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ON THE SHAPE OF A RANDOM STRING

BY RICHARD DURRETT
University of California, Los Angeles

We define a string of length m to be a sequence zg, zy, * - - , z,, of points in
Z? which are chosen so that z;_, and z; are adjacent points on the lattice. If we
consider the set of all strings from zy = (0, 0) to z,, = (n, 0) then we can
introduce a probability distribution by assuming that all the strings are equally
likely. In this paper we will prove some results which describe the shape of the
random string when m/n — A € (1, 00). The main result states that if we let
(U, Vk) be the coordinate of z, then (U, /1, ¥, /1 z) converges weakly to
¢, p2 Wy(+)) where W, is a Brownian bridge and p = (A\2 — 1)/2\. A second set
of results describes B, = sup{U, — U;: 0 < k <! < m}, a quantity which
measures the amount of backtracking in the string. We find that this is O(log n)
and there is a sequence of constants b, so that B, — b, approaches a double
exponential distribution. The results described above were motivated by, and
are related to, results of Abraham and Reed, and Gallovotti on the shape of the
interface profile in the two dimensional Ising model.

1. Introduction. We define a string of length m to be a sequence
Zgzpt v+, 2z, of pointsin Z2 with |z, | — z,_y 4| + |z, — 2y | = 1for 1 <i <
m. If we let 2, , be the set of all strings (z¢, z, - * * , z,,) Which have z, = (0, 0)
and z,, = (n,0) then we can introduce a probability distribution on €, , by
supposing that all the strings in 2, , are equally probable. To describe the shape of
the random string we introduce the random variables U, = z; , and ¥} = z; , and
write the string as the random function (U, V|,.) Where [mt] denotes the largest
integer < mt.

In this paper we will prove some results which describe the shape of the random
string defined above when m/n — A € (1, ). In this case if we divide the x
coordinate by n then the limit as n — co can be viewed as a sequence of discrete
approximations to a continuous string of length A from (0, 0) to (1, 0). By analogy
with what happens when a long string is dropped on the floor we might expect that
as n — o, (Uj,,y/ 15 Vipg/n) would converge weakly to a limit process which looks
like a two-dimensional Brownian motion conditioned on W(1l) = (1, 0). In fact,
however, the limit is quite different—the random string when properly normalized
converges weakly to the graph of a (random) function. In Section 2 we show that
(1) (EIL"—]U 'Iiln'-]):(,p%WO())

n ni
where W, is the Brownian bridge, p = (A — 1)>/2A, and = denotes weak conver-
gence in D([0, 1], R?) (see Billingsley (1968) for details).
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ON THE SHAPE OF A RANDOM STRING 1015

The result above shows that in the limit the movement in the x-direction is a
linear drift and the fluctuations in the y-direction are like n? times a Brownian
bridge. The reason for this becomes clear if we examine the situation in another
way. Let @, be the collection of all strings of length m with z, = (0, 0). If we
introduce a probability distribution on ,, by supposing all the elements of ,, are
equally probable then z,, has the same distribution as a two-dimensional Bernoulli
random walk Si,,; so a uniform distribution on £, , corresponds to (S[m]|S
(n, 0)). If we separate the coordinates of the random walk and consider (S(m ]|
= n) and (S[mz]|S 2 =0) where m, and m, are the number of horizontal and
vertical steps then results of Durrett (1977) and Liggett (1968) suggest that the
coordinates of the string should have the limits indicated in (1). This argument can
be made rigorous by showing that m,/n converges to p in probability and that the
time substitutions which relate the two conditioned processes to the string coordi-
nates converge to the identity—the details are given in Section 2.

The limit theorem described above shows that as U, converges to a determinis-
tic drift. In Section 3 we will obtain some limit theorems for B, = max{U, —
U, : 0 < k <! < m}, a quantity which measures how much the x coordinate of the
string differs from a monotone function at stage n. To introduce these results we
need some notation. Let o, = inf{k : U, = j} be the hitting time of j and let

B,,=j—inf{U,:0 <k <m)
be the amount the path backtracked after it hit j. Clearly B, = maxy;,B, ;-

It is easy to get an upper bound for B,. The first result in Section 3 shows that if
K, — oo then with a probability which approaches one

2 B, < 32 —+——Ilogn + K,.
log(r~")
To improve this result takes some work. The first step is to show that as n — o
P(B,,>k)—>r*

where r is the constant which appears in (2). This result suggests that as n — o0, B,
is the maximum of » geometric random variables. If the variables B, 2 0<j<n
were independent then we could easily calculate the limit of the B,. However the
B, s are related by B, ;_, > B, ; — 1 so if we want to write B, as a maximum of
independent random variables we have to use another approach.

