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CLUSTERING AND DISPERSION RATES FOR SOME
INTERACTING PARTICLE SYSTEMS ON 7!

BY MAURY BRAMSON AND DAVID GRIFFEATH
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It is well known that the voter model on Z¢ under initial product measure
will converge weakly to a point process as ¢t — oo; if d > 3, convergence will be
to a nontrivial point process; if d = 1,2, convergence will be to a linear
combination of trivial point processes. Therefore, for d = 1, 2, the cluster size
of a particular state around any fixed point tends to become arbitrarily large as
t — o0. Here we examine the rate of growth for d = 1 of this clustering for the
nearest neighbor voter model and the related problem of interparticle distance
for nearest neighbor coalescing random walks and annihilating random walks.
We show that under spatial renormalization 13 these cluster sizes /interparticle
distances in each case approach a nondegenerate distribution. We examine
these distributions and obtain numerical estimates for these and related prob-
lems.

1. Introduction. Three of the simplest types of interacting particle systems are
the basic voter model, coalescing random walks, and annihilating random walks.
The present paper deals with asymptotics for these systems in the one-dimensional
case.

Voter models have been studied by Holley and Liggett [13], and independently
by Clifford and Sudbury [4]; see also [15] and [9]. The informal description is as
follows. Each site of the d-dimensional integer lattice Z¢ is occupied by a person
who is either in favor of or opposed to some proposition. The “voter” at x € Z¢ is
influenced by his 24 nearest neighbors, and changes his opinion at an exponential
rate proportional to the number of neighboring voters with the opposite opinion. If
all 24 neighbors disagree with the person at x, the flip rate is 1. A typical state for
the model is a subset of Z¢: namely, the set 4 of sites occupied by voters who favor
the proposition. Thus, writing S = {all subsets of Z¢}, 9N = {all probability
measures on S }, the voter model is a family of continuous time Markov processes
with state space S, one process for each initial measure p € 9IL.

We denote the basic voter model by {({/),50; # € I}, or simply {($/)}. The
foremost question for this system is: starting from a state of “individual indepen-
dence”, i.e., a Bernoulli product measure g, € 9N with density A € (0, 1), does the
interaction lead to “eventual consensus” or not? It was shown in [13] and [4] that
the answer is “consensus” if d = 1 or 2, “no consensus™-if 4 > 3. More precisely, if
d =1 or 2 the distribution of {/* converges weakly to a mixture of p, =*“all
against” and yu, =“all for” as #— oo, whereas for d > 3 the distribution of {/*
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184 MAURY BRAMSON AND DAVID GRIFFEATH

converges to a nondegenerate steady state »,. In the latter case, », has interesting
properties; see [13] and [3]. When d = 1 or 2, the convergence to a mixture of delta
measures indicates clustering: as time goes on, the connected component of {* or

— ¢ which contains any site x € Z? tends to become larger and larger. A
natural problem in this setting is to determine the rate of clustering. We will study
clustering properties of the basic voter model in one dimension.

Coalescing random walks have appeared in various contexts in [13], [14], [12] and
[9]. By a continuous time simple random walk on Z% we mean (unless otherwise
noted) a Markov process which makes transitions like the familiar discrete time
simple random walk after mean-1 exponential holding times. The basic system of
coalescing random walks on Z% denoted by {(¢")}, is described as follows.
Particles initially distributed according to u € 9N attempt to execute independent
continuous time simple random walks, but an interference mechanism takes place:
whenever a particle attempts to jump to a site already occupied by another, the two
particles coalesce, i.e., merge into one. § € S is the set of occupied sites at time ¢.

Annihilating random walks were first considered by Erdos and Ney [7], and later
treated in [14], [1], [17], [19] and [9]. They are described in the same manner as the
coalescing system, except for the interference mechanism. The processes (n}')
comprising the basic annihilating random walks consist of particles performing
independent continuous time simple random walks, but such that both particles
disappear whenever a collision takes place.

As noted in [9], for any d > 1, the coalescing and annihilating random walks,
starting from arbitrary p € 9, both converge to p, (the empty state) as ¢t — oco.
Due to collisions, the extant particles disperse as t — oo0. For these models, one
seeks to determine the rate of dispersion. In one dimension, this amounts to finding

"the grovsffh rate of the interparticle distance; we are indebted to Peter Ney for
posing this problem in connection with the annihilating random walks.

In essence, our results state that when d = 1, cluster size in the voter model and
interparticle distance in the random walk systems are of order 17 at time 7. After
establishing notation and a few preliminary definitions and results in Section 2, we
determine the asymptotic (in time) mean cluster size/interparticle distance when
averaged over the entire space for the three systems in Section 3. With the aid of
Birkhoff’s ergodic theorem, these asymptotlcs can be computed exactly in all three
cases, starting from suitable initial u including the product measures p,. Sections 4
and 5 deal respectively with several variants of (i) the distance between the two
particles surrounding the origin in the random walk systems, and (ii) the size of the
cluster containing the origin in the voter model. We prove that after spatial
renormalization by 17 at time t, these random variables converge in distribution as
t— o0.

We examine the domain of attraction for each model, that is, the family of initial
p which lead to that limit. In each case, the domain of attraction contains the
measures ,u.,‘/. We discuss the coalescing random walk first because it is easiest to
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handle. In fact, its limiting distribution will be determined explicitly: it is a normal
distribution truncated at zero. The limit law for the annihilating model will not be
analyzed directly, but will be reduced to a special case of the voter model problem
treated in Section 5. The limiting behavior of the voter model is more difficult to
analyze than that of the coalescing model. We will proceed indirectly by modifying
the model so as to simplify the effect of the interdependence among the different
voters. This will be done in such a manner as to leave unchanged the system’s
ultimate behavior, but so that we will be able to apply a version of the invariance
principle to the problem. It will turn out that the limiting distributions encountered
are not elementary, but nevertheless have exponential tail.

Our methods of proof rely on various close connections among the three systems
at hand, and between them and certain embedded random walks. Some connec-
tions are expressed via duality equations ([22], [13], [11], [14], [12]), which enable one
to reinterpret the processes in such a manner as to considerably simplify conceptu-
alization. We will find it convenient to utilize these relations throughout the paper;
after the introduction of some more terminology, we conclude this section with a
typical application.

For a given p € 9, we define

e A)=p{Ad:ANA=0J},
where A € S, = {finite subsets of Z?}. One of the duality equations asserts that
PEFNA=02)=E[o*($r)]  for peM, AES,

(We will use the symbols P and E for the probability law and expectation operator
of any of our processes, and write the initial state as a superscript when a process
starts deterministically.) Another relevant observation is that when A is a block, i.e.,
A=[x,y]={x,x+ 1, - -,y), then the process (|§/**)| — 1) (JA| denoting the
cardinality of A) is a continuous time simple random walk with mean -3 holding
times which starts at y—x >0 and is absorbed at —1. We denote such a random
walk by (Y?~*). Let (Z*) be a mean - simple random walk without absorption,
and let 7,* be the hitting time of y € Z for (Z;). Also, for 4 € S, let D' (A) be the
distance from 0 to the first site to the right of 0 which is occupied by A.

We now apply the preceding observations to compute asymptotics for
E[Dgt(£7)], the expected distance at time ¢ from 0 to the first particle to the right
of 0, for the coalescing random walks started at “all 1’s”. Specifically,

E [ Do+(§tz)] = 3270 P(Dy (&%) > n)
=3% 0 P(£,z N[0, n] = Q)
=250 P(31*" = 2)
by the preceding duality equation.'By the last observation, this equals
nmo P(Y = —1)=27, P("'r? < t)
= E[M,],
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where M, = maXog, < Z?. Since it is well known (cf. prloblem 4, page 232 of [20])
that E[M,] ~2(t/7)z, we obtain E[Dg' (&%)~ 2(¢/7)3. Note that the expected
distance between the two particles surrounding the origin is therefore ~ 4(t/ 77)%.

