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HITTING SPHERES WITH BROWNIAN MOTION

By J. G. WENDEL
University of Michigan and California Institute of Technology

Let X, be standard Brownian motion in R¥ starting at fixed X, and let T
be the hitting time for a sphere or concentric spherical shell. Explicit formulas,
in terms of a natural Laplace-Gegenbauer transform, are obtained for the joint
distribution of T and X.

1. Introduction. Let X, be a standard d-dimensional Brownian motion with
nonrandom starting point X,. When d > 2 we seek explicit formulas which will
determine the joint distributions of the first time 7 < oo and place X, (which is
only defined when T is finite) where X hits a sphere centered at the origin, either
from the inside or from the outside, or exits from the region bounded by concentric
spheres.

For the Brownian motion X, we let x = |X|, 6, = ZX0X,if x # 0,8, = Zu0X,
for an arbitrary but fixed nonzero vector u, in case x = 0. By rotational symmetry
we need only determine the joint distribution of T and 8. For this we need only
determine the expectations E, (e *Tcos nf;), s >0,n=0,1,2,- - -, butford >
3 it turns out to be more convenient first to compute a “Laplace-Gegenbauer”
transform defined in the following way.

Let C} be the Gegenbauer polynomial of (exact) degree n and order 4 > 0
(Watson (1944) page 50), so that C/(¢) is the coefficient of z” in the Maclaurin
expansion of (1 — 2z + z%)™*; for h =0 it is customary to take C{ =1, C° =
lim, oh~'C} = 2T, /n, T, the nth Cebysev polynomial: T,,(cos #) = cos nf. Note
that C*(1) = (- 1)"( ~2k) for h # 0, CX(1) = 2/n for n # 0, and therefore C(1)
never vanishes. For each A the polynomials C,f, 0 < k < n, have the same linear
span as 1, x, - - - , x”"; in particular cos nf is a linear combination of the C,f(cos 9).

Leth=(d—2)/2,and fors >0,n=0,1,2,- - - set up the processes

Y,(s, 1) = e~C,(cos 8,)/ C;(1).

(In two dimensions Y,(s, ) reduces to e *cos nf,.) It will simplify statements of
1 .
the results to set v = (25)2, and to write E for E,. Then

(1) THEOREM. In each case the joint distribution of T and 0 is uniquely de-
termined by the values of the expectations E(Y,(s, T)),n=0,1,2,- -+, s > 0.

Let I and K be the Bessel functions “of purely imaginary argument” (Watson
(1944) pages 77-178).
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For the interior problem we have

(2) THEOREM. If 0 < x < a and T is the hitting time for the sphere 2%~ '(0, a) of
radius a, center 0, then for x > 0.

(3) E( Yn(s’ T)) = (a/x)h1n+h(ox)/1n+h(va)’
while for x = 0 only the case n = 0 yields a nonzero expectation, which is given by
4 E(e™*T) = (va)"/ {2'T(h + 1)I,(va)},

the hitting point X1 being uniformly distributed over the sphere independently of T.
For the exterior problem we have

(5) THEOREM. If x > b and T is the hitting time for 2~ 1(0, b) then

(6) E(Y,(s, T)) = (b/%)"Ky 1 4(0%)/ Ky (0))-
(In (6) it is understood that Y,(s, T) = 0 when T = oo, even though 8, is unde-
fined then.)

For a concentric shell the result is

(7) THEOREM. If a < x < b and T is the hitting time for the shell 2°~'(0, a) U
4710, b) then
(®)  E(Y,(s, T); |X7| = a) = (a/x)"(I°k* — ’K®)/ (I°K* — I’K®),
in which abbreviations such as I* = I, ,(vx) have been introduced;

) E(Y,(s, T); |X7| = b) = (b/X)"(I°K* — I’K*)/ (I"K® — I'K"),
so that (9) is obtained from (8) by interchanging a and b.

Specializations to known results are the following: for the interior problem

setting n = 0 gives
E(e™*T) = (a/x)"I(vx)/ I(va),
as noted by Doob (1955). Again for the interior problem, letting s -0 (v — 0)
yields
E(C;(cos 07)) = (x/a)"CJ(1),

which, in effect, determines the density of X,- on =9~ (0, a) as the classical Poisson
kernel; cf. Stein and Weiss (1971), pages 145, 150. There is an analogous formula

for the exterior problem.
For the exterior problem in dimension two we obtain for n = 0,

E(e™T) = Ky(vx)/ Ko(vb),

as given by Spitzer (1958), and in all dimensions d > 2 letting n = 0 and s >0
recovers the classical expression P(T < o0) = (b/x)"%
The same specializations in the shell problem give the well-known formulas

P(|X;| = a) = (logb — log x)/ (logb — loga), d=2,
= (x2—d _ b2—d)/ (az—d — b2—d)’ d > 2.