To introduce this new approach we begin by considering the (easier) problem of
determining the amount of backtracking in a one-dimerisional Bernoulli random
walk S¥ with P(S§ = 1) = p* > 1. Let 7, = inf{/ : S; = k} be the hitting time of &
and let

B} = supocicn(k — infj>fk'5}*)

be the maximum backtracking from a point k¥ < n. If we break the time interval
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[0, o0) into pieces [Ty, 1), [T1, T2)s * * * [Th—1> To)s [T,s 00) then we can write B} as
3) SUPo<kcnl(k —inf, ;. S¥)V (n — inf;, S*).

It is easy to see that the variables in the first term are i.i.d. and that as n — o the
probability that the maximum is attained by the second term approaches 0.

Since the distribution of inf; [, .,S* can be computed explicitly it is easy to use
(3) to show that if we let b, = log n/log(p*/1 — p*), and pick x, so that b, + x, is
an integer and x, is a bounded sequence then

) P(B* < b, + x,) — exp(— (1 - ‘17*)(_‘11;.)”")_,0

where g* =1 - p* = P{Sf = —1}.

The last result gives the amount of backtracking in a random walk with positive
drift. To use this result to obtain the corresponding limit theorem for the string we
observe that the motion in the x-coordinate is (up to a random change of time) the
same as a symmetric Bernoulli random walk conditioned on S,,l,r = n. Using the
idea of associated random variables (see Feller (1970), pages 548—-553) it is possible
to reduce the problem to one concerning a random walk with positive drift and a
less drastic conditioning. After the transformation it is easy to obtain the result for
backtracking in the string from the result for the associated random walk. Our final
result may be stated as the following.

THEOREM. If b, = log n/log(r™") then

sup,zP(B, <z) — exp(—r?~%(1 — r)) - 0.

The reader should note that the distribution of B, does not converge but it does
(in a sense made precise by the theorem) approach a double exponential distribu-
tion.

Having described our results we can now relate them to the Ising model. Let
A, =[—n,n?n Z? and consider the spin system in A, which corresponds to the
Ising model with a boundary condition which is +1 atz € A withz; > 0 and —1
at z € A5, with z, < 0 (see [1] or [7] for precise definitions and the facts quoted
below). It is easy to see that the spin configurations in A, can be represented by
giving the contour lines which separate + and — spins and that with the boundary
condition given above there will be one contour line which goes from (3, —n) to
(3, n). This contour line gives the interface profile and corresponds to our random
string.

At first glance the distribution of the shape of the contour line looks much
different from that of the string—in the Ising model the length of the contour is
‘random and all shapes with a fixed length are not equally likely. However, as
n — oo these differences apparently disappear—the results which have been proved
about the contour lines are almost exactly the same as those for our string.
Abraham and Reed (1976) have shown that if 7' < 7, (the temperature below
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which the Gibbs state is not unique) then the level at which the string crosses the
line z, = 0 when divided by n2 converges to a normal distribution, while Gallavotti
(1972) has shown that if T is small enough (i.e., 7 < 7,) then the amount of
backtracking in the contour line is O(log n). It seems likely that the normalized
contour line converges weakly to a Brownian bridge and that the backtracking is
0O(log n) for all T < T, but neither of these results has been proved.

2. The shape of the string. In this section we will prove some results which
describe the asymptotic shape of a random string when m, n — 00 and m/n —» A €
(1, o0). The main result is

THEOREM 2.1.  If we let (Uy, V}) be the coordinates of the kth vertex in the path
then

Umi Vim 1
[H, B ) = i)
n2
where W, is the Brownian bridge and p = (\* — 1) /2\.

