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BOUNDS, INEQUALITIES, AND MONOTONICITY PROPERTIES
FOR SOME SPECIALIZED RENEWAL PROCESSES!

By MARK BROWN

City College, CUNY Florida State University, and Memorial Sloan-Kettering
Cancer Center

Renewal processes with increasing mean residual life and decreasing failure
rate interarrival time distributions are investigated. Various two-sided bounds
are obtained for M(r), the expected number of renewals in [0, #]. It is shown
that if the interarrival time distribution has increasing mean residual life with
mean p, then the expected forward recurrence time is increasing in ¢ > 0, as is
M(¢) — t/p. If the interarrival time distribution has decreasing failure rate then
M(2) is concave, and the forward and backward recurrence time distributions
are stochastically increasing in ¢ > 0.

1. Introduction and summary. A random variable X with cdf F is defined to
have an increasing mean residual life (IMRL) distribution on [0, o) if 4, = EX <
o0, F(07) =0, F(0) < 1, and E(X — ¢|X > 1) is increasing for ¢ > 0. The term
increasing (decreasing) is used for monotone nondecreasing (nonincreasing). A
random variable X is defined to have a decreasing failure rate (DFR) distribution
on [0, o) if F(07) =0, F0) < 1, and Pr(X >s + t|Y> t) is increasing in ¢ > 0
for each s > 0. The DFR property is equivalent to stochastically increasing
residual life, which, when EX < oo, implies increasing mean residual life. Thus F
DFR and EX < oo implies F IMRL. It is easy to construct examples for which F is
IMRL but not DFR. ,

In this paper renewal processes with IMRL and DFR interarrival times are
studied. A summary of the main results now follows.

If Fis DFR then the renewal function, M, is concave and the renewal density,
m, which necessarily exists on (0, o), is decreasing. The renewal age process,
{A(¢), t > 0}, and the forward recurrence time process, {Z(#),¢ > 0}, are
stochastically increasing in ¢. For any Borel set 4 C [0, c0), N({4 + t}), the
number of renewals in 4 + ¢t = {x + t, x € A} is stochastically decreasing in
t>0.

If F is IMRL then the expected forward recurrence time is increasing as is
M(¢) — t/p,. For any Borel set A C [0, ©0), EN(A) > u; '/(A), where [ is Lebesgue
measure.

Bounds for the renewal function are obtained for F IMRL, with improvements
for F DFR. If F is IMRL with renewal function M, y, = EX' = [Px’ dF(x), and
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U(t) = t/m + wp/2u, then u, ,, < oo for an integer k > O implies

(1) U(1) > M(1) > U(t) — ming, ¢t ™"
In (1) ¢ is an explicitly computed expression involving g, - * - , ;. Quantities
0=v_, <vy<v; -+ <y = oo are found such that for 1 € [v;_,, v}, ¢t/ =

ming_;,¢;t~'; thus the lower bound in (1) reduces to U(?) — ¢it™/ for t €
[v;_1, v)). It is further shown that if Yx(a,) = [3e“ dF(f) < oo for an a, > 0, then
for0<a <ay:

@) U(1) > M(1) > U(t) — o(F, a)(e® — 1)

where ¢(F, a) = (pa)~" — (1y/2u3) — (We(a) — 1)~! does not depend on ¢.

The results follow from a construction of two dependent renewal processes on
the same probability space, one an ordinary renewal process and the other an
appropriate delayed renewal process. The delayed renewal process has the property
that for all k its kth renewal coincides with the (N + k)th renewal of the ordinary
renewal process, where N is a random variable. By having a model in which the
two processes differ in an easily understandable manner thay can readily be
compared. The approach of comparing two processes by constructing a convenient
bivariate version is widely used (see, for example, [9], [13], [19], [20], [21] and [22))
although the present construction appears new.

If X — t|X >t is stochastically increasing (increasing in mean) it follows (Theo-
rems 2 and 3) that Z(¢), the analogous quantity for the renewal process, is
stochastically increasing (increasing in mean). More generally it would be of
interest to understand the extent to which monotonicity and aging properties of a
distribution are inherited in some fashion by its renewal process. Much work
remains to be done,on this problem.

The theory of DFR distributions is developed in Barlow [1], Barlow, Marshall
and Proschan [6], Barlow and Marshall [2], [3], Barlow and Proschan [4], and
Esary, Marshall and Proschan [10]. IMRL distributions are examined in Bryson
and Siddiqui [8], Haines and Singpurwalla [12], and Barlow, Marshall and Pro-
schan [6].

Mixtures of DFR distributions are DFR ([5], page 103); in particular, mixtures
of exponential distributions are DFR. One would, therefore, expect that data
collected by combining approximately exponentially distributed subpopulations
would have an empirical distribution which would be DFR in appearance. This
phenomena is discussed in Barlow and Proschan ([5], page 103). Keilson [14] has
shown that a large class of first passage time distributions for Markov processes are
DFR.