166 J. G. WENDEL

Finally, we may note that letting b — oo in (8) recovers (6) (with @ replacing b),
and letting a — 0 in (9) yields (3) (with b in place of a).
An abstract of these results appears in Wendel (1978).

2. Measures on spheres. The results of this section are more or less known,
but are included for ease of reference. See especially Gangolli (1964), Bingham
(1972), and Kent (1977), together with their references.

Let u(.) be a finite measure on the unit sphere 39~ !. We say that u is axially
symmetric (AS) with axis £ € 397! in case p(RB) = u(B) for each Borel set B and
each orthogonal transformation R that leaves ¢ fixed; AS functions are defined
similarly. For such a measure we define its Gegenbauer transform g, by

Cr1)f, = [54-1C}(cos @) u(dn), n=0,1,2---,

where 6 is the angle Z£07. .

(In dimension two, i.e., on =, an axially symmetric measure is invariant under
reflection across a diameter, even with respect to angles measured from the
diameter. Then the function fi is just the cosine transform,

fi, = [2"cos nfu(dh).)
(10) THEOREM. The AS measure p is uniquely determined by its transform f,.

This follows from the fact (cf. Stein & Weiss (1971), page 149) that linear
combinations of Gegenbauer polynomials of cos # are uniformly dense in the space
of continuous AS functions.

Let » be another finite measure on 3¢~ !, also AS with axis £; forn € 397 'let R
be a rotation carrying 7 to £ and set »,(B) = »(RB) for Borel B. It is easy to check
that », is well defined and that »; = ». Clearly the family {#,} is invariant in the
sense that »,(B) = vg,(RB) for all 0, R, B; consequently », is AS with axis 7. All
invariant families {»,} arise in this way. We note also that »,(B) is a measurable
function of n € 3971,

We define the convolution p = p * » by

(11) p(B) = [za-w(dn)r,(B).
Then p is AS with axis § and for its transform we have
(12) p=ps

cf. Gangolli (1964), page 218. In two dimensions this is a well-known fact about
cosine transforms of even measures. For a direct proof in higher dimensions we
appeal to the fact that the C/(cos #) are zonal harmonics. Concretely this means
that for £, ¢ € 271, 4 not parallel to ¢,

ave Cl(cos ££0¢") = Cl(cos ££0m)ClH(cos £10%)/CH(1),
where the average is taken with respect to {’ running over the sphere >7-2 formed

by intersecting =7~ ! with the hyperplane through { perpendicular to 5. (Watson
(1944), page 369. When 1 # = { the sphere >9-2 degenerates to the point 1, and
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the formula is seen to hold trivially.) Then
CH(1)B, = [C;(cos LEOS)p(dS)
= JCl(cos L£0%) [ p(dn),(dK)
= [u(dn)fC}(cos L£0S)r, (dF).

Because 7, is AS with axis n we may replace { in the last cosine by R{ = {’, where
R is an arbitrary orthogonal transformation leaving 7 fixed. If we then perform the
averaging described above we obtain (12).

3. Proofs. Theorem (1) is an immediate consequence of (10). Alternatively, as
noted in the introduction the joint distribution is determined by the expectations
E(e *Tcos nf;), s >0, n=0,1,2,- - - ; these are linear combinations of the
quantities E(Y,(s, T)).

Let P(£, m, ?) be the density at ) of a Brownian particle starting at X, = £ € R,
and let p(§, m, s) be its Laplace transform,

(13)  p(& m,5) = [Fe "P(§ m, 1) dt = 27 2~ oPlE — 9| TRK, (v]€ — ),
s > 0, £ # 7, Watson (1944), (15) page 183.

Let B and C be Borel sets of the unit sphere 39! = 271(0, 1) and (0, )
respectively. For T the hitting time of the sphere 39~1(0, a) let F(¢, a, B, C) =
P{X; € aB and T € C|X, = £}, with Laplace transform f( a, B, s) =
[&e F(§ a, B, dt). (The definitions of F, f do not exclude that T may be infinite
with positive probability.) If |{| > a > |§| then the strong Markov property and
continuity of paths gives the relation

(14) p&§,5) = fzd—lf('s’ a, dn, s)p(an, §, 5);
letting |{| = z > a we replace { by z{, where now { € 397!, and rewrite (14) as
(15) P, 28) = [z f(§ a, dn)p(am, 25),

where for simplicity the transform variable s has been suppressed.

