A RENEWAL MODEL WITH RANDOMLY SELECTED PARAMETERS

By Frederick Solomon

State University of New York, Purchase

Let $\{\mu_1, \mu_2, \cdots\}$ be chosen from a strictly stationary, ergodic sequence of random variables each with distribution concentrated on $(0, \infty)$. Let $S_n = T_1 + \cdots + T_n$ be a sum of independent random variables where T_j is exponential with mean μ_j . Limiting properties of S_n are considered. More limiting properties are derived under the assumption that $\{\mu_1, \mu_2, \cdots\}$ is strongly mixing and then under the assumption of independence.

1. The model. Let T_1, T_2, \cdots be independent, exponential random variables with parameters (means) respectively μ_1, μ_2, \cdots . The sequence $\Lambda = \{\mu_1, \mu_2, \cdots\}$ constitutes the parameter sequence for the renewal process $\{S_n = T_1 + \cdots + T_n\}_{n=0}^{\infty} (S_0 \equiv 0)$. The μ_i 's are chosen previous to the renewal process; they form a sample from a strictly stationary sequence of random variables each with distribution G concentrated on $(0, \infty)$. This paper is concerned with limit behaviors of the renewal process $\{S_n\}$ given a "typical" parameter sequence Λ .

NOTATION. Set $\lambda_i = \mu_i^{-1}$ for all *i*. Let F_i be the exponential distribution with mean μ_i and let f_i be the corresponding density. As usual count time 0 as renewal number 1. The convolution of distribution functions H_1 and H_2 is

$$H_1*H_2(t)=\textstyle \int_{-\infty}^{\infty} H_1(t-x)H_2(dx)$$

whereas the convolution of densities h_1 and h_2 is

$$h_1 * h_2(t) = \int_{-\infty}^{\infty} h_1(t-x)h_2(x) dx.$$

 N_t denotes the number of renewals in (0, t] so that

$$P(N_t = n) = P(T_1 + \dots + T_n \le t, T_1 + \dots + T_{n+1} > t)$$

$$= F_1 * \dots * F_n(t) - F_1 * \dots * F_{n+1}(t)$$

$$= \mu_{n+1} \cdot f_1 * \dots * f_{n+1}(t)$$

as can easily be verified for exponential distributions. Finally, U(t) is the expected number of renewals in [0, t]

$$U(t) = \sum_{n=0}^{\infty} F_1 * \cdots * F_n(t)$$

—the addend for index n = 0 being the atom at the origin (evaluated at t). The main results in this paper are contained in these two theorems:

Received September 1978; revised March 1979.

AMS 1970 subject classifications. Primary 60K05; secondary 60J75.

Key words and phrases. Renewal process, jump process, exponential distribution.

THEOREM 1. Suppose $\{\mu_1, \mu_2, \cdots \}$ is chosen from a strictly stationary, ergodic sequence. Then for a.e. parameter sequence

- (a) $U(t) = 1 + E(N_t) < \infty$ for all t,
- (b) $t^{-1}U(t) \to (E(\mu_1))^{-1} \text{ as } t \to \infty.$

If $\{\mu_1, \mu_2, \dots \}$ is strongly mixing, then for a.e. parameter sequence

(c)
$$n^{-1}S_n \to E(\mu_1)$$
, $t^{-1}N_t \to (E(\mu_1))^{-1}$ a.e. respectively as $n, t \to \infty$.

THEOREM 2. In addition if $\{\mu_1, \mu_2, \cdots \}$ are independent, identically distributed (d) $t^{-1} \cdot \int_0^t P(\mu(s) \leq x) ds \rightarrow (E(\mu_1))^{-1} \cdot \int_0^x y G(dy)$

where $\mu(t) = \mu_{N_t+1} = parameter$ of the component in operation at time t,

(e) $t^{-1} \cdot \int_0^t P(H_t > \xi) dt \to (E(\mu_1))^{-1} \cdot \int_0^\infty y \exp(-\xi y^{-1}) G(dy)$

where H_t is the residual waiting time $S_{N_t+1}-t$, the spent waiting time $t-S_{N_t}$, or the interarrival time containing $t:S_{N_t+1}-S_{N_t}$.

2. Proofs. The proof of Theorem 1 is straightforward enough; the proof of Theorem 2 relies on Lemma 4 below.

Feller [2], page 452, shows $N_t \to \infty$ for all t (this is a pure birth process) if and only if $\sum_{n=1}^{\infty} \mu_i = \infty$. Since the ergodic theorem implies that $n^{-1}\sum_{i=1}^{n} \mu_i \to E(\mu_1)$ a.e., N_t is finite for all t for almost every parameter sequence.

