MARTINGALES WITH GIVEN ABSOLUTE VALUE¹

By P. PROTTER AND M. J. SHARPE

Purdue University and University of California, San Diego

A construction is given for a martingale having a given right continuous strictly positive submartingale as its absolute value. The existence of a martingale whose absolute value has the same distribution as the given submartingale was shown by Gilat.

- 1. Introduction. A striking theorem of Gilat (1977) states, in the continuous parameter case, that given a nonnegative right continuous submartingale $(X_t)_{t>0}$, there exists a right continuous martingale $(M_t)_{t>0}$, possibly defined on a different probability space, such that $|M_t|$ and X_t have the same distribution. We give here a construction of (M_t) on an augmentation of the probability space for (X_t) in the special case where X is strictly positive. The result states in the case where X_t is continuous that if $X_t = Y_t + A_t$ is the Doob-Meyer decomposition of (X_t) into a martingale (Y_t) and a predictable increasing process (A_t) , then M_t is obtained by a Poisson randomization of the sign of X_t , with $dA_t/2X_t$ as the intensity of sign changes.
- 2. The submartingale $X_t = t$. The particular case $X_t = t$ involves the basic process of sign changes needed in the next section. Let $(Z_t)_{-\infty < t < \infty}$ denote a right continuous stationary homogeneous Markov process with states ± 1 , indexed by the entire real line, and having $P\{Z_t = 1\} = \frac{1}{2}$ for all real t, and with jump rate equal to $\frac{1}{2}$ so that $P\{Z_{t+h} \neq Z_t\} \sim h/2$ as $h \searrow 0$. The set of jump times for (Z_t) is then a stationary Poisson point process with intensity equal to $\frac{1}{2}$. The transition function for (Z_t) is given by

$$(2.1) P\{Z_{s+h} = \varepsilon | Z_s\} = (1 + \varepsilon e^{-h} Z_s)/2 (\varepsilon = \pm 1, h > 0).$$

(2.2) Lemma. Let $W_t = tZ_{\log t}$ for t > 0 and $W_0 = 0$. Then $(W_t)_{t \geq 0}$ is a right continuous martingale with $|W_t| = t$ for all $t \geq 0$. Moreover, if (V_t) is a right continuous martingale on an arbitrary probability space with $|V_t| = t$ for all t, then the process (V_t) has the same distribution as (W_t) .

PROOF. It is obvious that $(W_t)_{t\geqslant 0}$ is right continuous and that $|W_t|=t$. For this proof only, let $\mathcal{F}_s=\sigma\{Z_t:t\leqslant s\}$. The martingale property of (W_t) is equivalent, after a change of variables, to the identity, for s< t

$$E\{Z_t|\mathscr{F}_s\}=e^{s-t}Z_s.$$

Received August 18, 1978.

¹Research supported, in part, by NSF Grants MCS 77-00095 and MCS 76-80623.

AMS 1970 subject classifications. Primary 60G45.

Key words and phrases. Submartingale, martingale, sign change.

Since $Z_t = \pm 1$, this last identity is equivalent to

(2.3)
$$P\{Z_t = 1 | \mathcal{F}_s\} = (1 + e^{-(t-s)}Z_s)/2.$$

That (2.3) holds is evident from (2.1).

As to the uniqueness assertion, one sees that if $(V_t)_{t\geqslant 0}$ is a martingale over $(\Omega', (\mathfrak{F}'_t), P')$ with $|V_t| = t$ then $U_t = e^{-t}V(e^t)$, $(t \in \mathbb{R})$, is a process taking values ± 1 , $E'U_t = e^{-t}E'V(e^t) = e^{-t}E'V_0 = 0$, and for s < t, $E'\{U_t|\mathfrak{F}'_{\exp s}\} = e^{-t}V(e^s) = e^{-(t-s)}U_s$. Using the fact that $U_t = \pm 1$ then gives, as in (2.3),

$$P'\{U_t = 1 | \mathcal{F}'_{\exp s}\} = (1 + e^{-(t-s)}U_s)/2$$

so that, from (2.1), (U_t) is a homogeneous Markov process with transition function the same as that of (Z_t) , and the fact that $E'U_t = 0$ shows that it is stationary, completing the proof.

3. Strictly positive case. We assume given a right continuous submartingale $(X_t)_{t\geq 0}$ satisfying the hypothesis

$$(3.1) X_t > 0 and X_{t-} > 0 for all t \ge 0.$$

We augment the probability space underlying (X_t) by means of the usual product space construction so that one may assume that the augmented space (Ω, \mathcal{F}, P) carries a copy of the process (Z_t) described in Section 2 and that the processes (X_t) and (Z_t) are independent. As in Section 2, W_t denotes the process $tZ_{\log t}$.