We should emphasize that our methods throughout the paper depend critically
on the one-dimensionality of the systems we study, and on our assumption that
interaction is restricted to nearest neighbors. Corresponding problems without the
nearest neighbor assumption, and especially in higher dimensions, are important for
applications, but are apparently much more difficult to treat. Related results, in
one and higher dimensions, have recently been obtained for (i) critical branching
particle systems on R? ([5], [6], [8]), and (ii) “stepping stone” models on Z¢ with
infinitely many types of particles [18].

2. Preliminaries. Let {({")}, {(§")}, and {(n})} be the basic one-dimensional
voter model, and coalescing and annihilating random walks, respectively, as
defined in the introduction. This section contains the basic equations, terminology,
and preliminary results which enter into our analysis of these three systems.

We will use three duality equations, the first of which has already been men-
tioned. These are, for p € M, A € Sy, ¢ > 0,

(1) PE* 0 A =2) = E[o(M)],
o) PGP 0 A = @) = E[o*(EM)].
3) P(n# N Al even) = E[v#(3Y)],

where *(A) = u{d : AN A=} and Yy*(A) = p{4 : |[A N A| even}. Proofs of
(1) and (2) can be found in [10]-[14], while (3) is proved in [14] and [10]. We also
define *(A) = p{A4 : A C A}, for which (2) implies that

) P([0, x] c §¥) = E[@(¢>)].
Manipulating (3), one also obtains the useful variant
(3) P(nt n A =2) =27, E[294(s7) - 1].

A border equation, first exploited by Schwartz [19], will be useful in conjunction
with annihilating random walks. The equation states that the “borders” between
voters of opposite opinion execute annihilating random walks. We write 4(x) = 1
for x € 4, and A(x) = 0 for x & A. Then, for any p € M, x,y €Z, and ¢ > 0,
the border equation states that

(4) P(Inf n[x + 1,y]| even) = P(s#(x) = $(»),
where i is the border measure corresponding to u, defined by

@A) = p{4 : A(x — 1) = A(x), x € A).
Next, we discuss the connections between our systems and the simple random
walks (Y;*) (jump rate 2, absorption at — 1) and (Z;*) (jump rate 2, no absorption).
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(In this paper, (X;*) will denote a simple random walk with jump rate 1 and no
absorption.) As already noted,

) (I§¥1] = 1) isacopyof (¥77%).
Also, if diam A = max, ,c,|y — x| is the diameter of A, then
6) (diam £7*Y — 1) isacopyof (Y?7%).

Throughout the paper, we will be making use of certain basic properties of random
walks, which are simple consequences of the reflection principle, the central limit
theorem, and the local limit theorem. Namely, if x € Z* U {0} and a € R™, then

(7) P(Y'€B)=P(Z€B)— P(Z*€ - (2+B)), BC[0,x),

3) P(Y? > 0) ~— as t— oo,
(m1)?
" x+1 .
9 P(Y*>0)<c T— for some ¢ independent of x and ¢,
12
1 2
(10) lim,_,,, P(Y, [%7] > 0) = 7~ 315~/ a,

where |_uJ denotes the greatest integer less than u, and [u] denotes the least

integer greater than u, and if g(¢) = o(t%) as t — oo, then

(11) lim, o, SUp,5o 12 P(Y7 €[0, g(1)]) = 0.

In Section 5, we will also find it convenient to make a pathwise comparison of
systems of coalescing random walks commencing from different initial states, 4
and B. (The same basic comparison also has analogues for annihilating random
walks and the voter model). We make the comparison by coupling the systems (£)
and (£7) so that random walks present at the same site of each process undergo the
same motion. (£*) and (£%) may be considered to be simultaneously evolving over
the same probability space; clearly, for 4 C B, £* C &P for all realizations for all
times . (For a detailed presentation, see [12]).

Various classes of measures in 91 will qualify as “nice” initial states for the limit
theorems we have in mind. For the remainder of the paper, we restrict our
attention to translation invariant (that is, spatially stationary) u. The evolution laws
of our three particle systems are such that the systems remain translation invariant
for all time. p € 9N is called mixing, if, in addition,

lim, . |@*(Bo U (x + B))) — @*(By)e*(x + B))| =0  for By, B, €S,
and n-fold mixing (n > 2) if
- lim|x,|—x,2|—>oo for all i), izlq)“( U:;o(xi + Bx)) - 1-[’;-0 (p"(xi + Bx)l =0
for B; € S,

Of special interest in our study of annihilating random walks will be the renewal
measures on Z ([21]). Given a probability density f = (f;; k = 1,2, - - - ) such that
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M =3 kf, < o, the renewal measure p, determined by f is the (translation
invariant) element of 91 with cylinder probabilities

pf{d:A(x)=LAx+y)=1---,A(x+y, + - +y) =1,
A(z) = Oforallotherz €[ x, x + y, + - - - +,]}
- M,

Note that the product measure w,, A € (0, 1], is the renewal measure p, with
fi =AM — Af~L It is also true that if a renewal measure is aperiodic, then it is
mixing (and n-fold mixing for all n).

We conclude this section with several results which will be useful later on. The
first result, Lemma 1, is an assertion regarding the parity of a renewal measure.

LEMMA 1. Let y; be a renewal measure with support f = mA for some m > 1,
A C Z*, where A = {1} or some two elements of A are relatively prime. If A
contains both even and odd integers, then

(12) Y*([0, n]) >3 as n— oo,

whereas if A contains only odd integers, then for somep,0 < p < 1,

(13) 4/"1([0,1' +2mn]) > ¢, as n— oo,

where 8§, = (lm — i — 1|/m)p + (im — |m — i — 1|)/m)(1 — p) for 0 <i < 2m —
1. In particular, {§;} satisfies

(14) 52308 =5,

PrROOF. Let w C Z be p-distributed, and write Nj(w) = |w N A| = the number
of renewals of w on A € S, Define p, = p{Ny, , is even|w(0) = 1}, n > 1, and
note that (p,) satisfies the renewal equation
(15) Pn =8y + Zhny (f)iPrso
where a, = 2¢_, ., fi- If m = 1 and 4 contains both an even integer and an odd
integer, then f*f is aperiodic, and the renewal theorem states that

(16) bk Zizih M,
" k=1 k(fef)e 2M 2
Since
lim,_, 4/“1([0, n])
=lim,_, , S5 26 #{ Nx+1, n 15 0dd|w(k) = 1, w(j) = 0 for 0<,j <k}
‘p{w(k) =1, w(j) =0 for 0<j <k}
=lim,_ 2720 (1 — po_i) - n{w(k) = 1, w(j) =0 for 0< <k},
this implies (12) in the case where m = 1. To demonstrate (12) for general m, note
that if a realization of y, is concentrated on mZ, then the parity for [0, mn] and
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[0, i + mn] are the same for 0 < i < m. If the set 4 contains only odd integers,
then an analogue of (16) is still true, although the limiting ratio need no longer be
3+ A more complicated version of the above reasoning, together with the remark
that g, is translation invariant, implies (13). We omit the details.

The final two results deal with the rate at which particular systems of coalescing
random walks coalesce. The first (Lemma 2) is used only as an aid for proving the
second, whereas the second (Lemma 3) will be applied in Sections 4 and 5.

LEMMA 2. Let a and b denote positive integers. Then,
17) P(|¢f =% = 3) < Cab/t
Jor some constant C which is independent of a, b and t.

Proor. Let L and / be piecewise constant right continuous functions with
! < L. (The functions, in our case, will turn out to be realizations of continuous
time simple random walks.) We first show that the simple random walk 0.6))
satisfies

(18) P(I(s) <X? < L(s)for0 <s <t)
< P(I(s) <XPfor0<s <1): P(X? < L(s) for 0 < 5 < 7).