Proof of Theorem 1. (a)

$$U(t) = 1 + \sum_{n=1}^{\infty} P(S_n \le t)$$

$$\le 1 + \sum_{n=1}^{\infty} P(T_1 \le t) \cdot \cdot \cdot P(T_n \le t)$$

$$= 1 + \sum_{n=1}^{\infty} (1 - \exp(-\lambda_1 t)) \cdot \cdot \cdot (1 - \exp(-\lambda_n t)).$$

But for a.e. fixed parameter sequence

$$\prod_{j=1}^{n} \left(1 - \exp\left(-\lambda_{j} t\right)\right) = \exp\left[\sum_{j=1}^{n} \log\left(1 - \exp\left(-\lambda_{j} t\right)\right)\right] \\
\leq \exp\left[n\left(E\left(\log\left(1 - \exp\left(-\lambda_{1} t\right)\right)\right) + \varepsilon\right)\right]$$

for n sufficiently large by the ergodic theorem. Choosing ε so that $E(\log(1 - \exp(-\lambda_1 t))) + \varepsilon < 0$ implies the tail of the series U(t) is bounded above by the tail of a convergent geometric series.

(b) Assume $n^{-1}(\mu_1 + \cdots + \mu_n) \to E(\mu_1)$. Taking Laplace transforms

$$\Phi(s) = \int_0^\infty e^{-st} U(dt) = \sum_{n=0}^\infty \phi_1(s) \cdot \cdot \cdot \cdot \phi_n(s)$$

by monotone convergence where the addend for n = 0 is 1 and

$$\phi_j(s) = \int_0^\infty e^{-st} F_j(dt) = (1 + s\mu_j)^{-1}$$

for exponential distribution F_i . Since $(1 + s\mu_i)^{-1} \ge e^{-s\mu_i}$,

$$\Phi(s) \geqslant \sum_{n=0}^{\infty} \exp[-s(\mu_1 + \cdots + \mu_n)].$$

Given $\varepsilon > 0$, choose $N = N(\varepsilon)$ so large that n > N implies $\mu_1 + \cdots + \mu_n \le n(E(\mu_1) + \varepsilon)$. Hence

$$\Phi(s) \geqslant \sum_{n=0}^{N-1} \exp[-s(\mu_1 + \cdots + \mu_n)] + \sum_{n=N}^{\infty} \exp[-sn(E(\mu_1) + \varepsilon)].$$

Thus

$$\lim \inf_{s\downarrow 0} s\Phi(s) > \lim_{s\downarrow 0} \left(s \exp\left[-sN(\varepsilon)(E(\mu_1) + \varepsilon)\right]\right) / \left(1 - \exp\left[-s(E(\mu_1) + \varepsilon)\right]\right)$$
$$= \left(E(\mu_1) + \varepsilon\right)^{-1}.$$

So $\liminf s\Phi(s) \ge (E(\mu_1))^{-1}$. On the other hand, let $\tau_j = \mu_j$ if $\mu_j \le A$ and $\tau_j = A$ if $\mu_j > A$. For a < 1, choose δ so that $0 < x < \delta$ implies $1 + x \ge ae^x$. Then for $s \le \delta/A$, $1 + s\mu_j \ge 1 + s\tau_j \ge ae^{s\tau_j}$. Thus as before, given $\varepsilon > 0$ so that $\tau_1 + \cdots + \tau_n \ge n(E(\tau_1) - \varepsilon)$ for $n \ge N = N(\varepsilon)$,

$$\Phi(s) \leq \sum_{n=0}^{N-1} \prod_{j=1}^{n} (1 + s\mu_j)^{-1} + \sum_{n=N}^{\infty} a^{-n} \exp\left[-ns(E(\tau_1) - \varepsilon)\right]$$

and

$$\begin{split} \lim\sup_{s\downarrow 0} s\Phi(s) &\leqslant \lim_{s\downarrow 0} sa^{-N(\epsilon)} \left(\exp\left[-sN(\epsilon)(E(\tau_1) - \epsilon)\right] \right) \\ & + \left(1 - \exp\left[-s(E(\tau_1) - \epsilon)\right] \right) \\ &= a^{-N(\epsilon)} / \left(E(\tau_1) - \epsilon \right) \quad \text{(at least for A large enough).} \end{split}$$

Now letting $a \uparrow 1$ (it is independent of ϵ), $\epsilon \downarrow 0$ and $A \uparrow \infty$ implies $\lim s \Phi(s) = (E(\mu_1))^{-1}$ as $s \downarrow 0$. Thus a Tauberian theorem [3], page 421, implies $t^{-1}U(t) \to (E(\mu_1))^{-1}$ as $t \uparrow \infty$.