2. Representations. Let X, =0 and X,, X,, - - - be ii.d. with distribution F.
Define S, =0, S, =37_X,n=1,2,- - ,N(t) =max{i: §; <t} ={#S; <t}
— 1, and M(?) = EN(t) + 1 = E{# S, < t}. Further, define Z(r) = SYO*'X, — ¢,
the forward recurrence time at ¢, and A(f) = t — SVX,, the renewal age at . The
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process { N(#), t > 0} is called an ordinary F renewal process. A class of delayed
renewal processes is defined by treating the item at time zero as having a random
age T; when T = ¢ the residual life, which is the first renewal epoch, X{, for the
delayed process, has distribution }?',(x) = F(t + x) / F(t), where F=1— F.If His
the cdf of T then Pr(Xy > t) = [$F,(x) dH(x). Then let {X/,i > 1} be iid. with
distribution F, and independent of X. Define S, = 33X/, n > 0,S_, =0, N'(?) =
max{i: S; <) and M'(f) = EN’(¢) + 1. The process {N'(¢),t > 0} is called a
delayed F renewal process with initial age distribution H. Note that this definition
does not allow an arbitrary distribution for X as the standard definition ([1] page
184). Define A'(#) = ¢t for 0 < t < S, A'() =t — Sy, for £ > Sg. For a delayed
renewal process, Z’, A, N’, M’, X/, S, will denote the analogues of
Z,A,N, M, X,, S, for an ordinary renewal process. A delayed renewal process
with initial age distribution G(x) = pu;"'f3F(y) dv is called a stationary F renewal
process. A stationary F renewal process satisfies M'(¢) = ¢/, and Z'(¥) ~ G for
all £ > 0 ([11] page 354). Note that the hazard function, h*, of G satisfies
h*(¥) = 1/E(X — t|X > 1), where X ~ F. Thus F IMRL < G DFR.

For a distribution F satisfying F(0~) = 0 and F(0) < 1, the definition of DFR
given in Section 1 is equivalent to each of the conditions below:

@) F = 1 — Fis log convex.

(ii) F is absolutely continuous on (0, o0) with a density f possessing a version
for which the hazard function A(x) = f(x)/ F(x) is decreasing.

The fact that a DFR distribution on [0, ), is absolutely continuous except
perhaps for an atom at {0} can be proved following an argument of Barlow and
Proschan [5] page 77. The other implications are straightforward.

We will either assume F IMRL or DFR on [0, ). Two dependent renewal
processes will be constructed. Process 1 will be an ordinary F renewal process.
Process 2 will be a stationary F renewal process in the IMRL case, and delayed F
renewal process of the type described above in the DFR case. The special feature
of process 2 is that S/ = Sy,,,i=0,1,- -+, for a random integer N. Process 1
and 2 differ only in that process 2 has zero renewals in [0, S,) while process 1 has
N renewals in this interval. The construction is based on a simple idea which is
obscured by the details of the construction and proof. The hazard function of F is
decomposed into two components. The first component causes failure for both
processes, the second component only causes failure for process 2. The construc-
tion uses the following lemma.

LEMMA 1. Let X be distributed as F where F will -either be assumed IMRL
on [0, ©) or DFR on [0, ). Set K(f) = G(f) in the IMRL case and K(t) =
f3°(f(t + )/ f( y)) dH(y), where H is an arbitrary probability distribution on
[0, c0), in the DFR case. Define K,(t) = K(t + v)/K(v), J,(t) = F(t)/ K(t). Then
J—0 is the survival function of a possibly defective distribution on [0, o).

ProoF. In the IMRL case J,(¢) = (F(2)/ G())(G(¢)/ G(t + v))G(v) and since G
is DFR both F(r)/G(?) and G(¢)/G(t + v) are decreasing. Thus J, is decreasing.
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In the DFR case J,(1) = K(0)[[S(F(t + v + y)/ F(O)F(y))~' dH (y)]~'. Since F
is DFR the denominator is increasing, and then, since the numerator is constant, J-U
is decreasing in ¢. Thus, in both cases J—'J is decreasing. In addition J, is right
continuous, equals 1 for # < 0, and is always between 0 and 1. It is thus the
survival function of a possibly defective distribution on [0, c0). []

We proceed with the construction. Again K(f) = G(f) when F is assumed IMRL,
and K(f) = [S(F(t + y)/F(y)) dH(y) with H an arbitrary distribution on [0, c0)
when F is assumed DFR.