To see this, we set, for 0 < r < ¢,

(19a) u(r, x) = P(I(s) < X2 forr < s < 1|X? = x)
and :
(19b) o(r, x) = P(X2 < L(s) forr < s < t|X? = x).

u and v are both space-time harmonic functions: u in the region x > /(r) and v in
the region x < L(r). That is, u satisfies

u,(r, x) +%[u(r, x+ 1)+ u(r,x — 1)] — u(r, x) =0,

and v satisfies the analogous equation. A simple computation shows that the
product, u - v, is a space-time superharmonic function within the region /(r) < x <
L(r); u - v satisfies the boundary conditions

(20a) u-o(r,I(r)) =u-o(r, L(r)) =0

and

(20b) u-ov(t,x) =1 for I(r) < x < L(¥).

Next, we observe that )

(21) w(r, x) = P(I(s) <X? <L(s) for r<s<tX®=x)

is a space-time harmonic function for /(r) < x < L(r). Since w possesses the same
boundary values as given in (20) for « - v, it follows that

w(r,x) <u-o(r,x) for I(r) <x < L(r).
This implies inequality (18).
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We now derive (17) from (18). Observe that the independent random walks
(X,%), (X2 and (X?) satisfy
Pl -=%B =3) = P(X, " < X2 <X’ for 0<s<1).

If we let (2, P) = (2,, P,) X (2,, P,) denote the product probability space induced
by the pair (X,"%, X?; 0 < s < ¢), then this equals

Ja P(I(s) < X2 < L(s) for 0<s<t)dP,
where (/, L) is viewed as an element of . Equation (18) implies this is at most
Ja P(I(s) <X? for 0<s<1)-P(X2<L(s) for 0<s<t)dP.

By the independence of the random walks (X,”¢) and (X?), this equals

Jo, P(I(s) < X2 for 0<s<t)dP,-fo P(X?<L(s) for 0<s<t)dP,
= P(E*01 = 2)- ()] = 2)
< Cab/t

by (9), where C = ¢2. Thus,

P(|¢f~=%8)| =3) < Cab/t,
which completes the proof.
LemMma 3. For any positive integer x,
(22) P(|gl%¥| > 2) < C'x*/t
Jor some constant C' which is independent of x and t.

PrROOF. We consider the case x =2". We define the events E, ;, for j =
,2,---,2 andi=0,1,---,n— 1, so that

Eo, = {[€*77" P =3}, E, , = {g¥¥70) = 3},
E ,= {|§t(2"—',3-2"",2")| = 3},. <L E ;= {|gtAi./| = 3}, cee,

where 4, ;= {(j — 2"/, 2j — D277, j2"7"}. A little contemplation shows
that the set {|¢!®*]] > 2} may be rewritten as
n—1 2
U, U, E,
(In other words, if there still exist more than two distinct random walks by time ¢,
then the random walk commencing at some y € (0, x), y = (2j — 1)2"~"~1, has not

yet coalesced with either of its two nearest neighbors commencing on the lattice
consisting of multiples of 2"~ *). Therefore,

P(Ig* ] > 2) < =120 32, P(E, ),
which, by Lemma 2, is at most

nASZ C Pt/ < 22TIC /= Cx2 2t
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The same estimate holds trivially for arbitrary x, but with C/2 replaced by
C’'=2C.

ReMARK. In the application of Lemma 3 to Theorems 3 and 5, we will see that
the presence of the factor x2, rather than x, is crucial.

3. Mean dispersion and clustering rates. Given a configuration 4 C Z, we let

D(A) = the mean interparticle distance for 4
in the case of the coalescing and annihilating random walks, and
C(A) = the mean cluster size for 4

in the case of the voter model. D and C are defined as limits of their natural
restrictions to [—n, n] as n — oo (provided the limits exist). Note that the clusters
of configuration A are the connected components of either A or A°. In this section,
we compute asymptotics for D(§'), D(n}), and C(§}') as ¢t — oo, starting from
appropriate p € I

THEOREM 1. As t — oo,

D [
(a) _(51,_) S in probability
2
for all mixing p € N, p 7 py (p, assigns measure one to the empty set),
D [
(b) (’]’ ) 2% inprobability
2
for all renewal measures p; € I, and
c@y) 7 . .
(c) t %’ - a=n in probability

for all mixing p € O with density A € (0, 1).

Proor. For convenience, we divide the proof into two steps; in combination,
they yield the results.

Step 1. If p € 9N is mixing, then with probability one

(Ia) DM =[PO€g)]™"  for p+#py
(Ib) D(nt) =[PO €)™ for p+*p,
(Ic) C(§M) =[P(EHO) # $H1)] ™" for o o .

The argumentation for (Ia)-(Ic) is in all cases similar, so we will derive only (Ic).
As in the beginning of Section 2, we say that 4 has a border at x, 4 C Z, x € Z, if
A(x — 1) # A(x); as before, {# induces a border measure. Now, since p is mixing,
so is § (see [10] for a proof). It immediately follows that the border measure
associated with §/ is also mixing. Consequently, Birkhoff’s ergodic theorem implies
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that with probability one,
bordersof {#in [ —n, n
i 2in ]

which is positive. Since the number of clusters of the set 4 in [— n, n] differs from
the number of borders by at most one, it follows that, with probability one,

C(¢F) =[ P(¢¥ has a border at 1)] ™' =[ P(§4(0) # §#(1)) ] -t
demonstrating (Ic).

Step la. If p({}) = 0, then

= P({* has a border at 1),

(22) PO € ¢F) ~ L : as t— oo.
(mt)?

(Of course, if u 7 g, is mixing, then p({J}) = 0.) To obtain (22), we first note that
(5) and (8) imply that

(23) , P(3[ + @) ~ as t— oo.

()
We now show that the difference of the probabilities in (22) and (23) goes to zero
1
faster than 1/¢2. Applying (1), we write
P(KI(O) 7(: g) - P(O E gt”) = E[(p#(ft(o})’ §1{0) # g],
which is nonnegative. Let g(f) be a function satisfying g(z) = o(t%) and g(f) - o
as ¢ — o0. By decomposing the above expectation based on whether [{9)] is less

than or greater than g(f), we obtain the inequality
(24)

B E[9H(8(9), §19 # @] < 2P(0 < [§] < g(0))
+ t%P(gt(o) #* g) . [sup[x,y] ty—x>g(t) (P"([x, y])]

(Here we use the fact that {(® = [x, y] for some x, y € Z whenever {, # ). By
(5) and (11), the first term on the right hand side of (24) tends to 0 as ¢ — oo,
whereas by (23) and u({&}) = 0, the second term also tends to 0. Therefore, the
left hand side of (24) tends to 0 as ¢ — oo; this establishes (22).

Step IIb. If p = p, is a renewal measure, then

(25) POEN)~—— as t->o0.
2mt)?

We use the same basic strategy as that employed in the derivation of (22): we
estimate P(0 € n*) by P({!® # @), whose asymptotic behavior is known to us
through (23). A simple computation with the aid of (3) shows that

(26) 1P(3(® + @) — PO € n) = E[y*(3/”) -3, 887 # 2].
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As before, we choose g(¢) so that g(¢) = o(t%) and g(¢) —» oo as t — c0. We first
cover the (simpler) case where f*f is aperiodic (or, more generally, where (12)
holds). In this case, we employ the upper bound

@7)  FE[HE®) -1 5@ = @] < 2P0 < 59 < g(0)+ P + 2)

[$UPLxp1 1y — x>0l ¥*([ % ¥]) = 31]-

As in Step Ila, it follows from (5) and (11) that the first term on the right hand side
of (27) tends to 0 as ¢ — oo, whereas by (23) and Lemma 1, the second term also
tends to 0. Therefore, the left hand side of (27) tends to 0 as ¢ — oo, which, together
with (23), implies that P(0 € 7}) ~%(7rt)%. For general fxf with period g, we
replace (27) with the more complicated expression

(28) B[y ($i7) =4, 869 # B]| < £ P(0 < 1] < g(1))+ 12 max,.q,
[2925 P84 = (i + 1) mod g§/| > g(1)) [ (=1)(8 = 3)

+sup[x,y]-y—x>g(t);y—x=imodql‘P#([x’ y]) - 81'] ]’

with §;, defined as in (13). Since 2I°J(§; —3) =0 and SUPL, 1)1y — x> 8(t)
y—x=imod g|¥"((X, ¥]) — &| =0 as t — oo for all i, the last term on the right hand
side of (28) will approach O if

1 .
rzmax, ;| P(|$f%| = i mod g, |$f%| > (1))

— P(|§{?] = j mod g, |$7] > g(1))|
approaches 0 as ¢ — co. Equations (5), (8) and (11) imply that this is at most equal
“to

(29) t%max,-, 2 k=0 P( Y2 o0 = k) . |P(Z§"(,) = i mod q)
- P(z¥,) = jmod q)| + o(1),

where g(f) is a copy of g(¢). Since the random walk (Z/) has undergone a
Poisson-distributed number of jumps with mean 2g(¢) by time g(¢), with g(¢) — oo
as t — o0, it is not hard to show that

(30) max,.’j|P(Z§"(,) = imod q) — P(Zg"(,) = j mod q)| -0 as t—>o0

uniformly in k. Since P( Y,O_é(,) >0~1/ (m)%, this implies that (29) >0 as ¢ —
1

oo0; hence (28) — 0, which implies that P(0 € n}) ~%(7rt)3 in the periodic case as

well.