Holding @ > 0, n € 297!, z > a, and s fixed we can regard p(anm, z{) as the
density on 297! of a measure v,() on Borel sets. Clearly the family of such
measures is invariant. For fixed £ the measure u(.) = f(§, a, .) is AS with axis ¢,
because of the rotational symmetry of Brownian motion. Therefore (15) is an
instance of the equation (11). In order to apply (12) we obtain the required
Gegenbauer transforms by combining (13) with Macdonald’s addition theorem for
the function K, (cf. Watson (1944), (8) page 365). First we find that for |{§| = x < z,
Kl=1,

P& 28, 5) = w9 PT(R)x "2~ 328 (n + W)L, 4(0x)K, . 4(vz) Gi(cos ££0%),d > 3

= 7~ Y I(vx)Ko(vz) + 23§, (vx)K,(vz)cos(n L£0%)},d = 2.
Then orthogonality of the Gegenbauer polynomials for fixed (Watson (1944),
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page 367) and uniform convergence of the series on ¢! yield the transform
ﬁn = ﬁn(g’ S) = cn,hx_hz—hIn+h(vx)Kn/+h(vz)’ lgl =x <z
and similarly
ﬁn = cn,ha_hz_hIn+h(va)Kn+h(vz)’

where the ¢, , are positive constants whose precise form is of no importance.
Solving (12) we obtain

By = f(x, 0, 5) = (a/%)"L,, (%) /1, , ,(va),
which proves (3). (The notation for the arguments of jf, is intended to underscore
the fact that the dependence on the vector £ is only through its length || = x.)
Equation (4) follows by letting x — 0; this completes the proof of (2). The proof of
(6) is entirely similar, except that we work from the outside of the sphere of radius
b towards the inside.
In order to prove (8) and (9) we set up the measures

F& b, B,C)=P{X,€bBand T € C|X,=¢}

»F(§ a, B,C) = P{X; €aBand T € C|X, = £}
where a < [§| = x < b, B and C are Borel subsets of 3¢~ ! and (0, o) respectively,
and the notation of presubscripts is suggested by that of Chung (1967) for “taboo”
states in Markov chains. These measures have Laplace transforms (s suppressed)
& b, B), ,f¢ a, B).

Consider a Brownian path which starts at £ and first hits the outer sphere
4710, b) in the region bB, whether or not it earlier hits the inner sphere. Taking
these two possibilities into account and using the strong Markov property we can
write

f(ga ba B) =af(£a ba B) + fE""bf(ga a, d"l)f(a"?, ba B)a

where f is the function introduced early in this section. Interchanging the roles of
outer and inner we have similarly

f§ a, B) =,f(¢ a, B) + [5a, f(¢, b, dn)f(bm, a, B).

Taking Gegenbauer transforms we obtain
(16) f,,(x, b) =af:l(x’ b) + bf;:(x’ a)f:,(a, b)
f:,(x, a) =bf;(x’ a) + af;(x’ b)f;(b’ a)’

where again we have adopted a notation emphasizing the dependence of the
transforms only on the lengths of the relevant vectors.

Solving the system (16) with the aid of the known values of f;( ...) from (3)
and (6) yields the expressions (8), (9). That the system (16) is nonsingular, the
denominator of (8), (9) is not zero, follows from the nonvanishing of the Wronskian
of I, K, (Watson (1944), (19) page 80.)
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4. Remarks and acknowledgments. I am grateful to my colleague C. T. Shih
for suggesting this problem area by asking for the joint distribution of the exit time
and place for a planar Brownian motion started inside a circle. In general the
interior problem can also be solved by exploiting the exponential martingale

M, = exp{ —0%/2 + v(u- X))}, 0o>0,u€3]

a Bessel-Gegenbauer expansion (Watson (1944), (3) page 369) for exp(z cos ¢), and
the averaging process used above to prove (12); we omit the details. No such attack
succeeded for the exterior problem, and results of Robbins and Siegmund (1973)
and Lai (1974) suggest that none is possible. The method actually used was
motivated in part by the treatment in Darling and Siegert (1953) of hitting time
problems for linear diffusions on semiinfinite or finite intervals.

When n = 0 the expressions (3), (6), (8), (9) give the complete monotonicity and
infinite divisibility of certain quotients of modified Bessel functions with arguments
proportional to s2. This overlaps with recent results of Ismail and Kelker (1978)
and Kent (1978); moreover, the present Theorem (2) is the drift-free case of the
more general formula (6.1) in the latter reference. I express my appreciation to
them for preprints. Finally, it is a pleasure to thank R. M. Dudley and W. E. Pruitt
for corrections and significant improvements to this paper.
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