Construct Z, and W, independent with Z, ~ K, W, ~J where J(1) =
F(1)/K(1). If J is defective let Pr(Z, = o0) = lim,_, J(¢). If Z, < W, set X, = X},
=Zand X; =X/ =Y, ,,j=2,3,- - where {¥,i > 1} is an ii.d. sequence
with distribution F independent of (Z,, W)). If Z, > W,, set X, = W, and go
to stage 2. At stage 2 construct Z, and W, conditionally independent of each
other and of (Z,, W,) given W,, with Z,|W, = v having distribution K, (f) =
K(t + v)/K(v), and W,|W, = v distribution J (1) = F(¢)/ K(¢). If Z, < W, then
set X, =2, Xg=W,+Zand X, =X/ , =Y, ,j=3,4,-- where {Y,i=
1,2,-- -} is iid. with distribution F and independent of (Z,, W,, Z,, W,). If
W,<Z, set X, = W, and go to stage 3. We reach stage m if and only if
W, <Z,i=1---,m-—1,in which case X, = W,i=1,---,m — 1. At stage
m we construct Z, and W,, conditionally independent of each other and of
(Zyp, W)« (Zyory W) given ZT5'W, with (Z,|277'W, = v) ~ K,,
(WS~ W,=0)~J,. If Z,<W, set X,,=2Z,, Xe=3"""W,+ Z,, X/ =
X _m=Y _pj=m+1,--- where {¥,i > 1} is iid. with distribution F and
independent of (Z,, Wy, Z,, W,,- - - , Z W,_». If Z, > W, then go to stage

'm— 1>
m + 1 and repeat.

THEOREM 1. Under the above construction:
) {X;,i > 1} is an ii.d. sequence with distribution F.
(i) {X/,i > 0} are independent, Xq~ K, X/ ~ F for j > 1.
(iii) S; = Sy, for i > 0, where N = min{i: Z; < W;}, and Pr(N < o0) = 1.

ProOF. (i) Define N = min{i: Z, < W;}, N = oo if W; <Z, for all i. Now
XIN 26, (W;, Z) =W, 2),j=1,- -+ ,i— 1) ~min(Z}, W}) where v =
e le, Z* ~K,, W* ~J, and Z* and W} are independent. Since K, (f)J,(¢) =
F(0), (XN >i,(W,, Z) =W, z),j=1,- -+ ,i — 1)~ F. Thus X, ~ F indepen-
dent of Xy, - - -, X;_, for all i; thus {X,j > 1} is iid. with distribution F.

(ii) In our construction we generated W, - - - , Wy. It will not be convenient to
continue constructing W;’s for j > N. At stage j construct W, to be conditionally
independent of Wy, - - -, W,_, given Z{™'W,, with (W|Z{™'W, = v) ~ J,. Since K
is DFR, inf, Pr(W; > ¢) > inf, Pe(W, > f) = F(#)/lim,_ K (¢) > 0. Therefore,
Pr(Z°W, = o) = 1, so that given ¢, with probability 1 there exists j so that
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3{~'W, <t < /W, Then:
Pr(Xg > thwy, wy, - - ) = (T2 Kgpon, () (K (1 = 247'w)) = K(0).
Thus X ~ K.
(iii) Since Z{°W, = oo with probability 1, X§ < oo if and only if N < co0. By (ii),
Xg~ K thus Pr(Xj < o0) = 1 and, therefore, Pr(N < o) = 1. By construction
S; =Sy, fori>0.[

3. Some properties of IMRL and DFR renewal processes. We will need the
following well-known result (Feller [11] page 148).

LEMMA 2. Let F be a distribution on [0, ). If u, < oo define F(f) =
f,°°14—*(x) dx; if u, < oo define Fy(f) = f;‘°F_l(x) dx. Then:

() g < 0=t“F(t) >0 as t— o0; for k >0, Py < 00 = [StFF(2) dt =
Per1/k + 1< o0 and t*F\(t) — 0 as t — 0 for k > 0, ., < 00 = [Qt*F,(f) dt
= s/ (k + 1)(k +2) < 00 and t*Fy(1) -0 as t - o0; for k > 0, y,, < 00 =
JSt*Fy(t) dt = 3/ (k + 1)(k + 2)(k + 3) < oo.

(i) For a >0, Yp(a) = [Fe™ dF(t) < oo implies e®F(t), e”F\(1), and e“Fy(t)
converge to 0 as t— oo. Moreover [Fe®F(t)dt = a \(Yu(a) — 1) < oo,
[Ge“F\(0) dt = a”X(Yp(a) — ap; — 1) < 0, and [Fe"Fy(1) dt = a~(Ya) —
a¥(py/2) = ap; — 1) < 0. -

If u, = EX? < oo, define L(f) = M(¢) — t/p, — py/2u3. Define g = F(0) =
Pr(X > 0). For nonnegative extended real-valued random variables EX > EY is
defined to mean oo > EX > EY. For extended real-valued random variables,
X >4Y (X stochastically greater than Y) means Pr(X > a) > Pr(Y > a) for all
finite a. In Theorems 2 and 3 below, many of the random variables may be
improper (assign positive probability to *co0) and the above conventions for
EX > EY and X >.,Y apply.

THEOREM 2. Let {N(t), t > 0} be an ordinary renewal process with F IMRL, and
{N'(%), t > O} a stationary F renewal process. Then:

(i) M(?) — t/w, and EZ(t) (expected forward recurrence time at t) are increasing
int>0.If u, < oo then L(t) = M(H)— t/p; — /24310 as t — oo.