Step Ilc. If p is mixing with deﬁsity A € (0, 1), then

(31) PEr0) # 5 ~ 20D g e,

(mt)?
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To obtain (31), we first rewrite P($*(0) # {#(1)) as
(32) PO & ¢f) + P(1 & §f) — 2P n {0, 1} = Q).

Each of the first two terms equals (1 — A); it therefore follows from (2) that (32)
equals

(=N = E[¢*(E*1)]),
or after more algebra,
21 -2 - (1= NP(EOD| =1) - E[¢*(¢V), |£ V] =2])
=201 = MP(JEO V] = 2) + 2E[(1 — A)* — gH(¢(> M), g V] = 2].
Statements (6) and (8) together imply that
1

(1)

as t— o0.

(33) P(|g* D] = 2) ~

Thus, we will have demonstrated (31) once we show that
(34) SE[|(1— A — o*(E% D)), |50V =2] 50  as 1 co.

Proceeding as in Steps IIa and IIb, and choosing g(#) as before, the left hand side
of (34) is at most

(35) £2P(0 < diam £{*V < g(¢))

+ P = 2)-[5uP, ey im0l (1 = N = @#({x,7)I]-

It follows from (6) and (11) that the first term of (35) tends to 0 as ¢ — o0, and from
(33) and the hypothesis that p is mixing that the second term also tends to 0.
Therefore, (34) tends to 0 as ¢ — o0, which yields (31).

ReMARks. Theorem 1 indicates that for the voter model, and the coalescing and
annihilating random walks, the asymptotic dispersion and clustering rates are
precisely the same for any initial measure pu belonging, in each case, to a certain
class of measures. The classes for these three models are qualitatively different. The
asymptotics for the voter model depend on the initial density A, in contrast to the
asymptotics for the coalescing and annihilating random walks. On the other hand,
the asymptotics for the annihilating random walks are more sensitive to the
structure of the initial measure p than for the other models, in the sense that
whereas it is sufficient for the voter model and coalescing random walk to
commence from mixing p in order for Theorem 1 to be valid, there are mixing u
which violate the conclusions of Theorem 1 in the case of the annihilating random
walks. For example consider the border measure [i, corresponding to the product
measure p,, A € (0, 1). Using the border equation (4), it is easy to show that

D(’l’]’:") T
tg' BTN

N

in probability as ¢ — oo,
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which does not equal 273 for A 7+ % Thus, something like the renewal assumption
is apparently necessary to guarantee a strict enough degree of uniformity in the
spacing of particles undergoing annihilating random walks so as to assure the
conclusions of the theorem. (Of course, part (b) holds for mixtures of renewal
measures, in particular for any exchangeable p).

4. Limit theorems for interacting random walks. For 4 C Z, we let
Dy (A) =min{x >0:x € A},D; (4) =min{x > 0: —x € 4},
Dy(A4) = Dg' (4) + Dg (A4).

In this section, we show that, after normalization by t%, the distance D, in the
random configurations £* and ! converges in distribution as ¢ — oo for suitable
initial p. By symmetry, the identical results, of course, remain valid for D, . It is
also possible, by means of a bit of manipulation involving the results for D", to
demonstrate convergence in distribution for D, as well; we present the results for
D, as corollaries to those for Dg'. In this section, we also obtain estimates for the
expectations of the limiting distributions of £/ and 5/ (the expectations correspond-
ing to D, are clearly double those corresponding to D" and D; ); these results
may then be compared with those of Theorem 1 in Section 3. Recall that in this
paper all measures p are assumed translation invariant.

THEOREM 2. Let w({J}) = 0. Then, for a € [0, o),

Dt (¢ ,
(36) lim, P(—# < a) - w-%fg e /% du.
12
- Moreover, if
J Do (4)u(dA) < oo,
then
. Dy (¢4) 2
(37) lim, E[ — ===
12 a2

Proor. Fix a, and put z = z(f) =| as? |. We first check (36) for p = p,:

P(P—"l@ < a) = P(¢* N[0, z] @)

P
=P~ 2)
by (1). By (5) and (9), this equals -
P(Y? > 0) ~7 22 e™%/4 gy,

By comparison with the case u;,, we now show that (36) holds for general pu.
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Equation (1) yields
+(¢Z +

(38) o<P(D°—(,‘5')<a)—p(D°—f§'")<a)
12 2

= E[gH(31), §1 # 2],

Let the function g(¢) satisfy g(¢) = o(¢ %) and g(¢) — oo as t — c0. Decomposing the
above expectation based on whether |{[* 7| is less than/greater than g(#), it follows
from (5) that (38) is at most

P(Y; € [0’ g(t)]) +SUDP, y iy — x> g0 <p"([x,y]).

By (11), the first term tends to O as # — o0, and since u({J}) = 0, the second term
also tends to 0. Therefore, (38) tends to 0, and (36) is proved.

To derive (37), it suffices to show that G(a) = inf,,,, P(Dy" (¢!) < at%) has finite
mean; our assertion then follows from (36) and dominated convergence. We first
note that

v
—_
o
°4
~~
4]
=
N
A
R
-~

N
N
]
=
gre
=
2
—
o
R
-~
Ni=
—_—

a1 a1 a 1
P(g,“’} n [ -3t th] - Q) - P(Do“(p.) > th).
By applying a Chebyshev estimate to

E[exp(AX,)] = exp{t(ﬁ'-zL—;i - 1)},

one sees that the first term on the right side of (39) has at most an exponential tail,
ie, is > 1 — a exp(— ba) for some positive a, b independent of a and ¢. Since
Dyt () is assumed to have finite mean, the second term on the right side has mean
which is bounded for ¢ > 1; together, these statements imply that G(«) has finite
mean. This concludes the proof.

COROLLARY. Let w({J}) = 0. Then, for a € [0, ),

Dy(¢H 2
lim, P(————O(g' ) < ix) = -l—lfg e/t dy — —al—e"" /4

1 1
12 T T2

_—

= 3 716 ule /% du.
72
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PROOF. Since p is assumed to be translation invariant, so is £&* for all ¢.
Therefore, we may decompose D, as

P (DO(gtM) > z)
=PEN[0,z]=2)+ 2L P& N[~kz-k-1]=0, 2z -k etF)
=P N[0,z]=@) + z-P(* N[0,z — 1] =D, z € &),

where z is a positive integer. Choosing z to satisfy z ~ at? as t — o0, we see that
(36) implies that

P(gr N[0, z] =Q)—>-l—]f:° e du  as t— .
T2
Next, observe that by translation invariance,
P(E N[0z, - 1] =0, z, €¢)= P& n [22— 22, - 1] =D, 2z, €¢F)
<SP N[0,z,— 1] =0, 2, €EF)

for z, > z,. Therefore P(¢}' N [0, z — 1] = &, z € £F) is decreasing in z. By (36), it
follows after a little manipulation that

z-PE N[0,z -1] =0,z €4 )—>—e @/4 a5t o0.
72

Therefore,

[P e/t qy + —a;e“’z/";

1 Ja
72 72

D, [
lim, P(—°(,£‘ )5 a) -L
r ?

integrating by parts, we obtain

foo —?/4 du,
277

which establishes the corollary.