Since X_t and X_{t-} never vanish, one has the multiplicative decomposition

$$(3.2) X_t = Q_t I_t$$

where Q_t is a positive right continuous martingale with $Q_0 = X_0$ and I_t is a right continuous predictable increasing process with $I_0 = 1$ (see [2]). In terms of the Doob-Meyer decomposition $X_t = Y_t + A_t$, the process I_t^{-1} is the exponential, in the Stieltjes integral sense, of $-dA_t/(Y_{t-} + A_t)$. That is, I_t satisfies $dI_t/I_{t-} = dA_t/(Y_{t-} + A_t)$. Of course, $(Y_{t-} + A_t)$ is just the predictable projection of (X_t) . We avoid mentioning, whenever possible, the filtration of (Ω, \mathcal{F}, P) over which a process is a martingale. It is to be understood then that the minimal σ -fields are to be used, after adjoining null sets and making them right continuous.

(3.3) PROPOSITION. Let X be a positive right continuous submartingale satisfying (3.1) with multiplicative decomposition given by (3.2). Then $M_t = Q_t W(I_t) = X_t Z(\log I_t)$ is a right continuous martingale whose absolute value is X_t on the augmented space.

PROOF. Note first that it suffices to give a proof under the additional hypothesis that (X_t) is of class(D), for if (X_t) is replaced by $X_{t \wedge n}$, $(X_{t \wedge n})$ is of class(D) and its multiplicative decomposition is just $X_{t \wedge n} = Q_{t \wedge n} I_{t \wedge n}$; applying the theorem to $X_{t \wedge n}$ shows that $Q_{t \wedge n} W(I_{t \wedge n})$ is a martingale with absolute value $X_{t \wedge n}$, and this is obviously enough for the general case.

Assume now that X is of class(D) and for $\varepsilon > 0$, let τ_s^{ε} denote the right continuous increasing process inverse to the strictly increasing predictable process

 $I_t^e = I_t + \varepsilon t$. That is, $\tau_s^e = \inf\{t : I_t^e > s\}$. Then τ_s^e is, in fact, continuous, finite valued, and one has $\tau^e(I_t^e) = t$ for all $t \ge 0$.

Since (X_t) is of class(D), X_{∞} exists and closes the submartingale. In the decomposition (3.2), (Q_t) is then a uniformly integrable martingale which we close at ∞ . For each $\varepsilon > 0$, the process $(Q(\tau_s^{\varepsilon}))_{s \geqslant 1}$ is a right continuous positive uniformly integrable martingale which is independent of the martingale $(W_s)_{s \geqslant 1}$. The process $(Q(\tau_s^{\varepsilon})W_s)_{s \geqslant 1}$ is, therefore, a right continuous martingale with absolute value $sQ(\tau_s^{\varepsilon})$.

For each fixed t, I_t^e is a stopping time for $(Q(\tau_s^e)W_s)_{s\geqslant 1}$ (or at least for an obvious filtration over which it is a martingale). As s varies over $[1, I_t^e]$, we have $0 \le \tau_s^e \le t$, and because $sQ(\tau_s^e) \le I^e(\tau_s^e)Q(\tau_s^e) = X(\tau_s^e) + \varepsilon \tau_s^e Q(\tau_s^e) \le X(\tau_s^e) + \varepsilon t Q(\tau_s^e)$, the martingale $Q(\tau_s^e)W_s$, stopped at I_t^e , is uniformly integrable. It follows by optional sampling that the process $t \to Q(\tau^e(I_t^e))W(I_t^e) = Q_tW(I_t^e)$ is a right continuous martingale. As $\varepsilon \searrow 0$, $I_t^e \searrow I_t$ and since $|Q_tW(I_t^e)| = Q_tI_t^e = X_t + \varepsilon t Q_t$, one may appeal to uniform integrability to conclude that $Q_tW(I_t)$ is a right continuous martingale with absolute value $Q_tI_t = X_t$.

REFERENCES

- [1] GILAT, D. (1977). Every nonnegative submartingale is the absolute value of a martingale. Ann. Probability 5 475-481.
- [2] YOEURP, CH. and MEYER, P. A., (1976). Sur la décomposition multiplicative des sousmartingales positives. In Séminaire de Probabilités X. Springer Lecture Notes in Mathematics 511 501-504.

DEPARTMENT OF MATHEMATICS AND STATISTICS PURDUE UNIVERSITY WEST LAFAYETTE, INDIANA 47907 DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, SAN DIEGO
LA JOLLA, CALIFORNIA 92093