(c) We embedded the process in the larger one consisting of the Cartesian product of the set of parameter sequences $R = (0, \infty)^N$ and the set of component lifetimes $T = (0, \infty)^N$ where N denotes the set of positive integers. To define a probability measure on $(R \times T, F)$ where F is the σ -field generated by the cylinder sets, begin by letting Q_{Λ} denote the product space measure on T where the ith slot has exponential distribution with mean μ_i . (Here $\Lambda = \{\mu_1, \mu_2, \cdots\}$.) On the parameter sequences $R = \{\Lambda\}$ let M be the measure so that $\{\mu_i\}_{i=1}^{\infty}$ is the required strictly stationary, strongly mixing sequence—each μ_i distributed with distribution G. Now for $A \subset \text{parameter sequences } R$ and $B \subset \text{set of component lifetimes } T$, each measurable with respect to the σ -fields generated by the cylinder sets, let

$$P(A \times B) = \int_A Q_{\Lambda}(B) M(d\Lambda).$$

As in [4] where a similar model is considered, it is routine to show that P is well defined and extends to a probability measure on $(R \times T, F)$. And the very definition implies

LEMMA 3. Let B be measurable \subset set of component lifetimes T. Then $Q_{\Lambda}(B) = 1$ for a.e. environment Λ if and only if $P(R \times B) = 1$.

Returning to the proof of (c), let T_i^* be the random variable on $R \times T$ defined by $T_i^*(\Lambda, \omega) = T_i(\omega) = \omega_i$ (= ith component of ω). Hence

$$P(T_i^* \le t) = \int_R Q_{\Lambda}(T_i^* \le t) M(d\Lambda)$$

= $\int_0^{\infty} (1 - \exp(-ty^{-1})) G(dy).$

So $E(T_i^*) = E(\mu_1)$. A straightforward verification shows that strict stationarity and

the strong mixing of μ_1, μ_2, \cdots imply these properties hold for T_1^*, T_2^*, \cdots . Thus the ergodic theorem implies as $n \to \infty$

$$n^{-1}S_n^* = n^{-1}(T_1^* + \cdots + T_n^*) \to E(\mu_1)$$
 a.e.

But $\{(\Lambda, \omega): n^{-1}S_n^*(\Lambda, \omega) \to E(\mu_1) \text{ as } n \to \infty\} = \{(\Lambda, \omega): n^{-1}S_n(\omega) \to E(\mu_1) \text{ as } n \to \infty\} = R \times \{\omega: n^{-1}S_n(\omega) \to E(\mu_1) \text{ as } n \to \infty\}$. Therefore Lemma 3 implies as $n \to \infty n^{-1}S_n \to E(\mu_1)$ a.e. for a.e. fixed parameter sequence.

Since N_t increases with t, $\{N_t \to \infty \text{ as } t \to \infty\} = \bigcap_{n=1}^{\infty} \bigcup_{j=1}^{\infty} \{N_j \ge n\} = \bigcap_{n=1}^{\infty} \bigcup_{j=1}^{\infty} \{S_n < j\}$ which is a set of measure 1 since each S_n has a proper probability distribution for each parameter sequence. Thus $N_t \to \infty$ a.e. Now $S_{N_t} \le t < S_{N_t+1}$. So

$$(N_t)^{-1}S_{N_t} \leq (N_t)^{-1}t < (N_t)^{-1}S_{N_t+1} = (N_t)^{-1}(S_{N_t} + T_{N_t+1}).$$

Hence it remains to show that $n^{-1}T_{n+1} \to 0$ a.e. in the case where $E(\mu_1) < \infty$. But

$$P(|n^{-1}T_{n+1}| > \varepsilon) = P(T_{n+1} > n\varepsilon)$$

= $\exp(-n\varepsilon\lambda_{n+1})$

(recalling that T_n has exponential distribution with mean μ_n when the parameter sequence is fixed). Thus the first Borel-Cantelli lemma [1], page 69, implies $n^{-1}T_{n+1} \to 0$ a.e. if $\sum_{n=0}^{\infty} \exp(-n\epsilon\lambda_{n+1}) < \infty$. But this is true for a.e. parameter sequence since this series has a finite expectation: By monotone convergence

$$E(\sum_{n=0}^{\infty} \exp(-n\varepsilon\lambda_{n+1})) = \sum_{n=0}^{\infty} E(\exp(-n\varepsilon\lambda_{n+1})) = \sum_{n=0}^{\infty} \int_{0}^{\infty} \exp(-n\varepsilon y^{-1}) G(dy).$$

