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MARTINGALE TRANSFORM AND RANDOM ABEL-DINI SERIES!

By Louis H. Y. CHEN

University of singapore and Massachusetts Institute of Technology

Let X, X,, - - - be identically distributed random variables defined on a
probability space (22, &, P) such that E[X;| < oo and let §y c F, C - -+ be
nondecreasing sub-o-algebras of & such that X, is F,-measurable for n > 1.
Define S, = X; + - - - + X, and ¢, = E(X,|%,_,). The convergence and di-
vergence of the series 2., sgn(S, )| Sp+xl~*(X, — &,), where a is a real
number and k a nonnegative integer, is considered and related to that of
martingale transforms. This paper answers a question raised by Kai Lai Chung,

1. Introduction and notation. The Abel-Dini theorem (see Knopp (1971; page
290)) states that if {a,} is a sequence of positive numbers such that 5. ,a, = oo,
then I%_ s, “a, converges or diverges according as & > 1 or « < 1, where s, = a,
+ -+ +a, A simple application of this theorem shows that for every real
number c there exist many sequences {a,} of positive numbers with ¥%°_,a, = o0
such that

(1.1) %15, “(a, — ¢) also converges or diverges

according as @« > 1 or @ < 1. A random series analogous to that in (1.1) is

o 1580(S,)|S,|”“(X, — c) where X, X,, - - - is a sequence of random variables
(not necessarily positive or nonnegative), ¢ is a real number and S, = X,
+ - - - +X,. Here and throughout the rest of this paper, a random series 257, U,
is said to be defined on a probability space (R, %, P) if for almost all w € Q there
exists N(w) such that U,(w) is defined for all » > N(w). It is said to converge a.s. on
a set A if for almost all w € 4 there exists N(w) such that Z7_ v, U,(w) converges.
It is said to diverge a.s. on 4 if for almost all w € 4, I7_ U, (w) diverges for all
sufficiently large N.

Kai Lai Chung (personal communication) proved that if X, X,, - - - are inde-
pendent and identically distributed random variables with nonzero mean p such

that E|X,|log*|X,| < oo, then (in the case a = 1)
(1.2) ®_SNX, — pu) converges a.s.

n=1
Note that since p # 0, |S,| - oo a.s. by the strong law of large numbers. Thus in
view of (1.1), the almost sure convergence of Z%_,S,”'(X, — ) is due to the
probablistic structure of X, X,, * - - .
The following question was asked by Chung. Can (1.2) be generalized to a result
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in a martingale setting? In this paper, we answer Chung’s question by showing that
the convergence of £, sgn(S,)|S,| (X, — p) is indeed closely related to that of
martingale transforms. Using this relationship we generalize (1.2) to a result for
identically distributed but arbitrarily dependent random variables X, X,, - - -,
and in addition consider analogs of the series in (1.1) for all values of « in this

setting. Let (2, 4, P) be the probability space on which X, X,, - - - are defined
and let %, C %, C - - - be nondecreasing sub-o-algebras of ¥ such that X, is

¥,-measurable. Assume E|X,| < oo and let §, = E(X,|F,_,). For each a >3, we
give a moment condition on X, for which the series

(1'3) :o-l Sgn(Sn+k)|Sn+k|_a(Xn - gn)

converges a.s. on a set, where k is a nonnegative integer. For a < %, it is proved
that no moment condition on X, is sufficient for the same to hold in general.
However, it is shown that under other assumptions (1.3) will converge a.s. on
similar sets for all values of a.

A corollary is deduced for independent and identically distributed random
variables where a strong law of Burkholder (1962) is applied. In the case « = 1 and
k =0, this corollary yields a result still more general than that of Chung. A
conditional strong law is also deduced as another corollary. Finally it is shown that
the proofs of the above main results lead to a different proof of the strong law of
Burkholder (1962) used in the corollary.

Let f = (f;, /o, + - - ) be a martingale relative to nondecreasing o-algebras ¥, C

9, C--- and let d=(d,, d,, - - - ) be the difference sequence of f. Also let
v = (v}, vy, - - - ) be a predictable process relative to &, c %, C - - -, thatis v, is

%,-measurable and v, is F,_,-measurable for n > 2. We shall adopt the following
notation. f, = 0, S(f) = (E;”_Id,?)%, d* = sup,|d,|, f* = sup,|f,|, o* = sup,|v,| and
If1l, = sup,llfll, = sup,(E|f,IP)!/? for 1 < p < 0. The o-algebra generated by a
set of random variables {X, : « € J} defined on a probability space will be
denoted by B (X, : a € J). All the functions will be assumed to be real-valued,
Borel measurable and defined on the real line.