(i) If g is a nonnegative measurable function then ITg(S;) is stochastically larger
than 25°g(S;). In particular N(A) is stochastically larger than N'(A) for all Borel sets
A C [0, ), and EN(A) > EN'(A) = p; "I(A), where | is Lebesgue measure. Fur-
thermore, M(t + h) — M(t) > h/y, for all t > 0, h > 0, and converges to h/p, as
t— 0.

(iii) If u, < o and g is a bounded measurable function which converges to 0 as
{— oo then |[48(t — x) dM (x) — pi 'fbg(x) dx| — 0 as t — oo.

(V) If py < o0 then 0 > L(t) > — p['fP(G(x) — ¢ 'F(x)) dx > —
G (x) dx where g = F(0), L(t) = M() — t/py — pp/20%

(V) Fork > 0, 5 < oo = lim,, t*L(H) = 0 and py, 3 < 00 =0 > [St*L() dt
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> —o0; for a>0, Ye(a) = [Fe” dF(f) < w0 = lim,,e“L() =0 and 0 >
[le L(t) dt > — oo.

ProOF. Recall that process 1 is an ordinary F renewal process, process 2 a
stationary F renewal process, and S/ = Sy, ;, i = 1,2,- - - . Note that by Wald’s
identity EN = p,/2p? for p, < oo with both sides equal to o if p, = co.

G MO —t/py = E(N(f) — N'(1)). Since N(t) — N'(OT'N, M(¢) — t/pu,1EN =
,/2u} by the monotone convergence theorem. Thus if p, < oo then 0 > L(¢) =
M(t) — t/py — py/2p10. Since Z(r) = SYO*IX, — 4 it follows by Wald’s identity
that EZ(f) = u(M(¢) — t/u,), thus EZ(5)1.

(i) By construction, Z3°g(S;) > Z%g(S;) = Z58(S/), thus X g(S,) is stochasti-
cally larger than X g(S/). Setting g = I,, the indicator function of the Borel set
A C [0, ), gives N(A) stochastically greater than N’(A4); taking expectations we
get, EN(A) > EN'(A) = p; 'I(A). Setting A =[t,t + h} gives M(¢t + h) — M(?)
> h/p,. This last inequality and the elementary renewal theorem (M(¢)/t — p; )
imply that M(t + h) — M(t) > h/p, as t > oo. (The convergence of M(t + h) —
M(?) also follows from Blackwell’s theorem, as an IMRL distribution must be
nonlattice.)

(iii) Define Y(r) = STN-LND) oy — §). Now [Lg(t — x) dM(x) —
u ' fhg(x) dx = E[Z¥9g(t = S) — SXWg(t — S))] = EY(1). Now Y(1) >0 as.
as t — oo and | Y(#)| < N(sup|g|) for all . Since p, < co the result follows from the
dominated convergence theorem. An alternative proof is based on the fact that
[fog(t — x) dM(x) — p; ' 6 g(x) dx| < sup(| g|) multiplied by the total variation of
M(x) — x/p, on [0, o0); the latter quantity is finite when u, < oo by part (i) of this
theorem.

(iv) By the argument in part (i), L(¢) = p; 'E(Z(f) — Z'(t)). By construction:

0>Z(t)—Z'(t)=0 if t>Xg
=Z() - (X;—1) if <X

Thus p, L(¢) = G()E(Z(t)| X} > £) — [®G(x) dx. Since Z(t)| X4 > t is a mixture of
distributions of the form X — v|X > v where X ~ F, and F is IMRL, it follows
that E(Z(t)| X5 > t) > E(X|X > 0) = ¢~ 'u,. Thus 0 > L(¢) > — p; ' [2(G(x) —
g 'F(x)) dx > — p'[°G(x) dx.

(v) These results follow from (iv) and Lemma 2.

THEOREM 3. Suppose that F is DFR on [0, «0). Then:

(1) A(t) and Z(t) are stochastically increasing in t > 0.

(ii) The renewal density m on (0, o0), has a version which is decreasing and
converges to u ' as t — oo (if p, = oo then u; ' = 0); M(¢) is concave.

(iii) If g is a nonnegative measurable function then V(t) = Z32,8(Syqy4+; — 1) is
stochastically decreasing in t > 0. In particular, for any Borel set A C [0, o), N({4
+ t}) is stochastically decreasing int > 0; N(¢t + h) — N(¢) is stochastically decreas-
ing int > 0 for each h > 0, and M(t + h) — M(8)}h/p, as t — 0.
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(iv) If g is a measurable function, R* — R = [— o0, ®), which is decreasing
(increasing) then W(t) = g({ Snqy+; — . i > 1}) is stochastically decreasing (increas-
ing) in t > 0. (By g increasing we mean x; < y;, i > 1, implies g(x) < g(y).)