REMARK. A reasonable question is to what extent the preceding result about
interparticle distances for coalescing random walks, and the analogous results for
annihilating random walks and the voter model (which will both be presented later
on) can be generalized. In particular, do the distributions of these particle systems
tend, under the same normalization as before, to limiting point processes? The
answer is yes, although the exact nature of these processes is still uncertain. Since
these limiting processes can have no “double points” (for the voter model, no
blocks of zero length), it suffices, as before, to analyze the probability that, after a
finite time, a finite set 4, A C Z, contains no particles (only one block); one
proeeeds by applying the duality equatlons letting time run to infinity, and so on.
Now, however, 4 may contain gaps, rather than comprising (the integral values of)
an interval. The procedures of the proofs for the annihilating random walks and
the voter model are almost verbatim replicas of the arguments employed in this
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paper to analyze the interparticle distance/block size at the origin; the formerly
simpler proof for the coalescing random walks must be enhanced, and must now
employ the same basic arguments used in the proofs of the other two particle
systems. One may also inquire as to whether a space-time normalization is possible,
so that these particle systems approach’limiting particle systems. The answer
should again be in the affirmative, although the technical complications are now
considerably greater.

The corresponding theorem for annihilating random walks is not so immediate:
more work is required to show convergence, and the limiting distribution seems not
to be of a standard form; we are only able to compute upper and lower bounds for
its expectation. In contrast to the limit law for coalescing random walks, which is a
truncated normal distribution, the limit law in this case has exponential tail. To
treat the annihilating random walks, we use the fact that p! is its own border

measure to conclude from (4) that Dy*(n/ 1) has the same distribution as Cg*({/7)
= the number of members in the cluster containing the origin which lie to the right
of the origin for the voter model. We therefore defer the crux of the proof to the
next section, which contains the limit laws for the clustering of {({/)}, and restrict
ourselves here to computing D' (n/) based on our knowledge of Do*(n,"%).

THEOREM 3. Let p = s be a renewal measure. Then there is a distribution
1
function F? such that

DO+ (’1/‘)
1

< a) = F%('a) for a €[0, ).
5

(40) lim, ., P(
F? has monotone decreasing continuous density on the positive half-line, with F %(O)
= (0, and has exponential tail in the sense that

1-— F%(a) = exp{ —ci(a)- a},
where c1(a) > c1> 0 as a — oo.

‘PROOF.  As stated above, when p = p1, (40) is equivalent to a special case of

Theorem 5 of the next section. The properties of F3 will also be established in
Theorems 5 and 6. What remains to be shown is that

t2 t

lim

—>00

Nj—

for y, satisfying the hypothesis.

;-,v 1

We set A = [0, at3]. By duality equation (3’), the above absolute difference
equals

2"|A|‘23cA (E[z‘l’”f({ts) - 1] - E[Z;[/”;({'B) - 1])‘
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Since

(41) E[29*:(87) - 1] = P37 = @),
this reduces to

(42) 27M|Z g p E[29H(8F) — 1,82 # 21,

which we will show tends to 0 as ¢t — co.
To assist us with the remainder of the proof, we next make two assertions.

ASSERTION 1. Let B(B) denote the minimal cluster length for B, where B € S,
Then,
@)  P(B(sF) <) >0  uniformlyfor BCA as - oo.
(The exponent % is not crucial, but is chosen for convenience). We proceed to
demonstrate the assertion by first defining
Y(§?) =min{z — x : x,y,z € 4, x <y <z, and the random
walks commencing at x, y, and z of the process £4 are still
distinct by time ¢},
and setting 4 = (—| ¢ J [tSJ) A=[-[t ], [I%]]. y measures the tendency of
random walks starting from some initial configuration to avoid coalescence; it
follows from (1) that 8 and vy satisfy the relation
(44) P(B(32) <15, 52 c 4) < Py (") <ri +1).

Decomposing the set 4, we see that

@5) P(y(¢7)<r+1) <=

=~

(Igt[kti, (k +2)ti + 1]| > 2)

<CrtE
by Lemma 3, for some constant C”. Since P({? z A) < P((* ¢ 4) >0as t — oo,
(43) follows from (44) and (45).
AsseRTION II.  Let x, y be integers satisfying y — x > 3. Then,
E[2¢*(3F”) = 1] >0  uniformlyin x,y as ¢ oo.
We proceed with the demonstration by noting that s1nce the random walk (Z,°)

undergoes a Poisson-distributed number of jumps with mean 213 by time ts for
anyqg e Z",

max, |P(Z), =imodgq)— P(Z):=jmodgq) =0 as t— 0.
Also, we note that | §"["y 1— 1] has the same law as Y77, and that
io();:"‘aezﬁ"‘)—)o uniformly for y — x > 8 as f—>o0;
hence
(46) max,.,ij(lg’y}l = i mod q) - P(K}%’"”]l = j mod q)] -0
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uniformly fory — x > 13 as t — co. Equation (14) of Lemma 1, together with (46),
implies that
E[2¢"(§E?’yl) —1]—>0  uniformly for y — x > 5 as t—soo.
We are now ready to conclude our demonstration of Theorem 3. We let
{4:(D}ies, 440 C ¢2, denote the distinct clusters of voters “for” in the voter
model at time ¢ (, is the index set), and denote by 4, the cluster with the smallest

coordinates; 4,(¢) induces a probability measure P(¢). It follows from Assertions I
and II that the voter model commencing at random initial state 4,(¢) and evolving

1
for time ¢3® satisfies

(47) S E[20#(84®) — 1] dP() >0
uniformly for B C A as t — co. Moreover, it also follows from Assertion I that
P(min,_, dist(4,(¢), A,(#)) < £#) — 0 uniformly in B as t — oo, and therefore that

P(the cluster commencing from A4,(¢) at time 0 has coalesced
1
with any other clusters 4; by time ¢3)
— 0 uniformly in B C A as ¢t — co.

Thus the evolution of the cluster commencing at 4,(#) is (up until time té)
“asymptotically independent” of the other clusters. Consequently, from (47) it
follows that

E[29*(32,.) = 1,1, # @] >0 uniformlyin B CA as 1—oo.
In view of Assertion I, this is equivalent to showing that (42) -0 as ¢ — oo,

. completing the proof.
1
In the following corollary, we drop the superscript from F2.

COROLLARY. Let pu = p, be a renewal measure. Then,

lim, P(i?”‘2 < a) = F(a) — aF'(a).

12
ProoF. The proof is similar to that of the corollary to Theorem 2. Since 7/ is
translation invariant, '

P(Do(nt) >z)= P(n} N[0,z] =)+ z- P(n} N[0,z — 1] =, z E n}),
where z is a positive integer. For z chosen so that z ~ at_% as t — oo, (40) implies
that

P} N[0,z]=@)—>1- Fla) as t—co.

On the other hand, P(n} N [0, z] = &, z € n}) is decreasing in z; therefore, since
F' is continuous, it follows that

z-P(nf N[0,z — 1] =03,z € 4}) > aF'(a).
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Consequently,
D I3
lim, P(—o—(?—"—2 > a) =1— F(a) + aF'(a),
2
which demonstrates the corollary.