2, Statements of main results. Let X, X,, - - -+ be identically distributed ran-
dom variables defined on the probability space (2, ¥, P) such that E|X,| < oo and
let §, C ¥, C - - - be nondecreasing sub-o-algebras of ¥ such that X, is &,

n

measurable for n > 1. Define S, = X, + - -- +X,, §, = E(X,|9,_,) and 7, =
EX,I(X,| <n)|F,_,) for n > 1. Also define

A= {0<liminf, n 7| + - - - +£},
A* = {0 < lim inf, 5™"|n; + - -+ +7,]}

and
A~ = {lim sup, n7'|n; + - - - +9,] < o0}.

We shall prove the following results.
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THEOREM 2-1. Consider the series
(2.1) 21 580(S, 1 )8,k "X, — &)
where a is a real number and k a nonnegative integer.

(@) If a > 1, then (2.1) converges a.s. on A*.

(b) If a > 1 and E|X,|log*|X,| < oo, then (2.1) converges a.s. on A.
(© If 1 <a < 1and E|X,|"/* < co, then (2.1) converges a.s. on A.

d Ifa < %, X, X5, + + + are independent and nondegenerate with p = EX; # 0,
and §, = B(X,, - - -, X,,), then (2.1) diverges a.s.

The purpose of stating (d) is that it implies that in the case a < 1, no moment
condition on X, is sufficient for (2.1) to converge a.s. on A* or A in general.
However, if we are prepared to make other assumptions, we will have the next
theorem.

THEOREM 2-2. If the martingale 9 = (fOf,- - -) defined by f© =
ST X, — &) is L,-bounded, where o is a real number, then

(@) for a > 0, (2.1) converges a.s. on A*;

(b) for a < 0, (2.1) converges a.s. on A~

We give here a nontrivial example where the martingale defined in Theorem 2-2
is L,-bounded. Let X, X,, - - - be independent and identically distributed random
variables defined on (R, %, P) such that E|X,| < oo. Define Y, = X,, if |X,| >
n®~2 and = y,(X,) if |X,| < n*~2, where ¢, is a function bounded by n*~2 Let

8,, 95, - - - be independent sub-g-algebras of & such that X, is §,-measurable and
let B, = B(Y,). Define Gy = B, and 5, =6,V VS,V B,,, forn> 1
Then %, c %, c - -+ and X, is ¥,-measurable for » > 1. By independence,

g‘n = E(angn—l) = E(an%n) and so |Xn - ‘Enl = IXn - Yn + E(Yn - an%n)l <
4n*~% as. Therefore S%°_,n"%|X, — §,| < 42%°_,n"2 < o0 as. and this implies
that the martingale f@ = (f®, f{®, .. .) defined by f = Z7_,i"*(X; — §) is
L,-bounded.

The following corollary is an immediate consequence of Theorem 2-1.

COROLLARY 2-1. Let X,, X,,- - - be a sequence of independent and identically
distributed random variables defined on the probability space (R, %, P) such that
p=EX, #0;let §,,9,, - be independent sub-o-algebras of ¥ such that X, is
§,-measurable; and let B, be a sub-o-algebra of S,,. Consider the series

(2'2) :o-l sgn(sn+k)lsn+k|_a(xn - E(an%n))

where a is a real number and k a nonnegative integer.
@ Ifa>1and B, = (¢, 2}, then (2.2) converges a.s.
() If a > 1 and E|X,|log*|X,| < oo, then (2.2) converges a.s.
() If 1 <a < 1and E|X,|'/* < oo, then (2.2) converges a.s.

The corollary is proved by constructing sub-o-algebras %, Cc %; C - - - asin the
above example. For part (a), we then apply the strong law of large numbers. For
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parts (b) and (c), we apply a strong law of Burkholder (1962) which states that
E|X,[log*|X;| < oo implies P(n~'27_,E(X;|%,) — p) = 1. Note that in the case
a = 1 and k£ = 0, we still have a result more general than that of Chung.

The next corollary to Theorem 2-1 is a conditional strong law. Other variants of
the conditional strong law can be found in Dubins and Freedman (1965), Brown
(1971), Meyer (1972) and Freedman (1973).

COROLLARY 2-2. Let X, X5, -+, $oC % C---,&,&, - and A be as
defined at the beginning of this section. Suppose X,, X,, - - -+ are nonnegative and
EX, log*X, < . Then

X, +-- +X,
1"‘51"'""“5"_)1 a.s.on Aasn— .

An example in Burkholder (1962) shows that the condition EX,; log*X; < oo in

Corollary 2-2 cannot be relaxed.
Finally we remark that the above theorems and Corollary 2-1 also apply to the
series

(23) 2;l.c’-I|Sn+k|_m(’Yn - gn)'

3. Proofs. This section is devoted to the proof of Theorem 2-1. The most
crucial observation and perhaps the crux of the whole matter is the following
lemma.