This converges by the integral test since

$$\int_0^\infty \int_0^\infty \exp(-t \varepsilon y^{-1}) G(dy) dt = \varepsilon^{-1} E(\mu_1).$$

Thus $t(N_t)^{-1} \to (E(\mu_1))^{-1}$ a.e. which completes the proof of Theorem 1.

The proof of Theorem 2 depends on

LEMMA 4. Let X_1, X_2, \cdots be independent, identically distributed each with finite expectation m and finite variance σ^2 . Set

$$Y(a) = \sum_{i=0}^{\infty} a(1 - a)^{i} X_{i+1}.$$

Then $\lim_{a\downarrow 0} Y(a) = m$ a.e.

PROOF. Setting
$$X_j = X_j^+ + X_j^-$$
 where $X_j^{\pm} = \max[\pm X_j, 0]$, and

$$Y(a)^{\pm} = a \sum_{i=0}^{\infty} (1 - a)^{i} X_{i+1}^{\pm}$$

shows that a proof for nonnegative random variables X_j suffices. Hence assume throughout that each X_j is nonnegative.

By monotone convergence E(Y(a)) = m; hence for each fixed 0 < a < 1, Y(a) converges a.e. Also by direct calculation $E(Y(a)^2) = m^2 + \sigma^2 a/(2-a)$. So $\sigma^2(Y(a)) = \sigma^2 a/(2-a)$. Hence $P(|Y(a) - m| > \varepsilon) \le \sigma^2 a/(\varepsilon^2(2-a))$ by Chebyshev's inequality. Now the first Borel-Cantelli lemma implies that the sequence $\{Y(n^{-2})\}_{n=1}^{\infty}$ converges to m everywhere on a set Ω of probability 1. The

claim is that the full set $\{Y(a)\}$ converges to m a.e. as $a \downarrow 0$. To see this suppose that $(n+1)^{-2} \le a \le n^{-2}$. Now $h(x) = x(1-x)^j$ is increasing on [0, 1/(j+1)] and decreasing on [1/(j+1)]. Thus

$$a(1-a)^{j} \le n^{-2}(1-n^{-2})^{j}$$
 for $n^{-2} \le 1/(j+1)$ or $j \le n^{2}-1$
 $\le (n+1)^{-2}(1-(n+1)^{-2})^{j}$ for $(n+1)^{-2} \ge 1/(j+1)$ or $j \ge n^{2}+2n$.

When $n^2 \le j \le n^2 + 2n$ a bound for $h(a) = a(1 - a)^j$ is obtained in this way: h is concave on $(n + 1)^{-2} \le a \le n^{-2}$ (for $n \ge 3$); so

$$h(a) \le h((n+1)^{-2}) + h'((n+1)^{-2})(a - (n+1)^{-2})$$

$$\le h((n+1)^{-2}) + h'((n+1)^{-2})(n^{-2} - (n+1)^{-2}).$$

But a routine calculation shows the second term in the last right-hand side is less than $h(n^{-2})$ for n large. Hence for $n^2 \le j \le n^2 + 2n$, n large

$$a(1-a)^{j} \le n^{-2}(1-n^{-2}) + (n+1)^{-2}(1-(n+1)^{-2}).$$

So, for a close enough to 0

$$Y(a) \le \sum_{j=0}^{n^2+2n} n^{-2} (1-n^{-2})^j X_{j+1} + \sum_{j=n^2}^{\infty} (n+1)^{-2} (1-(n+1)^{-2})^j X_{j+1}$$

= $Y((n+1)^{-2}) + Z_1 + Z_2$

where

$$Z_{1} = \sum_{j=0}^{n^{2}-1} \left[n^{-2} (1 - n^{-2})^{j} - (n+1)^{-2} (1 - (n+1)^{-2})^{j} \right] X_{j+1}$$

$$Z_{2} = \sum_{j=n^{2}}^{n^{2}+2n} n^{-2} (1 - n^{-2})^{j} X_{j+1}.$$

Now $\max_{0 \le x \le 1} |h'(x)| = 1$. Thus the mean value theorem implies that the term multiplying X_{i+1} in the series defining Z_1 is \le in absolute value

$$|n^{-2} - (n+1)^{-2}| = (2n+1)/(n^2(n+1)^2)$$

 $\leq 2/n^3$.