Note. Figuratively,
D, ®
lim, , P( Ddnf) a) =5 — uF"(u) du.
2
The last result of this section gives upper and lower bounds for the expectation
of the normalized limiting distribution of the annihilating random walks.
THEOREM 4. Let M 3 denote the expectation of F %. Then,
4 < Mi<oqd,
72
ProoF. The upper bound is a special case of the upper bound in Theorem 7.
For the lower bound, we use the inequality

(48) P(s? = @) > P11 = @)
for all B such that |B| = n. This inequality is intuitively obvious, since, until
absorption, (|¢?[) jumps at least as fast as (|{/* ") because of its greater number
of borders, and will therefore tend to reach (and be absorbed by) 0 first; a rigorous
proof can beI fashioned after tl}e comparison lemma in [9]. Now, set
x=x(f)=|atz] and y = y(1) =[aﬁ /2J. It follows from (3’), (41) and (48), that
1 —(x x hn—1] —
P(n#i N[0, x] = @) > 27+Dzzxl (¥ F 1) p(gfon-1 = ).
If we apply the weak law of large numbers to the binomial distribution on the right
side of the above inequality, then (5) and (10) imply that
1 - F2(a) = lim,_,,, P(n% N[0, x(1)] = )
> lim,_, , P(Y’® = —1)
= w‘%f;"/z e /% du.
Integration of « from O to oo yields the lower bound.
5. Limit theorems for the voter model.
Introduction. For A C Z, we let
Co"(4) = min{x > 0: 4(0) #A(x)}, C5 (4) = min{x > 0: A(0) # A(—x)},
Co(4) = Cg'(4) + Cg (4).

C,' denotes the number of consecutive individuals lying directly to the right of 0
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which vote the same way as 0, C; denotes the number of individuals lying to the
left, and C, denotes the complete block size of individuals voting the same way as 0
(0 is counted twice). In this section, we show that, after normalization by t%, Gyt in
the random configuration {} converges in distribution as ¢ — oo, for suitable initial
p. By symmetry, the same result obviously holds for C; . As in Section 4, a bit of
manipulation allows one to derive analogous results for C,, which we state in the
form of a corollary. Unlike the limiting distributions for the coalescing random
walks, the limiting distributions for the voter model do not appear to be elemen-
tary. We nevertheless show that F*, the distribution associated with Cy* for initial
measures p of density A, has a monotone decreasing density which is continuous,
and has an exponential right-hand tail (as opposed to a normal tail). In contrast to
the behavior for the coalescing random walks, the limiting distribution for the voter
model is sensitive to the distribution of the initial configurations; note that the
limiting distribution for the annihilating random walks is a special case here, being
equal to F 3,

Although the duality equations apply here just as well as for the coalescing
random walks, the technique required is fundamentally more difficult. Whereas for
the coalescing random walks, application of the basic equations (5)-(11) was
sufficient to conclude the proof of Theorem 2, the behavior of the dual process for
the voter model is sufficiently complicated to necessitate an indirect approach.

Our basic procedure is as follows. Rather than investigate the dual process itself,
which is of the form (£/%*, 0 < s < #), with x = [at%J, we examine a sequence of
processes (£27, 0 < s < ¢), with B" ~ 134" for fixed sets A”. We choose B" so that
B" c B"*!,|B"| < 0, and lim,, B" = [0, x]. The point of the modification is that
the behavior of (£2”) as ¢ approaches infinity (convergence to a point process) may
be analyzed by means of an invariance principle (Lemma 4). As n approaches
infinity, the asymptotic behavior of (¢£°") should approximate that of (£/%*1), with
both being nontrivial under the same spatial normalization; that this is indeed true,
and that the implicit interchange of limits involved here is valid, will be demon-
strated with the aid of Lemma 3. The statement of the convergence result and the
final computations comprise Theorem 5.

In Theorem 6, we derive the basic properties of the limiting distributions F*
(monotone decreasing continuous density, exponential tail); in Theorem 7, we
compute upper and lower bounds for the means of F*. As the technique involved
in deriving Theorem 5 is not that informative regarding quantitative aspects of the
asymptotics, we apply various ad hoc estimates to derive Theorems 6 and 7.

Existence of F*. In the proof of Lemma 4, we will freely employ the standard
résults and notation of Billingsley [2]. (D[0, 1], B ) denotes the space of piecewise
continuous functions on [0, 1] (not necessarily assuming the value 0 at time 0).
Here, we will use (D"[0, 1], %") (or D", for short) to denote the induced product
space of functions on [0, 1]". A slight variation of the standard functional conver-
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gence result for random walks shows that

x

= W for s€[0,1] as t— oo,

12
where (W;*) denotes standard Brownian motion commencing at position a, “=>
designates weak convergence (in D or the uniform topology; since II/V;" is con-
centrated on the continuous paths, the two are equivalent), and x =| a2 |. (See [2],
pages 137 and 145.) Therefore, if (X;*) and (W;*) denote n-tuples of independent

”

random walks and Brownian 1}10tions commencing at X = (x,,- - -, x,) and
a=(ap,**-,a,) with x; = la,.ﬁJ, then

X: .
(49) ——i—’-: Wy  for s€[0,1] as t—oo,

12

where convergence is in the product topology of D”. If we denote the probability
measures induced on D" by )?,’f / {7 and Wf as P’ and P>, then (49) states that
P’ = P*>. We also employ the result that weak convergence is transmitted from the
domain to the image of a function which is almost surely continuous on the
measure induced by the limit distribution. In our particular case, if f is a.s.
continuous on P %, then

(50) f(P)Y=f(P®) as t— oo.
We will also make use of several properties of the sample paths of Brownian

motion in Lemma 4. Assume that Brownian motions corresponding to different
indices are independent. Then,

ifj < k,and T = min{r : W9 = w;®},
(51) forall e > O there exist 0 < ¢/, ¢” < ¢
with WD, > Wk, and w49, < Wb,

(52) if j < k, then P(W® = w§®) = 0,
and
3 M <kJ <K.and(,R) # (. K), then
P(W2O = we®, wel) = wa®) for some 0 <r < 1) =0.

None of the above assertions is difficult to prove. Equation (51) is well known, and
follows from the strong Markov property for Brownian .motion. Assertion (52) is
trivial, while to demonstrate (53), one notes that the probability of a 3 or
4-dimensional Brownian motion ever hitting a 2 codimensional plane is zero.

Just as (¢) denotes a system of coalescing random walks with initial state 4, we
let ((#) denote a system of coalescing (standard) Brownian motions with initial
state 4 C R, where A4 is locally finite. (It is assumed throughout the paper that
random walks begin at integer-valued states, whereas Brownian motions need not).
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We also find it convenient to define a metric on the class of finite subsets (or

configurations) 4 C R for Lemma 4. For 4, = {a], a3, * -, any}, A4, =
{a}, a3, -, ol af <aj < -0 < oy i = 1,2, we set
C(4,, 4;) = min{1, max{|ay — az: k= 1,- - -, n(i)}} if n(1) = n(2),
=1 if n(1) # n(2).

Note that for n(1) = n(2), the topology induced by € is simply the symmetrized
product topology. The metric C, as defined, is clearly complete.
Now, finally, we state Lemma 4.

LemMA 4. Let B,, t € R*, be finite subsets of Z, A a finite subset of R, where all
B, and A have the same cardinality (say n). Assume that

B,/t%——)@ A as t— oo.
Then,
B/, L as t— oo,
where —, (=) means convergence (weak convergence) in the metric C.

ProOF. We assume that the coordinates of the product measures defined on
D"[0,1] by P’ and P> are ordered so that for w = (w;, w,, - * * , w,) € D",
wj(0) < w,(0) w.p. 1 for j < k. We define stopping times

S; k(@) = inf{r : w(r) > @ (r),0<r < 1}
and

T (@) = inf{r : w(r) = w(r),0<r <1}
for1 <j <k <n.(SetS;,, T;, = oo if the sets are void.) From (51) and (52) it is
not difficult to see that S , is an a.s. continuous map on P ®. Therefore, by (49),

(P’,Sj’k,l<j<k<n)=>(P°°,Sjyk,1<j<k<n) as t— oo

n
on the induced product topology on D"[0, 1] X ([0, 1] U {0})2). Since nearest
neighbor random walks defined on the same lattice cannot cross without coinciding
at some point (the same conclusion is of course valid for Brownian motions),

T,=3S w.p. 1 foreach P*(and P*).

Js

Therefore,
(54) (P T4, 1<j<k<n)=(P* T, 1<j<k<n) as t—o0.

