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A RENEWAL MODEL WITH RANDOMLY SELECTED
PARAMETERS

By FREDERICK SOLOMON
State University of New York, Purchase

Let { ), gy, - - - } be chosen from a strictly stationary, ergodic sequence of
random variables each with distribution concentrated on (0, o©). Let S, = T,
+ + -+ + T, be a sum of independent random variables where T} is exponential
with mean y;. Limiting properties of S, are considered. More limiting properties
are derived under the assumption that { py, gy, - + - } is strongly mixing and
then under the assumption of independence.

1. The model. Let T}, T,, - - - be independent, exponential random vari-
ables with parameters (means) respectively u,, g, - - - . The sequence A =
{ 45 B, + + - } constitutes the parameter sequence for the renewal process {S, = T,
+ oo +T,}5.o(S, = 0). The p’s are chosen previous to the renewal process;
they form a sample from a strictly stationary sequence of random variables each
with distribution G concentrated on (0, o). This paper is concerned with limit
behaviors of the renewal process {S,} given a “typical” parameter sequence A.

NOTATION. Set A; = y,~! for all i. Let F, be the exponential distribution with
mean p,; and let f; be the corresponding density. As usual count time 0 as renewal
number 1. The convolution of distribution functions H, and H, is

H, + Hy(t) = [2 H\(t — x)H)y(dx)
whereas the convolution of densities 4, and 4, is
hy % hy(1) = [2oh(t — x)hy(x) dx.
N, denotes the number of renewals in (0, #] so that
P(Ny=n)=PT,+ - +T,<t, Ty +--- +T,,,>1)
=F+ - *F()—F % - «F (1)

= PpprSr®x o x 1(2)

as can easily be verified for exponential distributions. Finally, U(?) is the expected
number of renewals in [0, ]

U() = Z5.oF1# + -+ + F(1)

—the addend for index n = 0 being the atom at the origin (evaluated at ).
The main results in this paper are contained in these two theorems:
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THEOREM 1. Suppose { p,, iy, * - - } is chosen from a strictly stationary, ergodic
sequence. Then for a.e. parameter sequence

(@) U() =1+ E(N,) < o for all t,

() 7'V —> (E(py) "' as t > 0.
If {py, py, -+ - } is strongly mixing, then for a.e. parameter sequence

(©) n7'S, - E(pu), t~'N, > (E(p,) " " a.e. respectively as n, t — c.

THEOREM 2. In addition if { p,, py, - - - } are independent, identically distributed
(d) 171 [oP(p(s) < x) ds — (E(p) ™" [5yG(dy)
where u(f) = py .| = parameter of the component in operation at time t,
(€) 7' [P(H, > &) dt - (E(p)) "' [§y exp(—£y ™ HG(dy)
where H, is the residual waiting time Sy , | — t, the spent waiting time t — Sy, or the
interarrival time containing t : Sy 41 — Sy,

2. Proofs. The proof of Theorem 1 is straightforward enough; the proof of
Theorem 2 relies on Lemma 4 below.

Feller [2], page 452, shows N, — oo for all ¢ (this is a pure birth process) if and
only if 3,1 = co. Since the ergodic theorem implies that n™'S7_, p; — E(p,)
a.e., N, is finite for all 7 for almost every parameter sequence.

PROOF OF THEOREM 1. (a)

Ui)=1+Z3_,P(S, <1

=1+ 37,(1 - exp(=Ay) - - - (1 — exp(=A,7).

But for a.e. fixed parameter sequence

"_(1-exp (A1) = exp [=]_ log (1 — exp (—A;1)) ]

< exp [n(E(log (1 — exp(—A,0))) + ¢€) ]

for n sufficiently large by the ergodic theorem. Choosing & so that E(log(l —
exp(—A,2))) + € < 0 implies the tail of the series U(?) is bounded above by the tail
of a convergent geometric series.

(b) Assume n~'(p, + - - - +p,) > E(p,). Taking Laplace transforms

D(s) = [Fe"U(dt) = Z7.01(5) - - 9,(5)
by monotone convergence where the addend for n» = 0 is 1 and
o) = [Qe " E(d) = (1 + sw) ™"
for exponential distribution F,. Since (1 + sp)~" > e ™%,
D(s) > Zygexp[ —s(p + - - - +p)].