Hence

$$|Z_1| \le \sum_{j=0}^{n^2-1} (2/n^3) X_{j+1}$$

$$= (2/n) n^{-2} \cdot \sum_{j=0}^{n^2-1} X_{j+1}$$

$$\to 0 \text{ a.e.}$$

by the law of large numbers. Also,

$$\begin{aligned} |Z_2| &\le n^{-2} \sum_{j=n^2}^{n^2 + 2n} X_{j+1} \\ &= (2n + 1/n^2) \cdot (2n + 1)^{-1} \sum_{j=n^2}^{n^2 + 2n} X_{j+1} \\ &\to 0 \text{ a.e.} \end{aligned}$$

using the first Borel-Cantelli lemma and Chebyshev's inequality. (Note: for

$$Z' = (2n + 1)^{-1} \sum_{j=n^2}^{n^2 + 2n} X_{j+1},$$

 $E(Z')=m, \ \sigma^2(Z')=\sigma^2/(2n+1))$. Combining this with the analogous reverse inequality yields $Y(n^{-2})+W_n \le Y(a) \le Y((n+1)^{-2})+W_n'$ where W_n and $W_n'\to 0$ as $n\uparrow\infty$ a.e., say on set Ω' of measure 1. Therefore on $\Omega\cap\Omega'$, $Y(a)\to m$ as $a\downarrow 0$ a.e.

Proof of Theorem 2. (d)

$$P(\mu(t) \le x) = \sum_{n=1}^{\infty} P(\mu(t) \le x | N_t = n - 1) \cdot P(N_t = n - 1)$$

= $\sum_{n=1}^{\infty} \epsilon_n \mu_n f_1 * \cdots * f_n(t)$

where $\varepsilon_n = 1$, 0 respectively if $\mu_n \le ... > x$. So

$$\Theta(s) = \int_0^\infty e^{-st} P(\mu(t) \le x) dt$$

$$= \sum_{n=1}^\infty e_n \mu_n \phi_1(s) \cdot \cdot \cdot \cdot \phi_n(s)$$

$$= \sum_{n=1}^\infty e_n \mu_n (1 + s\mu_1)^{-1} \cdot \cdot \cdot (1 + s\mu_n)^{-1}.$$

In the same way as in (b),

$$\begin{split} \lim_{s\downarrow 0} s\Theta(s) &= \lim_{s\downarrow 0} s\sum_{n=1}^{\infty} \varepsilon_n \mu_n e^{-snE(\mu_1)} \\ &= \lim_{s\downarrow 0} s / \left(1 - e^{-sE(\mu_1)}\right) \cdot \left(1 - e^{-sE(\mu_1)}\right) \sum_{n=1}^{\infty} \varepsilon_n \mu_n e^{-snE(\mu_1)}. \end{split}$$

Lemma 4 now applies with the result

$$\lim_{s\downarrow 0}s\Theta(s)=\left(E(\mu_1)\right)^{-1}E(\varepsilon_1\,\mu_1)=\left(E(\,\mu_1)\right)^{-1}\textstyle\int_0^xyG(dy).$$

Application of the same Tauberian theorem yields result (d).

(e) Details are similar in all three cases and much the same as in (d); so only the outline for the case H_t = residual waiting time $S_{N_t+1} - t$ is here presented. Now

$$P(H_t > \xi) = \sum_{n=1}^{\infty} P(H_t > \xi | N_t = n - 1) \cdot P(N_t = n - 1)$$

= $\sum_{n=0}^{\infty} P(T_n > \xi) \cdot \mu_n f_1 * \cdot \cdot \cdot * f_n(t)$

by the "memoryless" property of exponential random variables. Let $\rho(s)$ be

$$\int_0^\infty e^{-st} P(H_t > \xi) \ dt = \sum_{n=0}^\infty \mu_n e^{-\lambda} n^{\xi} \phi_1(s) \cdot \cdot \cdot \phi_n(s).$$

As in (d)

$$\lim_{s\downarrow 0} s\rho(s) = \lim_{s\downarrow 0} s\sum_{n=0}^{\infty} \mu_n e^{-\lambda} n^{\xi} e^{-snE(\mu_1)}$$
$$= (E(\mu_1))^{-1} E(\mu_1 e^{-\lambda} 1^{\xi}).$$

Application of the same Tauberian theorem completes the proof. (Note that the proofs apply with the usual modifications when $E(\mu_1) = \infty$.).