ProOOF. (i) Give process 2 initial age distribution F,(s), the age distribution of
process 1 at time s. Then Z'(¢) ~ Z(s + ¢), and A'(f) ~ min(A(s + ?), t) so that
A'(t) <sA(s + t). By construction Z'(t) > Z(¢), and A'(t) > A(¢). Thus Z(r)
<aZ'(H) ~ Z(s + t) and A(t) <uA'(t) < A(s + t). Therefore, both A(¢) and Z(?)
are stochastically increasing in ¢ > 0.

(i) Recall that a DFR distribution on [0, o0) is necessarily absolutely continuous
on (0, ) and possesses a version of its hazard function, h(x) = f(x)/ F(x), which
is decreasing. Now m(t) = q~'E(h(A(t))), where m is the renewal density, g =
F(0), and A(?) is the renewal age at time . Since A(?) is stochastically increasing
(part (i), and A is decreasing, it follows that A(A4(?)) is stochastically decreasing and
therefore E(h(A(t))) is decreasing. Thus m(?) is decreasing and therefore converges
as t — 0. By the elementary renewal theorem (M(#)/t — p; ') the limit must be
p; . Concavity of M follows from m decreasing.

(iii) Define process 2 as in (i) above. By construction V(¢) > V'(f) ~ V(s + ?).
Thus V(¢) is stochastically decreasing in ¢ > 0. For a Borel set 4 C (0, ), g = I,
yields N({4 + t}) stochastically decreasing. If 0 € 4 C [0, o) with B = 4 — {0}
then N({4 + t}) = N({B + t}) as. for each ¢ > 0, while N({4}) > N({ B}); thus
the result also holds for the case 0 € 4. Setting 4 = (0, 4] gives N(t + h) — N(¢)
stochastically decreasing, and taking expectations gives M(¢ + h) — M(?)]; thus
M(t + h) — M(?) has a limit as ¢ — o0, which by the elementary renewal theorem
must be h/p,.

(iv) Consider an ordinary F renewal process. An observer enters at time s and
records renewal epochs in (s, o) subtracting s from each one. He then is observing
a sequence {S,, n > 0} with S§~ Z and S, ~ Z, + S, for n > 1. Similarly if he
enters at time ¢ he observes {S,,n > 0} with S ~Z, and S, ~ Z, + S, for
n > 1. From part (i) we know that for ¢ > s, Z, is stochastically larger than Z. It
follows (Lehman [16], page 73) that we can construct a pair of random variables
(S, S¢) with S§ ~ Z, S§ ~ Z,, and S; < Sy a.s. Next take an ii.d. sequence
{X;, i > 1} with distribution F, independent of (Sg, Sg), define S, = 31X, n > 1,
and set S, = Sg+ S,, S, = S§ + S,, n > 1. We therefore have versions of the
future renewal processes viewed from s and ¢ with S,” — S, = Sg — Sg > 0 ass.
Therefore, for g decreasing g({S,,n > 0}) > g({S,, n > 0}) as., thus W(s)
>« W(t) and W(¢) is stochastically decreasing in ¢ > 0. []

REMARK. Suppose that {Y;, i > 1} is a sequence of nonnegative random vari-
ables independent of {S, i > 0}. Consider R(s) = 3%, Y,e Mo =
=2 v+ 1 Yionge 79, For A > 0, R(s) is known as the future discounted re-
ward at time s, and A is called the discount factor. The process { R(s), s > 0} is of
interest in various stochastic optimization models (Ross [23]). It is easy to show
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that A > 0 and sup,EY; < oo implies that EFR(f) < oo and thus that R(¢) is a
proper random variable for all ¢.

It follows from either part (iii) or part (iv) of Theorem 3, by conditioning on
(Y, =y,i=1,---}, that if Fis DFR, then R(s) is stochastically decreasing in
s> 0.

4. Bounds for M(t): IMRL case.

THEOREM 4. (i) If F is IMRL on [0, ), and p, ., < oo for an integer k > 0
then:

®3) U1) > M(1) > U(1) ~ minggsucit™
where U(t) = t/p, + wp/2p3, co = pp /203 — q~ !

0<¢=—ifFs' 'L(s)ds = [&s" d(M(s) = s/p) < 0
fori=1,--- k.

and

The term c; is a function of py, * * * , Wyp i = 1,2, - -, k which can be recur-
sively computed from:
4 G =y — py V220G /DNy i=1--,k
where '

Yo =[ taa/ G+ DG+ 27 ] = [ papyra/200 + D |

A= /!
Equation (4) can be explicitly solved yielding
(5) =1t l'z_ll;ll(‘YJ/J’)zl;l(_“'l)_lz(ll, cee ,iI)EAl—j,I(HIIAir+l)’

= 1, cee, k
where
A = A{Gp- - yi)ii, > L,r=1,---, L3 =k}
(i) If F is quasiexponential (F(t) = g¢™™,0<q < 1,A > 0,¢ > 0) then ¢ =0
Jor all i. If F is IMRL but nonquasiexponential then c; > 0 for all i.