LemMA 3-1. Let f=(fi, /) be an L,-bounded martingale and v =

(vy, vy, * * + ) a predictable process relative to nondecreasing o-algebras %, C ¥,
C -+ .Letw=(wy,wy- - - ) be a process such that 3*_,w? < o a.s. Suppose ¢

is a function which is an indefinite integral of ¢’ such that one of the following
conditions is satisfied.

(a) ¢’ is bounded,

(b) ¢’ is bounded on (— o0, x] for every real number x and |¢(c0)| = o0;

(c) ¢’ is bounded on [x, o0) for every real number x and |p(—0)| = o0;

(d) ¢’ is bounded on bounded intervals and |p(o0)| = |p(— o0)| = 0.
Then 7. ,d,8(v, + w,) converges a.s. on {sup,|¢(v,)| < oo}.

ProoF. We have
|d,9(v, + w,) — d,8(v,)| = |d,/5"¢' (v, + 1)d]
¢'(v, + x)|.

Therefore summing over n and applying the Cauchy-Schwarz inequality, we obtain

< |d,W,|Sup <,

zf-lldn‘p(vn + wn) - dn¢(on)| < S(f)(z:o-lwf)iu

where U = sup, supj, ., |¢'(v, + x)|. Since 3*_ w2 < o a.s., we have lim,_ w,
= 0 a.s. and hence {U < o0} D, {v* < }. On the other hand, a little reflection
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shows that {U < o0} D, {sup,|¢(v,)| < o, v* = oo}. Therefore {U < oo}
Das{sup,|d(v,)] < 0}; and by a result of Austin (1966),

S(f)(E;,”_lw,f)%U < oo as. on {sup,|¢(v,)| < }.
" But, by Burkholder’s (1966) convergence theorem for martingale transforms,
3®_,d.¢(v,)  also converges a.s.on {sup,|é(v,)| < co}.
It follows that
S=_do(v, + w,)  convergesas.on {sup,|¢(v,)| < oo},

n=1
and this proves the lemma.

Note that Lemma 3-1 is more general than Burkholder’s (1966) convergence
theorem for martingale transforms. To deduce the latter, we let ¢(x) = x and
w, = 0. The lemma also implies the following. If f=(f,f, ") is an L;-
bounded martingale with difference sequence d = (d;, d,, - - - ) and k is a non-
negative integer, then 2%_,|f, | ~°d, converges a.s. if < 0 and converges a.s. on
{lim,_,  f, # 0} if a > 0.

For the next two lemmas, let X,, X,, - - - be identically distributed random
variables defined on (2, &, P) such that E|X,| < oo and let §, C ¥, C - - - be
nondecreasing sub-o-algebras of ¥ such that X, is %,-measurable. Define
(3.1) Yoo = XI(X,| <n%),  Z,, = X,I(X,| >n%),

(3'2) Noan = E(Yanlgn—l)> §an = E(Zanlgn—l)'

LeMMA 3-2. Let f@ = (f@,f®,...) be a martingale relative to F, C %,
C - - - such that

(33) o= i (Yy, — Net)
where a > 1. If E|X,|'/* < oo, then f® is L,-bounded.
Proor. We have
SO < 2211 E (Yo — M)’
< Z®_,n"2EY2.

The proof is then completed by generalizing the intermediate steps in the proof of
the strong law of large numbers.

LEMMA 3-3. In each of the cases (a), (b) and (c) of Theorem 2-1, the series
(34) S % converges absolutely a.s.

Furthermore, (3.4) also holds if E|X,|'/* < oo for 0 <a <3.
PrROOF. We have
E 2:;1”7“]{“"' <E zzo-ln—alz‘ml

which converges if and only if E|X,|f¥ 1"~ °dt < oo. This proves the lemma.
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PROOF OF THEOREM 2-1. We use the notation of theorem 2-1. Let ¢, be a
continuously differentiable function such that ¢,,(x) = sgn(x)|x|~* for |x| >e.
Define Y,,, Z,,, Nlans $an as in (3.1) and (3.2), and define the martingale @ =

(f®, f59, - - - ) relative to F, ¢ F, C - - - by (3.3). Note that in the case a = 1,
M = M, Also define the predictable process v = (v, v,, - - - ) relative to ¥, c F,
C -+ byy, =n"!S,_,, where S, = 0, and define the process w = (w;, wy, - * * )

by w, = n7ISf_ Y, 4. Let d = (d{®, d{, - - - ) be the difference sequence of
F@ and let

Ay = {2e < lim inf,n "y, + - - - +7,,]).