Proor. The proof will be accomplished with five steps:
l. Let H= {i:z; — z;_, = (—1,0) or (1, 0)} be the indices of the horizontal

steps, let / = {1, - - - , m} — H be the indices of the vertical steps. In the first step
in the proof we will show that
(1) |I|/n—p  in probability.

This result gives asymptotic formulas for |H| and |I| so the next step is to consider
the distributions of the individual coordinates given |H| and |1|.

2. Let X}, X, - - - be the size of the first, second - - - horizontal steps and let
Y,, Y,, - - - be the sequence of vertical steps. Anticipating the result given in the
theorem we will let 7, = X, + - - - +X, (time) and S, = Y, + - - - + ¥, (the
random walk which will produce the Brownian bridge). The sequences 7, and S,
can be related to the coordinates of the string (U, V,) by a random change of
time. If we let M(k) =|H N {1, - - ,k}|and N(k) =|I n {1, - -, k}| then we
have that

(U[m-]l |H| = k) =d(TM(m')|M(m) =k T, = n)
(V[m-]| 7] = k) =d(SN(m‘)|N(m) =k, S, = 0).
To evaluate the limits of the terms on the right-hand side we will quote two results
and then use a random change of time.
3. From Liggett (1968) we have that if k — oo

(k_%S(k.ﬂSk = O) = WO

where W, is the Brownian bridge.
4. From Durrett (1977) we have that if ki/n >\ — p > 1

( T[k] - n-
1

T, = n) =W,
k2
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SO
( T}k.] - n-

- Tk=n)=>0.

5. The last ingredient in the proof is to show that if k/n—p > 0 then for all
te©1 '

) ( N_(Iznt_) \N (m) = k) —t  in probability.

With 3, 4, and 5 it is easy to prove the result. If we let
1
W) = (k 28kl Sy = 0)
then we can write
( Sn(m)
n?
From 3 we have that W, = W,. If k/n — p then it follows from 5 that N(mt)/k —

¢t uniformly on [0, 1]. Combining these two results with Theorem 3 of Durrett and
Resnick (1977) shows that if k/n — p

( Vim1

N(m) = k, S, =0) - (k— Wk( N(:'))

n

N(m) = k).

1
1] = k) = pz Wy(").
n2

A similar argument using 4 shows that if //n—>A —p > 1

( U[m.] - n-
n

|H| = 1) -0.

_ Combining the last two results with 1 gives the desired conclusion.
To complete the proof at this point we need to prove (1) and (2). To begin the
proof of (1) we observe that the number of paths with [I| = k is
k. k. m—k—n m—k—n
(AN A P | —k-="="")
3) m./2.2. 3 .(m k > )

From Stirling’s formula (see Feller (1968), page 52), we have that m!~
1 1

(27m)2m™* 27" so if n is large m/n = A, and k/n = p < A — 1 the expression in

3)is

1 1
“haned [ (RYT AP - 1)“""‘>"+i(>\+ p+ 1)<A*P+1>n+5
s/ (8" (25 egeryed

The logarithm of the last expression is

_ A P\(A—p—1 O\—p—l)/2()\ —p+ 1)()\—p+|)/2
@ nlog(x/(z)( 2 ) 3

—%log(Z'zm) + %log(A/ (%)2()\ — g — )(A - g - ))
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If n is large the last expression has its largest value at the maximum of
Alog A — p log(p/2) — (}‘_g_ l)log(}\-g- 1)

_(A—p+1 A—p+1
(=5 e *=5)

Differentiating gives

N —

d _ _ 1 A—-p—1 1.1 A—p+1
pri log(p/2) 1+2log(—2 )+2+2log(—————2 )+

so the maximum occurs when
—2logp+logA—p—1)+logh—p+1)=0
ie.,
pl=A—-p—DA-p+1)=N2=2p+p>— 1
Solving gives p = (A2 — 1)/2A. As we might expect p =0 when A =1 and p —
(A/2) - 0 when A — oo.