Given ¢ > 0, choose N = N(¢) 50 large that » > N implies p; + - -+ +p, <
n(E(p,;) + ¢). Hence

®(s) > SHZgexp[ —s(p + - -+ +m,)] + 7o yexp[ —sn(E(p) + €)].
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Thus
lim inf, os®(s) > lim,o(s exp[ —sN(e)(E(p,) + €)])/ (1 — exp[ —s(E(p,) + ¢)])

= (E(p) +¢)7".
So lim inf s®(s) > (E(u,))~". On the other hand, let m=wif g, <4and1 =4
if y;>A4. For a <1, choose § so that 0 <x <& implies 1 + x > ae*. Then
for s <8/4, 1+ sg; > 1 + 57, > ae”j. Thus as before, given ¢ >0 so that
T+ +71, >n(E(T) —¢)forn > N = N(e),

0(s) < ZZT-y(1 + sw) ™" + Zioya~"exp[ ~ ns(E(r)) — €)]
and
lim sup, ,s®(s) < lim, osa ~*®(exp[ — sN(e)(E(r,) — ¢)])
/ (1 — exp[ —s(E(r)) — €)])
=a Mo/ (E(r;) —¢) (atleast for 4 large enough).
Now letting afl (it is independent of &), /0 and Atoo implies lim s®(s) =

(E(py)~" as s)0. Thus a Tauberian theorem [3], page 421, implies ¢~ 'U(f) >

(E(pp)~" as t1oo.

(c) We embedded the process in the larger one consisting of the Cartesian
product of the set of parameter sequences R = (0, c0)" and the set of component
lifetimes T = (0, o)™ where N denotes the set of positive integers. To define a
probability measure on (R X T, F) where F is the o-field generated by the cylinder
sets, begin by letting Q, denote the product space measure on 7" where the ith slot
has exponential distribution with mean p,. (Here A = {pu;, p,, - - - }.) On the
parameter sequences R = {A} let M be the measure so that { y;}?2., is the required
strictly stationary, strongly mixing sequence—each g, distributed with distribution
G. Now for A C parameter sequences R and B C set of component lifetimes 7,
each measurable with respect to the o-fields generated by the cylinder sets, let

P(4 X B) = [,Qx(B)M(dA).
As in [4] where a similar model is considered, it is routine to show that P is well

defined and extends to a probability measure on (R X T, F). And the very
definition implies

LeMMA 3. Let B be measurable C set of component lifetimes T. Then Q,(B) = 1
Jor a.e. environment A if and only if P(R X B) = 1.

Returning to the proof of (c), let T;* be the random variable on R X T defined
by T*(A, w) = T(w) = w, (= ith component of w). Hence

P(T} < 1) = [rQA(T} < )M(dA)
= J&°(1 — exp(— &y ~')) G(dy).
So E(T}) = E(p,). A straightforward verification shows that strict stationarity and
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the strong mixing of u,, u,, - - -+ imply these properties hold for T, T3, - - - . Thus
the ergodic theorem implies as n — oo

nTIS*=n"YTF+--- +T¥ > E(p,) ae.
But {(A, w): nTIS*(A, w) > E(p) as n—> oo} = {(A, w): n~1S (w)— E(p,) as
n— o} =R X {w:n"'S,(w)— E(p,) as n > o}. Therefore Lemma 3 implies as
n— oon” 'S, - E(u,) a.e. for a.e. fixed parameter sequence.