In the nonquasiexponential case define v_, =0, v, = ¢;,,/c, i =0,1,- - with
00 /00 = 0. Then v, is increasing in i and for v;_, <t < v, cjt_j = inf,c;t 7"

ProOOF. (i) Since M(¢) = U(t) + L(¢) and L(¢) < 0 (Theorem 2, (1)) M(¢) <
U(?). Since L(¢) is increasing (Theorem 2, (i)) L(¢) > L(0) = M(0) — p.2/2p,f =
g™ ' = wy/2p} = — co Thus M(#) > U(f) — c,. Since L(¢) is increasing it is at least
as big as its average over [0, 7] with respect to any prebability measure on [0, ¢].
Thus L(f) > it ~'f}s'~'L(s) ds which since L < 0 exceeds it ~'[Fs' 'L(s) ds = —
¢;t™" > — oo by Theorem 2 part (v). The equivalence between —ifFs'~'L(s) ds
and s’ d(M(s) — s/u,) follows by integration by parts and part (v) of Theorem
2.

To compute the ¢’s start with the identity M(¢) = 1 + [GM(t — x) dF(x), sub-
tract U(¢) from both sides, multiply both sides by ¢* and use the identity ¢/ — (1 —
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x) =320 )(t — x)'x‘~" This yields:

(6) FL(1) = [i(t — x)'L(t — x) dF(x) + h(t)

where h(1) = hy(0) + hy(0) — hy(0, (D) = [SIZWD0 — xyx"] Lt -
x) dF(x), hy(t) = tiu] ' [2F(x) dx, hy(t) = t'(pp/ 28D F(). "Now (6) is the renewal
equationg = h + g * F = h + M, with g(¢) = t‘L(t). By part (iii) of Theorem 2, if
we can show that 4 is bounded, integrable and that lim,_mh(t) = 0 then we can
conclude that lim,_, t'L(f) = p; ' fTh(¢) dt. But for t = 0, - - -, k, lim,_, ,t'L(?) =
0 by part (v) of Theorem 2. Thus the conclusion will reduce to [g Ch(f) dt = 0 and
this identity provides us with expressions for c;.
To show that A is bounded, integrable and convergent to zero we do so
separately for each 4,. By Lemma 2, h, and h, are convergent to zero with:

@) J&h(1) dt = pyin/ (i + D+ 2)p

(8) SEhs(1) dt = ppypa/2(0 + Dt
The boundedness of 4, and A, follows from the boundedness on finite intervals and
the convergence to zero as t — 0.

Defining L(y) = 0 for y < 0 we write h(?) = JeEiy! )x‘ "((t — x)'L(t —
x)) dF(x). Since (t — xYL(t — x) >0 as t > o0 by Theorem 2 part (v) the in-
tegrand converges pointwise to zero. Since s"|L(s)| is bounded on finite intervals
and converges to 0 as s — oo, sup, s "|L(s)| < oo, thus the integrand is dominated
by the integrable function 3¢_ & )(supss |L(s)|)x‘~" and by the dominated con-
vergence theorem h,(#) - 0. The above argument also shows that |h(f)| <

DAY 4 )p,, (sup,s”|L(s)|) < oo, thus h, is bounded; k, is integrable by part (v) of

Theorem 2 since [&|h,(2)| dt = SL_((! )p., J&s"| L(s)| ds < oo. Moreover:

©  sem(0d =Sz Do SesLis) ds = — i/ DNy

The identity [Ch(f) dt = 0 is equivalent, .using (7), (8) and (9), to
i3 (c,/rN41—, = myY; which reduces to (4).

Define dy = 0,d, = ¢;/il,i=1,- -,k 8 =0,8=v/il,i=1---,k By=
0,8, = — p;'Nyppi =1, -+, k. Then rewrite (4) as:
(10) d =96+ =0 dBi—s

Now (10) is a discrete renewal equation. Its solution is d; = P =00 M;_; where
M, = 3%, B, where B is the sth convolution of B. Since 8, = 0, ,B(‘) = 0 for
s > i. We thus obtain

dy =S &M, =8 + ZTIGM,_; = § + LY, 3G, e, (LB,

which is equivalent to (5).
(ii) If F is quasiexponential (F(f) = ge ™) then M(t) =q¢g WM+qgl=t/p +
1o/ 283 (py = Ag, pp = 2A\%g) thus L(¢) = 0. If ¢; = — i[&’s’~'L(s) ds = 0 for some
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i, then since L < 0 and L1 for F IMRL (Theorem 2 (1)), it follows that L(s) = 0 or
equivalently M(¢) = at + b with b = M(0) > 1. But the quasiexponential distribu-
tion with ¢ = b~! < 1 and A = ab~! has renewal function M(f) = at + b and the
renewal function uniquely determines the distribution. (¢,, = (1 — ¢;)~! so the
Laplace transform of F determines the Lapiace transform of M which determines
M). Thus for F IMRL but not quasiexponential, ¢; > 0 for all i.