3. Randomizing the parameter sequence. The above process may be compared with the process in which the μ_j 's are random independent, identically distributed rather than preselected and fixed. The probabilistic setting for this new process has been defined at the beginning of the proof of Theorem 1: T_1, T_2, \cdots are independent, identically distributed each with density

$$f(t) = \int_0^\infty y e^{-ty} G(dy)$$

for t > 0. So the model reduces to the standard renewal model of [3], chapter 11. Still it may be of interest to calculate the distribution of $\mu(t) = \mu_{N_t+1} = \text{parameter}$ of the component in operation at time t.

THEOREM 5. In the renewal model in which $\{\mu_i\}_{i=1}^{\infty}$ is a sequence of independent, identically distributed random variables with distribution G concentrated on $(0, \infty)$, (a) $\{\mu(t)\}_{t>0}$ is a Markov process; (b) $\mu(t)$ approaches in distribution $(E(\mu_1))^{-1} \cdot yG(dy)$ when $E(\mu_1) < \infty$.

PROOF. It is clear that $\{\mu_t\}$ is Markovian since each T_j is exponentially distributed. Now $\{\mu(t)\}_0^\infty$ constitutes a jump process. Given $\mu(t) = x$, the waiting time till the next jump is exponential with mean 1/x at which time the process jumps to another state according to distribution G independent of x. Hence with $Q_t(x, \Omega) = P(\mu(t) \in \Omega | \mu(0) = x)$ Kolmogorov's backward equations are

$$\frac{\partial Q_t(x,\Omega)}{\partial t} = x^{-1}Q_t(x,\Omega) + x^{-1}\int_0^\infty Q_t(y,\Omega)G(dy)$$

[3], page 317. The infinitesimal generator associated with Q_i is thus

$$Uu(x) = -x^{-1}[u(x) - \int_0^\infty u(y)G(dy)].$$

So the resolvent operator is

$$R_{\tau}w(x) = (1 + \tau x)^{-1} [xw(x) + C]$$

where

$$C = \left(\int_0^\infty \tau y (1 + \tau y)^{-1} G(dy) \right)^{-1} \cdot \int_0^\infty y w(y) (1 + \tau y)^{-1} G(dy)$$

since R_{τ} is the inverse of $\tau - U$. Or

$$R_*w(x) = (1 + \tau x)^{-1}xw(x) + L(h_1 * h_2 * U)(\tau)$$

where L indicates the Laplace transform of the function $h_1 * h_2 * U$ and

$$h_1(s) = x^{-1}e^{-s/x}, s \ge 0$$

$$h_2(s) = \int_0^\infty w(y)e^{-s/y}G(dy), s \ge 0$$

$$U(t) = \sum_0^\infty F^{*n}(t), F(t) = \int_0^\infty (1 - e^{-t/y})G(dy) \text{for } t \ge 0.$$

Now $P(\mu(t) \le x | \mu(0) = \mu_0) = \int_0^\infty w(y) Q_t(\mu_0, dy)$ where w(y) = 1 if $0 \le y \le x$ and 0 otherwise. Since the Laplace transform of this function (as a function of t) is $R_x w(x)$, taking inverse transforms implies

$$P(\mu(t) \le x | \mu(0) = \mu_0) = e^{-t/x} w(x) + h_1 * h_2 * U(t).$$

Since $h_1 * h_2$ is directly Riemann integrable, the renewal theorem of [3], page 349, implies as $t \to \infty$

$$P(\mu(t) \le x | \mu(0) = \mu_0) = (E(\mu_1))^{-1} \int_0^\infty h_1 * h_2(t) dt$$
$$= (E(\mu_1))^{-1} \int_0^\infty y G(dy).$$

REFERENCES

- [1] CHUNG, K. L. (1968). A Course in Probability Theory. Harcourt, Brace & World, New York.
- [2] FELLER, W. (1968). An Introduction to Probability Theory and Its Applications, Vol. 1. Wiley, New York.
- [3] FELLER, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 2, Wiley, New York.
- [4] SOLOMON, F. (1975). Random walks in a random environment. Ann. Probability 3 1-31.

DEPARTMENT OF MATHEMATICS STATE UNIVERSITY OF NEW YORK COLLEGE AT PURCHASE PURCHASE, NEW YORK 10577