Since N, increases with 7, {N, > 00 as t > 0} = N, U;Z{N; > n} = N7,
U;2{S, <Jj} which is a set of measure 1 since each S, has a proper probability
distribution for each parameter sequerce. Thus N, - o0 a.e. Now Sy <7 < Sy ;.
So

(Nt)_ISN, < (N:)_lt < (Nt)—lSN,+l = (Nt)~l(SN, + TN,+1)-
Hence it remains to show that n7'T,, , — 0 a.e. in the case where E(p,) < 0. But
P(In_lTn+l| > 8) = P(Tn+l > ns)

= exp(—neh, )
(recalling that 7, has exponential distribution with mean p, when the parameter
sequence is fixed). Thus the first Borel-Cantelli lemma [1], page 69, implies
n~1T,,,—0 ae. if Z%_, exp(—neA,, ;) < co. But this is true for a.e. parameter
sequence since this series has a finite expectation: By monotone convergence

E(S3_o exp(—ne), 1)) = Sy oE(exp(—ne), 1)) = 25_of§ exp(—ney ') G(dy).
This converges by the integral test since
81§ exp(—t1ey ") G(dy) dt = ™ 'E(py).
Thus #(N,)~! - (E(p,))~" a.e. which completes the proof of Theorem 1.
The proof of Theorem 2 depends on

LemMA 4. Let X, X,, - - - be independent, identically distributed each with finite
expectation m and finite variance o°. Set

Y(a) = Z20a(1 — ayYX;, ;.
Then lim, ,Y(a) = m a.e.
PrOOF. Setting X; = X;* + X;~ where X;* = max[+ X}, 0], and
Y(a)* = aZ3(1 — ayX;3,

shows that a proof for nonnegative random variables X; suffices. Hence assume
throughout that each X; is nonnegative. '

By monotone convergence E(Y(a)) = m; hence for each fixed 0 <a <1, Y(a)
converges a.e. Also by direct” calculation E(Y(a)®) = m*+ o%a/(2 — a). So
0% (Y(a)) = o%a/(2 — a). Hence P(|Y(a) — m| > ¢) < o%a/(¢%(2 — a)) by
Chebyshev’s inequality. Now the first Borel-Cantelli lemma implies that the
sequence { Y(n~%)}*_, converges to m everywhere on a set  of probability 1. The
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claim is that the full set { Y(a)} converges to m a.e. as a}0. To see this suppose that
(n+ 1)"2<a <n"2 Now h(x) = x(1 — x)/ is increasing on [0, 1/(j + 1)] and
decreasing on [1/(j + 1)]. Thus
al—ay <n)(1—-n"% forn2<1/(j+1) orj<n’-1
<K+ (1-(r+1)7Y for(n+1)72>1/(G+1) orj>n*+2n
When n? < j < n? + 2n a bound for h(a) = a(l — a)’ is obtained in this way: 4 is
concave on (n + 1)"2 < a < n~2 (for n > 3); so
ha) <h(n+ 1))+ H((n+ 1) *)(a—(n+1)7?
<h((n+ D))+ (n+ 1) HA2=(n+1)7?).

But a routine calculation shows the second term in the last right-hand side is less
than h(n~2) for n large. Hence for n> < j < n? + 2n, n large

al—ay <n 21 -n)+(m+1D)}(1-(n+1)7?.
So, for a close enough to 0
Y(a) < 2P Y1 — n7X,, + 22 0(n + )71 — (n + 1)7TYX,
= Y((n+1)_)+Zl+Zz
where
Z = ,-_o [ 20-n"Y -(n+ 1)1 -(n+1)” )’] i1
Z,= S (1 - nYX,,,.

Now maxy¢, < |#'(x)| = 1. Thus the mean value theorem implies that the term
multiplying X}, , in the series defining Z, is < in absolute value

In=2 = (n+ 1)7% = 2n + 1)/ (n¥(n + 1)°)
<2/n
Hence
|Z,| < 2,-01(2/”3)XJ+1
= (Z/n)n_z 2"-_()IXj+1
—0ae.
by the law of large numbers. Also,

12| < n K,

j=n?