The values T, ,, 1 <j <k <n, induce (by ordering) a permutation ¥ on
{(,2,---, (;) + 1}, where the extra element is included to distinguish finite and
infinite stopping times. By (52) and (53), the finite T, , are almost surely distinct, so
the permutation % is uniquely determined on these pairs (j, k). We reduce (54) to

the form
(55) (P, P)= (P>, 9P) as t— oo.
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Now, P’ and P* induce coalescing systems (£5/ t%) and (£7), if upon intersection
of two “particles” (or paths), we remove the one with the larger initial coordinate.
Since ¥ determines which particles have disappeared by time 1, a little thought
shows that (55) implies convergence of the corresponding coalescing systems at
time 1. That is,

1 -~
8 /=, & as t— .

This concludes the proof.
We are now equipped to demonstrate Theorem 5.

THEOREM 5. Let yu be n-fold mixing for all n, with density X € (0, 1). Then there
is a nontrivial distribution function F* such that

(56) lim, P(&-F—(‘g—‘2 < a) = FNa) for a €[0, ).
12
Proor. By (2),
C0+(§t”') _
(57) Pl ——>a]= P} n[0,x] =) + P([0, x] C §)
5

= E[pE*) + 5],

where x =|_atzlJ. Rather than taking the bull by the horns and tackling (£ *))
directly as 1 — oo, we instead first analyze (¢%") as t — o0, where

A"={B€[0,a]:2BEZorB=a},
B! =|_t%A”J = {y 1y =|_t%,BJ forB € A"},
and
A =lim, 4" B, =[0, x].
The sets B, are defined so that Lemma 4 is applicable; since
B,”/t%—>e A" as t— oo,
it follows that
(58) 5/ ise H'  as 1.

If the processes (5,0 <s <#) (", 0<s< 1), n=1,2---, are all de-
fined on the same probability space in the canonical manner (that is, are all
coupled together as mentioned in Section 2), then £ (£!")is clearly increasing as
n— oo. Since B"1® B, as n — oo, it is tempting to conclude from (58) that £2/ 12
has a (hopefully finite) distributional limit as # —» oo, which we may think of as
“é," ”. With the aid of Lemma 3, we now make this reasoning precise.

We decompose B, into subintervals D,,

z,+1
Bt - U k=1 Dk9
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where for z, =| 2" |, )
D, =[|27k], |27 (k + 1)|]  for k=12,
and
Doy =[[274hn. )
Note that the endpoints of each interval D, are contained in B". Lemma 3 states
that
P(Ig>| > 2) < €7 /2>

for all 1 <k <z, + 1, where C’ is independent of ¢. Coupling (§sB', 0<s<)
together with (£%, 0 < s < ¢), this implies that

(59) P(EE #£2) <232 P(E%] > 2) < C'(2"a + 1) /2" ~ C'at/2",

and hence

(60) lim, ,, P(¢* #¢%) =0  uniformlyin ¢

Since € is a complete metric, by the fundamentals of weak convergence (60) and
(58) imply that

(61) gh /=, B as 1>

for some probability measure £{!.

. 1
We are now almost finished. We take advantage of the scaling factor ¢2 and the
assumption that p is n-fold mixing to assert that

lim,_,,, E[@*(§/*™) + @) ] = lim,,, E5_; [A™ + (1 = )] PP = m).
By (61) and bounded convergence this equals

et [AT+ (1= N P(E!| = m).
Together with (57), the equality demonstrates convergence in (56).

It remains only to show that F* is a nontrivial distribution function. It is simple

to show that for all m,

P(E'| <m)>0 as a—oo,
and, therefore, FM(a) — 1 as @ — oo. The existence of the limit £ implies that F is
nontrivial. This concludes the proof of the theorem.

Properties of F*. We next turn our attention to investigating the properties of
F>. For this purpose, it suffices to restrict ourselves to those initial measures which
are product measures, u = p,. We will make repeated use of the equality

(62) “ P(¢m [0, [at%]) = @) = 32_, A"P(|¢ )] = m),

where x = [at%], which is based on the second duality equation and our restriction
to the product measure y,; version of (62) has already been applied in Theorem 5.
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We will also find it convenient to couple different systems of coalescing random
walks to derive certain estimates. Recall that, as first mentioned in Section 2,
systems of coalescing random walks commencing from different initial states can
be considered to be simultaneously evolving on the same probability space if the
random walks present at the same sites of each undergo the same motion.
Therefore, £ C £7 for A C B. Also note that for 4, U A, =4, 4, N 4, =,

(63) 641 < 1§41 + 1.

Inequality (63) still holds if the processes (§*) and (£?) are independent; we may
induce a copy of (¢*) from the pair by deleting a particle of (¢7) upon coincidence
with a particle of (¢#1). In the following, when confusion is not hkely, we omit
explicit mention of the coupling.

We now demonstrate a pair of lemmas that will be useful for analyzing F* The
first provides estimates for the tail of F*, whereas the second provides smoothness
estimates.

LEMMA 5. If x,, x,, and y denote nonnegative integers, x, >y, then

@ PG N[0, x, + xp) = D) > PEF N[0, x)) = D) - PG N [0, xp) = D);

(®) PEF N[0, x, + x;) = B) < PG N [0, x,) _Q,) PR N0, %, =) = 2)

N /8,

where, ify/t%—> Bast— oo,
N(y/8) > a~i[5 e /* du.

PROOF. (a) Setting 4 = [0, x; + x,), 4, = [0, x,), and 4, =[x, X, + X,), and
coupling (£7), (¢, and (£7?) as mentioned above, with (£%1) and (£42) indepen-

< dent, we see that (63) holds:

641 < I&1 + 167,

Therefore, since by (62), P(¢/* N [0, -) = ) is the generating function of [¢/*?| (in
A), (a) follows.
(b) Weset 4 = [0, x, + x,), 4, = [0, x,), and 4, = [x; + y, x; + x;). Then

P(g! n[O, X+ x) = Q) =27 }‘mP(|£zA| = m)
< Zgo g AP 4] = m)
= S5 ATP(Jg 04 = m, gt = 2)
+E 5 AP(|g4 4] = m, g R = 1),

If (£ and (£%7) denote mdependent processes, then the first sum of the last
equality is at most

(64) Zqmoy AP(IE + &7 = m)
= P($* N[0, x,) =D)- P($F N[0, x, — y) = D).
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The second sum is at most
(65) P(lgfx—bxtr)| = l)ﬁﬂ‘%fge‘“z/“du as t—> o
fory/ 11> B, by (6) and (10). Together, (64) and (65) imply (b).

LEMMA 6. For x,, x,, and y nonnegative integers, x, < Xx,,
(a) P(fg“ N [O’ xl) = g’ gt" n‘[()’ x] + .V) 5& Q)

: > PEF N0, x) =S §f N[O, x, + y) # D);
(b) P({,lo' x1) g §‘[x| - X2 xl)’ g{[O, x1) g gtlo’ xl+y))

< Pl c glximxex) . p(glox c gl x40y,
where inclusion in (b) means under the usual coupling.
ProoF. (a) Since u is translation invariant, so is {/. Therefore,
P N[0, x) =3, ¢ N[0, x, + y) # D)
> P(SEN[x; — xp %) =L, & N[x — xp x; + y) # D)
= P($ N[0, x)) =, 8 N[0, x, + y) #* D).
(b) The assertion is equivalent to showing that

(66) P(lgt(xl—xz, 0)' = I{_-t(x.—l,x,+y_1)| - 2)
< P(jgfm== 9 = 2) . p(jg{=tm+r -1 = ),

Inequality (66) is actually a generalization of Lemma 2, and can be proved in the
same basic manner. One fixes the paths of the two outer particles, those commenc-
ing at x;, — x, and x; + y — 1, which are denoted by / and L; under this
realization, one computes the probability that (the particles of) the system of
coalescing random walks (£%*1~1}) hits neither / nor L. (In Lemma 2, we started
with a single initial particle instead of two). As in Lemma 2, one constructs
space-time harmonic functions possessing specified boundary data; only now, the
domain of the associated process is contained in Z2 rather than Z. (The diagonal
x = y serves as a trap). The proof proceeds in an analogous manner; we omit the
details.
We now characterize F.