Since L1 on [0, o) (Theorem 2 (i)) we can interpret L as thie distribution
function of a measure which assigns negative weight to {0} but positive weight to
all Borel sets in (0, o0). Consider the Hilbert space of Borel measurable functions
on (0, o) satisfying [&f? dL < oo with inner product (f, 8) = [&+fg dL. Now:

= (J&s dL(s)) = (t T, i )2
<NEF P = g
by the Cauchy-Schwartz inequality. Note that ¢; = o0 = ¢;,,; = o so that the
inequality cj2 < ¢4 1¢—; holds even if not all of ¢;_,, ¢;, ¢;,, are finite. The inequal-
ity is equivalent to v; = ¢;,,/¢; > ¢;/¢;_, = v,_; (Where 0 /00 = o0). Thus the v’s

are increasing.
Suppose ¢ < v Then since o, 17 < [T 'y, = j+,,,/c for m=1,2,---

But the meqqahty 1" < Cup/C s equlvalent to ¢t/ < ¢yt YT Similarly if
1> 0 ,,ct‘f <Gt U ™ for m = L, Thus for tE€[v_pv)ct™ =
inf;c;t 7" ]

THEOREM 5. If F is IMRL on [0, o) and Yp(ay) = [Fe® dF(f) < oo for an
ay> 0, then for 0 <a <a
(11)

u() > M(2) > U@ = (e = )7 '[(ma) ™" = (a/263) = (We(@) = D7)

ProOF. The proof is very similar to that of Theorem 4. Choose a € (0, g,).
Using L(¢) < 0, L(#)1 as in the proof of Theorem 4 we obtain:

(12) U(?) > M(1) > U(t) + a(e” — 1) [Pe™L(s) ds

where 0 > [$e®L(¢¥) dt > — oo by part (v) of Theorem 2.
To evaluate y,(a) = [Fe®L(s) ds we start with M(¢) = 1 + [(M(¢ — x) dF(x),
subtract U(#) from each side and multiply both sides by e*. This gives:

(13) e”L(t) = [Le® '~ P L(t — x) dF(x) + I(t)

where
(1) = 1(2) + (1) — L(1), 1,(1) = [o(e™ — De® ™D L(z — x) dF(x),
() = u e F (x) d, (1) = () 26)e“F (1),

We verify the conditions of part (iii) of Theorem 2 in a similar manner as in the
proof of Theorem 4, making heavy use of Lemma 2 and part (v) of Theorem 2. The
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conclusion of part (iii) of Theorem 2, in light of lim, , e*L(¢) = 0 (part (v) of
Theorem 2) gives us: :

(14)

(¥(a) — Dyy(a) = (F2/2l‘-f)[(‘[’1-‘(a) - 1)/‘1] - (P’laz)_l(‘l’)r(a) - ma —1).
Since Yz(a) — 1 # 0 for a # 0 we can divide both sides of (14) by y(a) — 1 and
solve for y;, (a). This gives:

(15) Yu(a) = po/2da = (ma®) ™" +[a(¥e(a) = D] 7"
Substituting (15) into (12) gives us (11). []

ReMARK. (11) and (15) will hold for a < 0 whether or not y(a) < oo for an
a > 0.If py < oo and we let a10 in (11) then we obtain M(¢) > U(z) — c¢,¢ ! where
¢, is given in (4). In general p, ., < oo implies ¥{?(07) exists and equals —(k +
1)~ !¢ 1. Thus ¢;(a) can be considered as a generating function for the ¢/s.
However, unless the particular form of y(a) leads to a simple expression for i, (a),
expressions (4) and (5) of Theorem 4 will be preferable for computing the ¢;’s.

5. Improved bounds when F is DFR. The bounds given in Theorems 4 and 5
for IMRL distributions can be improved for DFR distributions. Define ag = 1, q;
=(i/i+ 1),i > 1, ¢ = a;c; where ¢; is given in Theorem 3, and v* = ¢, ,/c* =
(&y+1/@)v;. Also define g (f) = a(e® — 1) !fise® ds = (te”/e” — 1) — a”},
B = (1% a(l = ™), and Y(a) = = aly(a) = [(ma) ™" = (1a/2%) — We(a)
-7

COROLLARY 1. Assume that F is DFR on [0, ). Then:

(@) If ey < o0 then U(F) > M(f) > U(t) — ming, . c*t ™"

(i) v*t and for vt , <t <yt cj“t‘f = inf,c*t™"; thus for v}, <t < v} the
bound in (1) is given by U(t) — ¢*t™.

(iii) If Yy(ay) < oo for an ay > 0 then for 0 < a < ay:

U(f) > M(2) > U(t) — (%' — 1) 'y(a) > U(t) — (O — 1)""Y(a).

PrOOF. (i) L is concave by Theorem 3 part (ii). Thus L(jt /fis-s/~'ds) =
L/ + Do) > jt [/ L(s) ds > jt 7/ [Fs/ ' L(s) ds = — ¢;t /. Thus L(t) > —
¢l(j + 1/)t]™/ = — ¢*t™/. The argument now proceeds as in Theorem 4.