In the calculations above we have located the number of vertical steps which
produces the maximum number of strings. To prove (1) we have to show that most
of the contribution to the sum comes from terms near pn. To do this we first
consider the sum over /! > (p + 2¢)n and show that this is small when compared to
the sum over pn </ < (p + &)n. To estimate the sums we observe that from the
proof of Stirling’s formula (Feller (1968), page 54) we have that for all k > 1

!
e’' < -,—k,— <L
27)ik**ze*
From this it follows that
_3
S Bgner < nf{5 et 2an) 2 f\(m/ n, f)dt
where

tn+1 — 4 — (@—t—n+1)/2 - (@—t+1)n+1)/2
s = oms () T[T )

From (4) and the calculations which follow it
d 1 0—1t-1 1 0—t+1
Elogf,(ﬂ, 1) = n(—log(0/2) + Elog(———z—) + Elog(————z————)) + 0(1).

So it follows from the calculations used to maximize f,(A, #) that if » is sufficiently
large f,(m/n, ¢) is a decreasing function of ¢ > p + 2e. Using this observation we
have that the sum over / < (p + 2¢)n is smaller than

ne4(27n)—%(% - 1-p- 28) 1(%, o+ 26).

By a similar argument we can show that the sum over pn </ < (p + ¢)n is larger
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than
ne~'(2an)” 2ef,( ,p+ e)
It is easy to check that

fl( ,p+28)/f1( ,p+£)—>0

Combining the last three observations shows that for all € > 0, P(|I|/n > p + 2¢)
— 0. A similar argument shows that P(|I|/n < p — 2¢) — 0 so the proof of (1) is
complete.

The last step in the proof of Theorem 2.1 is to prove that if k/n —p > 0 then
forallt € (0, 1)

( N(mt) N(m) = k) —t  in probability.

Given N(m) = k the number of ways we can have N(mt) = j is

(5) (me)! (m — mt)!
Jt(mt =) (k=) (m—mt —k+j)

From Stirling’s formula m!~ (2ﬂ)5lm'""'51e"" so if j/k = s € (0, 1) the expression
in (5) is
@mn)~'CQ, p, 5, DAY (= )"
(50"t = sp)™ 7" (o — sp)P TP\ = M — p + sp) ATV TP

where C(A, p, s, ?) is the constant (i.e., it is independent of n) which comes from the

1
m? terms in Stirling’s formula (see the last term in (4)).

Taking logarithms we see that the last expression has its largest value at the
maximum of

At log At + (¢t — Af) log(t — ) — sp log(sp)
— (At — sp) log(Az — sp) — (p — sp) log(p — sp)
— (A=At —p + sp) log(A — At — p + sp).

Differentiating gives
d
= = —plog(sp) — p + plog(Ar —sp) +p

+plog(p — sp) + p — plog(A — At — p + sp) — p,
so the maximum occurs where

(At — sp)(p — sp)  _
sp(A — At — p + sp)

log
ie.,
(At — sp)(p — sp) = sp(A — At — p + sp).

Solving gives At — sp — sAt + s%p = s(A — At — p) + s%p which reduces to s = ¢
the answer we expected.
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In the calculations above we have shown that of all the paths with N(m) = k the
ones with N(m¢) = kt are the most numerous. To prove (2) we have to show that
most of the paths with N(m) = k have N(mt)/k near t. The proof of this statement
is the same as the corresponding part of the proof of (1) so the details are omitted.

3. Backtracking. In Section 2 we showed that the x coordinate of the string is
asymptotically (as n — o0) a linear function of the index and that the deviation
from linearity is O(n%). This implies of course that the deviation from monotonicity
is at most O(n l7) but this is a crude estimate—we will show in this section that the
deviation from monotonicity is O(log n).

To introduce these results we need some notation. Let T} be the sum of the first
k horizontal steps and let N(m) be the number of horizontal steps in {1, - - - , m}
(these quantities were defined in Section 2). Let

o, = inf{k : T = j}
be the hitting time of j and let
B, =j—min{T, : 0; < k < N(m)}

be the amount the path backtracked after it hit ;.

In the proof of Theorem 1 we observed that if there were k horizontal steps then
the sums of the horizontal steps have the same distribution as a Bernoulli random
walk conditioned to be at n at time k. Since n/k ~ 1/(A — p) this event has a very
small probability (which converges to 0 exponentially as n — o0) so it is more
convenient to study the transformed random walk S¥ which takes steps with a
distribution given by

PXr=1)=1 e’
K== @renn

-0

P(Xt=—1)=1 ¢

2 (" +e9)2
where # is chosen so that ES} = n. It is easy to check that if S, is a symmetric

Bernoulli random walk then
P(S} =j) = P(S, =)

e¥

(e + e7?)/2)"

and that
0y (S* | SE = 1) = 4(Six1| Sk = 1)
(for more detail in a more general situation see Durrett (1977) Section 2).