THEOREM 6. The limit distribution F* defined in Theorem 5 has the following
properties:

(@) FM(a) has monotone decreasing continuous density on the positive half-line, with
FN0) = 0, and

(b) FX(a) has an exponential tail in the sense that

1 — FMa) = exp{ —c)(a) - a},

where c(a) > ¢, > 0as a — 0.
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ProOOF. (a) It follows from Lemma 6 (a) and (8), that for «;, a, and B
nonnegative, a; < a,,
(67)

FMNay + B) = FNay) = lim,_, [ P(8# 0 [0, [arz]) = @, & n [0, [(a + B)2]) #
+ ([0 Jawi]) gt [0 [ + B ]) 28]

=2 500 [(+p)E])#
(e + B)r2]) 28]

> lim, [P({," N[0, [ay]

+ P([O, [y ]) c gt [

= FNoy + B) — FN).

From (67) it is not difficult to show that F* has monotone one-sided derivatives at
every point; the density, therefore, exists and is continuous except at at most
countably many points. To complete the demonstration of (a), it suffices to show
that
(68)

1

ﬁ[(F’\(oc1 + B) — FNay)) — (FMay + B) — F)‘(az))] -0 as a,— a.

at a uniform rate independent of 8. We employ the processes (£ *?), (£[%*1*),
(&x —*>*) and (£~ > *1*)), and observe the inclusions induced by the usual
coupling. Applying (62) and the translation invariance of {/ for all ¢, one can
reexpress the left-hand side of (68) after a little manipulation as

1

(69) ﬁlim’_"” Eml' my, k bmpmz, kP(|§t[0' XI)I = my, |§t[x.-x2,x,)| = m,,
|10 x| = m + k),
Wherexi=l—ai%] [,312] and
b i = (A = AT = A9) + (A = Rm)(1 = R%),

for A = 1 — A. Since b. < 1 and since b, = 0 for k = 0 or m; = my,, (69) is at most

1. _
Blim e (£l f e glo.=+0),

which, by Lemma 6 (b), is at most
1
B
Applying (6) and (9), we rewrite this as

lim, ,,, P(£/%*) cén =) p(¢[o* c ¢ 51+2)).

%1 oo P(Y" 5171 > 0)- P(Y?7! 2 0) < Xy — ay),

%)
%)
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which, since c is constant, goes to 0 as a, — a,. This demonstrates (68), and hence
(a).

(b) We set GMNa) =lim,_, PE* N[O, [ at%])). Since 1 — FMa) = GNa) +
G'~M(a), it suffices to analyze the tail of G*. From Lemma 5, we obtain

(70) GMay + a) > GNo) - GNty)
and
7 Moy + o) < GNay) Gy — B) + 772 [F e ™/ du,

for a;, ay, B nonnegative, a, > 8. Somewhat more convenient is

71) GMay, + ay) < GMay)- GMay)/GM(B) + w_%fff e™“/% du.

Now, it follows from (70) that —log G* is subadditive; therefore, since G is
monotone,

—log GMa)

¢4 = lim,
a

a—> 00

exists. Since GMa) — 0 as a — oo, a rather messy iteration of (71") for appropriate
B shows that ¢} > 0. (Iterate along multiplicative lattices of the form 2%, while
setting B, = (2"a)?, where 3 < & < 1 is fixed). If we set ¢, = min{c;, ci_x} (b)
follows.

REMARK. The tail of F? is not precisely exponential because of the interference
of the coalescing random walks commencing from neighboring blocks, e.g., the
rightmost particles of [— x, 0) and the leftmost particles of [0, ) will have most
likely coalesced after a moderate period of time (say ¢), and therefore |g1==7)] is
typically strictly less than &= ¥ + |¢/®”)|. However, the loss of particles due to
this interference tends to a limit (for fixed #) as x, y — oo; therefore, it should be
the case that FNa) = by(a) - exp{ — cya}, where by\(a) —> b, and b, > 0 and ¢, >
0 are constants. Most likely, b, is increasing.

In the following corollary, we state the limiting behavior for C, in terms of F
we drop the superscript A.

COROLLARY. Let p be as defined in Theorems 5 and 6. Then,

lim, P(EL]Q‘-Z < a) = F(a) — aF'(a).

2

ProOF. The proof is the same as that of the corollary to Theorem 3. We make
use of the fact that the limit distribution F(a) has a continuous derivative, and that
the process is translation invariant for all #; these properties are equally valid for
(8} as well as for (1)

Estimates for the expectation of F*. We conclude this section with upper and
lower bounds for the expectation of F*. We first state Lemma 7, which will be used
in the computation of the upper bound. As before, when meaningful in the context,
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we assume that systems of coalescing random walks commencing from different
initial states are coupled together in the obvious manner.

LEMMA 7. For x a positive integer, 0 < A < 1,
S5} NP(EO = &)
<[P0 2 = 1) + AP(jg/F 19| = 2) ] 252, AP 1] = k).
PrOOF. The proof involves a slight extension of the technique used in the proof
of Lemma 2, and will only be sketched here. We first fix the paths of all the
coalescing random walks, except the one commencing at x — 1. (Denote this
realization by £). As in Lemma 2, one can show that the conditional probability of
this random walk hitting none of these fixed paths is less than the product of the
probabilities of it not hitting any of the lower paths and not hitting the upper path.
Therefore, since A is convex in &,
}\C(B)zi-l }\k—lP(lgt(x—Z,x—l,x)l = klE)
<[P(gl=19] = 11€) + AP(E~10| = 2IR)]
ACORE_ AFIP(2 D] = kIE),

where C(£) = |£/®*~2)| given £. Upon integrating over the measure space induced

by £, we obtain the assertion.
We now state Theorem 7; the results are analogous to (37) of Theorem 2 and to

Theorem 4.
THEOREM 7. Let M denote the expectation of F*. Then,

<M< (—>‘— + L_—A)ar%.

1
2

™
a1 -1 T—x " A

Hence,

1
2

@ . Co($) A 1—A\ 1
B < e B <2(1_>\+ - )772.
ProOOF. To obtain the lower bound for M*, we make use of the fact that the
expected size of the cluster containing the.origin in {/* is greater than the expected
mean cluster size of { in the sense of Section 3. A similar estimate was exploited
in [15]. To show this, we note that by Birkhoff’s ergodic theorem, p, = E[mean

frequency of clusters of size n in {}*] is well defined, and that
(72) np, = P(0 € cluster of size nin §}*)- E[ C(§/*)].

The Schwarz inequality then states that
2’! n@n > (Ell ’1pn)2’
which, in view of (72), reduces to

E[C(8")] > E[C(EM) ]
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Using Theorem 1 (c), we now conclude that

Cr(¢m™ C.(¢™
M* =lim,_ , E| == (f’ ) =1im,  , E —"(f’ )
12 12
C(¢M
- 12
1
=™
YN

To obtain the upper bound for M*, we note that Lemma 7, together with (6) and
(62), implies that

P N[0, x] =) <[P(Y?=—1) +AP(Y? > 0)]- P(* N[0, x — 1] = D)
for any positive integer x. By induction, this is at most
(73) [P(Y) = 1) +AP(Y > 0)]"- P($/ n {0} = 2)

=A[P(Y? = =1) + AP(Y > 0)]".

If we choose x so that x ~ f3a as ¢ — oo for some fixed a, it follows from (8) that
(73) approaches

1
Ae?—Da/72 as ¢ — oo.

Therefore,
1 = FNa) = lim,_,,, [ P($#* N[0, x] = D) + P(§}" N[0, x] = D) ]

< }\e("")“/"% +(1 - A)e‘*"‘/’ﬂl.
Integrating, we obtain
A 1 -2\ 1
A AN A _
M* < ( — *+ )m,

which concludes the proof.
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