(ii) A simple differentiation argument shows that «;,,/ ;1. Since ¢;,,/c;1 by
Theorem 4 and ¢, ,/c* = (a;,,/ )¢,/ c;), we see that ¢¥ | /c*!. The argument
now proceeds as in Theorem 4. :

(iii) The concavity argument in (i) shows that L(g,(?) > a(e® —
D)7 lte®L(s) ds > — (e — D~ Y(—ay,(a)); thus L(t) > — (e %& @ —
D™ = ay(@) = — ('O — )7 [(ma) ™' = (np/28]) — Wp(@) — D7) If s =
g ') then s=(+a Yl —-—e®)>(+a ") - e ¥ =a'h(t), thus
_(eag.."(t) —D7 > — (e -1l
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ExaMpLE. Consider f(x) = (I'(.5))"'x e ~*, x > 0; this is the I'(.5, 1) = x?/2
distribution, which is DFR ([5], page 378). We compute the moment based bounds
for M(¢), using Theorem 4 and Corollary 1, to illustrate the method, and to see how
much the DFR bounds improve upon the IMRL bounds in this case. Using the

recursive formula (4) we compute ¢, =%, L =c =§, c3 = g, A =§—;, Cs =le§, Ce

= 1485 = =1 = =1 =1 =1 =3 =9
=T Nexto_; =0,00=3,0,=1,0,=7,0,=5,0, =3, 0s =7, 06 = 75. De-

noting the lower bound given in Theorem 4 by B(¢) = U(¢) — inf;c;t”* we obtain:
B(t) =2+1, 0<r<3
=2t+3— @807, 1<t<1

=2t+3-@8»)7, 1<t<¥®

S2u4io (), Baic
Su+io(2), <<
=2 +3- (&), Lerg2
=2t +3- (=), By,

The lower bound, given in Corollary 1, which we denote by B*(¢) = U(¥) —
inf,c*r " is similarly computed.

The table below gives a few values of ¢ along with the corresponding intervals
[B(2), U(?)] and [B*(¢), U(¢)] for M(¢).

t (B(D), U() (B*(9), U(1)

1 (12, 1.7] (12, 1.7]

5 [2.25, 2.5] [2.375, 2.5]

1 [3.375, 3.5] [3.444, 3.5]
1.5 [4.444, 4.5] [4.475, 4.5]

2 [5.471, 5.5] (5,488, 5.5]

3 [7.492, 7.5] [7.497, 7.5]

4 [9.4976, 9.5] [9.4990, 9.5]

5 [11.49926, 11.5] [11.49971, 11.5]

6. Comments and additions. .

(1) For IMRL distributions we have the representation (Theorem 1) X§ = =7'X,,
where X; ~ F, X; ~ G, G(x) = ul"fi,‘F_(y) dy, and N is a stopping time. A simple
argument shows that Pr(N = 1) > 0. Since G is absolutely continuous, it follows
that an IMRL distribution must have an absolutely continuous component. I do
not know whether, aside from an atom at {0}, an IMRL distribution can have a
singular component.

(2) If the above mentioned representation is valid for distribution F, with N a
stopping time, then a renewal process with interarrival time distribution F will
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enjoy many of the properties which were derived for IMRL renewal processes. I do
not know whether F IMRL is a necessary condition for such a representation to
hold.

(3) By Theorem 2(i), if F is IMRL and p, < oo, then L(#) — L(0) is the
distribution function of a finite positive measure over the Borel sets in (0, o0). If F
is DFR then, in addition, L has a decreasing density (Theorem 3 (ii)). I suspect that
L has an improvement with age property for F IMRL, with a strengthened version
for F DFR. This is based on the behavior of the moments of L in a few special
cases which I have worked out.

(4) If we imitate the construction of Theorem 1 for increasing failure rate (IFR)
distributions we obtain the following. The ordinary and delayed renewal processes
alternate renewals until a random time at which their renewal epochs coincide;
then all future renewal epochs coincide. So far this representation has not yielded
much in the way of special properties for DMRL and IFR renewal processes. An
example of Berman ([7] page 429) shows that F IFR does not imply m(¢)
increasing, nor M(r) — t/p, decreasing, nor EZ(¢) decreasing. Thus the obvious
analogues of the DFR and IMRL results of this paper do not hold for IFR and
DMRL distributions.

(5) Identities (4) and (5) may be of independent renewal theory interest. They
hold for distributions on [0, o) possessing the required moments and having the
property that some convolution has an absolutely continuous component. To prove
this one would follow the argument of Theorem 4, invoking results of W. L. Smith
[25] to justify both lim t*L(f) =0, and the applicability of the key renewal
argument.

(6) The results ¢; > 0 and v;} (Theorem 4) are inequalities among the moments
of IMRL distributions which may be of independent interest.
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