,, n > 2) also has distribution II3°w,. The remainder of the proof resembles
that of Proposition 3.14. By construction, M, (Y, s) = M,,(Z, s) for s & {y, z}.
So let

Dl' = Mn(i)(Y’y) - Mn(i)(z,y)
T = inf{n(i) : D, = 0}.

" Then M (Y) = M(Z) on {T < o}. Defining Z* as in (3.19) the required coupling
is given by (Y, Z*) provided that T < oo a.s. To prove T < oo a.s., observe that
(D,) is a random walk with jump probabilities

P(D;=D;_,*x1)=1%
P(D; = D,_, =%'
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