= (2n + 1/n?)- 2n + 1)7'20%,,

j-n?
—0a.e.
using the first Borel-Cantelli lemma and Chebyshev’s inequality. (Note: for

=Q2n+ )72,

j=n?
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E(Z’) = m, 06%(Z") = 6%/(2n + 1)). Combining this with the analogous reverse
inequality yields Y(n~2) + W, < Y(a) < Y((n + 1)™%) + W, where W, and W, —
0 as nfoo a.e., say on set £ of measure 1. Therefore on @ N @, Y(a) - m as a0
a.e.
PrOOF OF THEOREM 2. (d)
P(p(t) < x) =Z7.,P((1) <x|N,=n—1)-P(N,=n—1)
=Zaittfi 0 2 f(0)
where ¢, = 1, 0 respectively if p, < ,> x. So
B(s) = e "P(u(1) < x) dt
= 2018 91(5) -+ - 9,(9)
= 2o & (1 + Sﬂl)_l (L4 Sl-‘n)_l-
In the same way as in (b),
lim, ,s0(s) = lim, o526, 1,e " FE)
= limsw s / (1 — e—sE(Fq)) . (1 - e—SE("'))Ef-len ™ e~ E(m),

Lemma 4 now applies with the result

lim_,ws@(s) = (E( nu'l))_lE(el py) = (E( Hl))_lfé‘yG(ai’)-

Application of the same Tauberian theorem yields result (d).
(e) Details are similar in all three cases and much the same as in (d); so only the
outline for the case H, = residual waiting time Sy ,, — ¢ is here presented. Now

P(H,>$) =32 ,P(H,>¢N,=n—1)-P(N,=n — 1)
=3SroP(T, > &) pfr* - - £ (D)
by the “memoryless™ property of exponential random variables. Let p(s) be
e "P(H, > §) dt = Z7_ o, ny(5) + + - ¢,(5).
As in (d)
lim, o5p(s) = lim, o530 e ~Pfe = E0

= (E(p))” lE( e 16)-
Application of the same Tauberian theorem completes the proof. (Note that the
proofs apply with the usual modifications when E(u,) = 0.).

3. Randomizing the parameter sequence. The above process may be compared
with the process in which the y’s are random independent, identically distributed
rather than preselected and fixed. The probabilistic setting for this new process has
been defined at the beginning of the proof of Theorem 1: T, T,, - - - are
independent, identically distributed each with density

(1) = J§ ye~"G(dy)
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for ¢ > 0. So the model reduces to the standard renewal model of [3], chapter 11.
Still it may be of interest to calculate the distribution of u(¢) = My,+1 = parameter
of the component in operation at time ¢.

THEOREM 5. In the renewal model in which { 1;}{%, is a sequence of independent,
identically distributed random variables with distribution G concentrated on (0, o),
@) {m(9)},>0 is @ Markov process; (b) u(f) approaches in distribution (E( u)) -
yG(dy) when E(p,) < c0.

Proor. It is clear that { u} is Markovian since each 7 is exponentially
distributed. Now { u(2)}¢° constitutes a jump process. Given u(f) = x, the waiting
time till the next jump is exponential with mean 1/x at which time the process
jumps to another state according to distribution G independent of x. Hence with
Q,(x, Q) = P(u(?) € 2| u(0) = x) Kolmogorov’s backward equations are

35D _ 410/, 9) + x50, NG()

[3], page 317. The infinitesimal generator associated with Q, is thus
Uu(x) = —x~'[u(x) - [Fu(y)G(d)].
So the resolvent operator is
Rw(x)=(1+ 'rx)_l[xw(x) + C]

where

C = (/& w1+ p)'G(d)) - [&yw(»)(1 + 1) G(d)
since R, is the inverse of + — U. Or

Rw(x) = (1 + 7x)"'xw(x) + L(h; * h, » U)(7)

where L indicates the Laplace transform of the function h, * A, * U and

h(s)=x"Te*/* 5§30

ho(s) = [Fw(y)e*”G(dy), s >0

U(t) = SPF*(1), F(t) = [&(1 — e~”)G(dy)  fort > 0.

Now P(u(f) < x| p(0) = po) = fEW(¥)Q,( g &) where w(y) = 1if 0 < y < x and
0 otherwise. Since the Laplace transform of this function (as a function of ¢) is

R _w(x), taking inverse transforms implies
P(p(t) < x|(0) = po) = e™/*w(x) + hy * hy » U(1).

Since h, * h, is directly Riemann integrable, the renewal theorem of [3], page 349,
implies as t —» o

P( (1) < x| p(0) = po) = (E(py))~ ' f&hy * hy(t) dt
= (E(p) " '13 yG(dy).
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