The reason for considering the associated random walk js that the probability of
S7 = n is much larger—it follows from the local central theorem (see Stone (1965))
that P(Sf = n) ~ Cy~ =2 where C, = 2w Var S;')El. Since the probability goes to
0 at a rate which is only a power of k we can obtain information from the following
trivial estimate. Let 4 be a set of paths of length k. '
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If k, n — o0 and k/n — (A — p) then we have
3) P(S*.) € A|SF = n) < 2C,k7P(S;.; € A)
for all n sufficiently large.

The last inequality gives a way of relating the amount of backtracking in the
string to the amount of backtracking in the random walk S}, a quantity which can
be easily calculated. Let 7, = inf{k : S§ = j} and let

B}, =j— min{S}:k >1)
(here the subscript n reminds us that the distribution of ST depends upon n). It is
easy to see that for any integers b and j > 0 P(B; ;2 > b) = r? where r, = P(B},
> 1) so the B}, j > 0 are identically distributed. It is also clear that By, , > B,
— 1 so the variables are not independent. To circumvent the dependence we use
the following estimate
4) P(maxy ;B > b) < nP(B}, > b).
Combining (1), (3) and (4) shows that as n — oo
P(maxy,;.,B,; > b) < 2C,kinrd.

If k/n— (A — p) € (1, o) and we let

_ —3logn

"~ 2logr, + K

n

be a sequence of integers with K, — oo then as n — o0
P(maxyg;,B,; > b,) <2C,(A — p)2r "0

so with a probability which approaches 1 the amount of backtracking at stage n is

* smaller than

3/2
(log ;")

The estimate above is fairly crude. If we could avoid the factor of k2 from (2) we
could replace the 3/2 in (5) by 1. In what follows we will show that it is possible to
do this and that if we center by the resulting b, then there is a nondegenerate limit.

The first step is to consider the amount of backtracking from zero. In the
associated random walk B} , has a geometric distribution with mean 1/7, so on the
basis of (1) we might guess that as n — o0 B, , will converge to a geometric with
mean lim,_,1/r,—i.e., in the limit the conditioning on S = n has no effect on
the behavior of the string near time 0. To prove this observe that

P(B, o> b| |H| = k) = P(B%, > b|S} = n)
P(B}o > b, S} =n) =3k \P(r_, = j)P(S¢ = n|S} = —b).

As k,n—> o0, ES¥ =n/k—>(\ —p)~' so if b is fixed the distribution of 7_,
converges to the hitting time of —b in a Bernoulli random walk with mean

(5 logn+ K, .
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(A — p)~ . If b and j are fixed then it follows from the local central limit (see Stone
(1965)) that

P(St_;=n+Db)/P(SF=n)>1
and
supy sup; i/, P(S¢_; = n + b)/P(S = n) < co.
Combining the last three results give that as n — «©
P(B},>b, St =n)
P(St =n)

where 7 is the limit of the r,’s. From this it follows that if k/n— (A — p)
P(B,, > b||H|=k)—>r®.

Combining this result with (1) from Section 2 gives

—’Eﬁlp("'—b =j) = rb

THEOREM 3.1. P(B, o > b) - r’.

Having analyzed the amount of backtracking from 0, we can now consider the
maximum backtracking. The limit theorem for B, , suggests that if n is large then
B, is almost the maximum of n exponential distributions. If the B, ’s were
independent then it would be easy to calculate the limit distribution of the B,’s.
Unfortunately, B, ;_, > B, ; — 1 so the B, ; are dependent and we need another
approach to evaluate the limit of the B,’s. The first step is to solve the correspond-

ing problem for the associated random walk. Let

B: = sup0<m<n(m - infl)rmSl*)'
If we break the time interval [0, co) into pieces [7q, 7)), [T}, o) * *
A7p—1 7o), [7,, 0) then we can write B} as
(6) sup0<m<n(m - inf‘r,,,<1<‘|',,,.,,|'S'1*)

vV(n-— inf,>,"S;").

To see this observe that if the maximum backtracking occurs from m < n then the
minimum level was achieved before the process hit m + 1 (otherwise the amount of

backtracking from m + 1 would be one more than the maximum).
The reason for our interest in (4) is that the variables

Yy =m —inf, ;. SF
are independent and identically distributed and the distribution of the second term
is independent of n. Since the distribution of », is unbounded we have that as
n— oo the probability that the second term in (4) is bigger than the first ap-
proaches 0, so to investigate the limit behavior of S} it suffices to consider
M: = Sup0<m<nvm'

To compute the limit distribution of M} we observe that P(M} <b) = (1 —

P(vy > b))" and that from an elementary result about birth and death processes
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(see Hoel, Port, and Stone, pages 30-31) we have

(7) P(vg>b)=P(r_, <)) = (;i:)b(pp;"q")(l B (%)bﬂ)—l

where p, = P(X} = 1) and g, = P(X} = — 1). If we let b, = log n/log(p,/q,)
and then pick x, so that b = b, + x, is an integer then we have

4, \*( P, — 4, q b+1\ 1
oz = () (2521 - ()
(r > 8) = | P 7
From this it follows that if x, is any bounded sequence

(8) P(M} <b, + x,) — exp(— (%)x(p—;—i)) -0

where p and g are the limits of p, and g,.

Having obtained a limit theorem for the amount of backtracking in a random
walk we will now consider the problem for the string. The final result (Theorem
3.2) states that (as n — oo) the maximum backtracking is the same as in the
associated random walk. To prove this we will use the same outline as in the
random walk case—we will first show that the backtracking from n is negligible
and then write the backtracking in terms of the maxima of independent random
variables.

To begin the first step we observe that since the conditioned random walk is
symmetric (k — 7,|S¥ = n) has the same distribution as (7y| S¥ = n) where 7; is the
time of the last exit from 0. To compute the limiting distribution of this quantity we
observe that

P(1y > j, St = n) = P(19o0; < ) P(S} = n|7go8; < )

where 7500, denotes inf{k > : §¢ = 0}. As n— 00, P(1g08, < o0) converges to
the corresponding quantity in the limiting associated random walk. To evaluate the
limit of the second term we write

P(S} = nlrge8; < 00) = B P(7q = ilrge8; < 00)P(S = n|S¥ = 0).

i=j
If j is fixed then as n — oo the sequence of distributions (7,|708; < ©) converges
so it follows from the local central limit theorem (see Stone (1965)) that

P(S¥ = n|7e08; < 0)/P(St = n) > 1

and we have shown
©) P(ry > j|St = 1) = P(7006; < 0).

Now that we know that the distribution of k — 7, converges we can condition on
k — 7, = i, and consider the distribution of

(Sup0<m<n Vm I Tn = kn)
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where k, = k — i,. It is intuitively clear that since k, = k + 0(1) and

n
k_E_Sf—nETl_ET"

that conditioning on the value of 7, will not effect the limit law for the maximum.
The rest of this section is devoted to proving that this is the case.
We begin by observing that

(10) P(sup0<m<nvm < b’ T = kn)
= (1 = P{vy > b})"P(1, = k,|SuPoc mcn?m < b).

If we let b, = log n/log(p,/q,) and then pick a bounded sequence x, so that
b, + x, is an integer then it follows from the computations above (8) that

(1) (1= P{vy > b, + x,})" — exp(— (%)x"(”—;i)) 0.

To evaluate the limit of the other term we will use the local central limit theorem.
To do this we observe that conditioned on sup,_,», <b, 7, is the sum of n
independent random variables with the same distribution as (7,|», < b). If b — o0

Var(r|r, < b) - Var(r))
and if b > 2 we have
E(t}|l», <b) < Er}/P(1,=1) < 0
so it follows from the classical proof of the local central limit theorem (see
Gnedenko and Kolmogorov (1944), pages 233-235) that if p, = E(7,|v, <b,),
62 = Var(r,|v, < b,), and y, is a bounded sequence then
(12) 0,17 P(1, = Wy + ,0,n3|SWPog mn?m < B) = B(3,) =0

where ¢ is the standard normal density.
To use (12) we have to compute y,. To do this we begin by observing that

E(1y|my > 71_p) = E(1_y|1, > 7_,) + E(7/|S§ = —b)

and
E(7|S¢ = —b)=(b+ 1)E,.

To evaluate the other term we write

E(r_plry>7_) =3b_E(r_|S¢=—i+ 1, 7_,<m)
and observe that as i - o0, E(t_;|S§ = — i + 1, 7_, <)) converges to E(t_,|S&
=0,7_; < o) s0

E(t_p|my >7_p) ~bE(1_,|7_; < o0).
To compute E(r,|7, < 7_,) we observe that
Ery = P(1y > 1_p)E()|1y > 7_) + P(1y <7_p)E(7y|1y <7_4)
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so we have
Er, Pty >7_4)
P(ry<7_p) P(r;<7_})

To evaluate the limit of the right-hand side we observe that

(13) E(r|r <7_4p) = E(ry|1y >17_4).

nEr,
P_(ar-l—<alr__b5 = nETI + nE‘TlP(’Tl > T_b) + nE‘TIZf,zP(TI > T_b)k.

From this formula we see that if b = b, + 0(1)
nEr P(t, <7_,) = 0(1)
and
nET % ,P(r, <7_,) >0
so the first term in (13) is E7, + O(n~"). We will now show that the second is
0(n~'log n). To do this we observe that if ¢ > 0 then
E(TIITI > 'T_b) < (b + l)ETl + b(E(T—llT—l < OO) + 8)

for n sufficiently large so

nP(ry <71_)

P(r <71_,)
Combining the last two results with (13) shows that u, = nEr, + O(log n) so it
follows from (12) that

P(1, = ky|SWPocmen? < b) ~ 9(0)/on2
where o2 = Var(r)). 4
Since the result above is the same as the asymptotic formula that the local
- central limit theorem gives for P(r, = k,) we have shown that the second term in
(8) converges to 1 so we have proved that (sup,, .,%,|7, = k,) has the same limiting
behavior as the unconditioned sequence. Combining this observation with (9)
above and (1) of Section 2 we have

E(7)|ty >7_,) = 0(log n).

THEOREM 3.2. If b, = log n/log(p,/q,) then
z—b, -
sup,ezP(B, < z) — exp(— (1) (u))—»O.
“\p p
To compare this result with (5) and to obtain the result in the form given in the
introduction observe that r = ¢/p.

Acknowledgment. I would like to thank Harry Kesten for a helpful conversa-
tion in which he gave a proof of (2) and guessed the order of magnitude given in
the limit theorem for B,.

REFERENCES

[1] ABRAHAM, D. B. and REED, P. (1976). Interface profile of the Ising ferromagnet in two dimensions.
Comm. Math. Phys. 49 35-46.



ON THE SHAPE OF A RANDOM STRING 1027

[2] BILLINGSLEY, P. (1968). Weak Convergence of Probability Measures. John Wiley and Sons.
[3] Durrert, R. (1977). Conditioned limit theorems for random walks with negative drift. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete. To appear.
[4] DurretT, R. and RESNICK, S. (1977). Weak convergence with random indices. Stochastic Proc.
Appl. 5 213-220.
[5] FELLER, W. (1968). An Introduction to Probability Theory and Its Applications, 3rd ed., I. John Wiley
and Sons.
[6] FELLER, W. (1970). An Introduction to Probability Theory and Its Applications, 2nd ed., II. John
Wiley and Sons.
[7] GALLAvoTTL, G. (1972). The phase separation line in the two-dimensional Ising model. Comm.
Math. Phys. 27 103-136.
[8] GNEDENKO, B. V. and KoLMOGOROV, A. N. (1949). Limit Distributions for Sums of Independent
Random Variables. Addison-Wesley.
[9] HoEL, P., PorT, S. and STONE, C. (1972). Introduction to Stochastic Processes. Houghton-Mifflin.
[10] LigGeTT, T. (1968). An invariance principle for conditioned sums of independent random variables.
J. Math. Mech. 18 559-570.
[11] StoNnE, C. (1965). On local and ratio limit theorems. Proc. Fifth Berkeley Symp. Math. Statist.
Probability 11 217-224.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, LOS ANGELES
Los ANGELES, CALIFORNIA 90024