Following the proof of Lemma 3-2, we see that 3°_,w2 < oo a.s. By Lemma 3-2
and Kronecker’s lemma, we have n~'S7_,(Y;, — 7,;) > 0 a.s. Combining this with
the fact that

(3.5) P(X, = Y, for all but a finite number of n) = 1
(which follows from E|X,| < o), we have
(3.6) {2¢ < lim inf,|n"'S,, |} D,,A? for every e > 0.

We now consider cases (a), (b) and (c) together. In these cases, Lemmas 3-1 and 3-2
imply that

(3.7 2 19u(0, + w,)d(®
converges a.s. for every ¢ > 0, which by (3.5) and Lemma 3-3 in turn implies that
(3’8) 2:0- l¢a«e(n_lsn+k)n_a(Xn - gn)

converges as. for every e > 0. But ¢,(n7'S,,,) = sgn(S,, )n°|S, |~ for
sufficiently large n a.s. on AY. Letting )0 and using (3.8), we have

(3.9) 21 sgn(S, s )IS, 4kl "X, — &)  converges a.s. on A*.

In the cases (b) and (c), Lemma 3-3 and Kronecker’s lemma imply that n~!(§,,
+ -+ +{,)—>0 as. and hence A* =, A. This proves (a), (b) and (c) of the
theorem.

For the case (d), we may take %, = {¢, 2}. Since the X, in this case are
independent, the strong law of large numbers implies that n~'S,,, — u % 0 as.
Thus it suffices to prove the a.s. divergence of

(3.10) 2 19ue (1T Spak)n (X, — )
where &, = 3| u|. We consider two subcases.

Cask (i): 0 < a < 3. Suppose E|X;|"/* < co. Then S%_,P(|X,| > n®) < oo and
by the Borel-Cantelli lemma, P(|X,| > n® i.0.) = 0. This together with Lemma 3-3
imply that it suffices to prove the a.s. divergence of

@3.11) 2 Bae(n Sk )
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where as before 4® = n~%(Y,, — n,,) and in this case = n=%(Y,, — p,,) With
fun = EY,,. Now -
(3.12) (a7 'Sp k)Y — Ge(n 'S, - 1)dS)|

< Cn_l_alzlx‘(—o n+x(Y l'l'an)l

for some constant C which depends on ¢,,. Since 0 < a < 1, we have 1/a > 2.
Therefore

Ezn-ln_l alzl- n+x( "’an)l < 2(k + I)Enmln_l_mlz‘xl2 < co.
This implies that
(3'13) 2n-ln-l alzx- n+x( an ""om)l converges a.s.
Next g@® = (g{®, gg“), +++ ) with g% = 57_ ¢, (i 'S, )4 is a martingale rela-
tiveto %, c %, C . Its difference sequence e® = (e, e, - - - ) is such that

Ee®?* < oo, Therefore by a theorem of Burkholder (1966),

{ @ diverges} =, {S(g) = 0}.
Also by the conditional Borel-Cantelli lemma (see, for example, Chen (1978)),

{S(g(a)) = OO} =a.s.{2;°-lE(e$la)2l65n—l) = 00}.

Since ¢y (n7'S,_ 1) = ¢, (1) # 0 as., it follows that

Ew E(e(a)2| n—1 ) 2n-l(pme(,(n_lS'n—l)n-zaE‘( Yan - l'l'an)2
= o0 a.s.

and hence S(g®) = oo a.s. This in turn implies that g diverges a.s. Combining
this with (3.12) and (3.13), we prove the a.s. divergence of (3.11) and hence that of
(3.10). Next suppose E|X,|'/* = co. Then =2_,P(|X,| >n*) = oo and by the
Borel-Cantelli lemma again P(|X,| > n* i.0.) = 1. This together with the fact that
Paeo( ™ 'Sy k) = ae(1) # 0 a.s. imply that P(,, (n7"S, ., )n %X, — p)+»0) =
and hence the a.s. divergence of (3.10). This proves case (i).

CasE (ii): @ < 0. It is not difficult to see that there exist ¢ > 0 and § > 0 such
that P(|X, — u| > cn®) > & for sufficiently large n. Then I3, P(|X, — | > cn®)
= o0, and arguing as above we prove the a.s. divergence of (3.10). This completes
the proof of Theorem 2-1.

The proof of Theorem 2-2 is a more straightforward application of Lemma 3-1
and is therefore omitted. We also omit the proofs of Corollaries 2-1 and 2-2 as the
former has been sketched and the latter is easy.

4. Burkholder’s strong law. Let X, X,, - - - be independent and identically
distributed random variables defiried on (2, ¥, P) such that E|X[log™|X,| < o0
andlet §,, §,, - - - be independent sub-o-algebras of ¥ such that X, is §,-measur-
able. Let B, be a sub-o-algebra of §, for n > 1. Burkholder (1966) proved that

4.1) lim, n~'S7_E(X;|D,) = EX, as.
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We have used this result in deducing Corollary 2-1. Here we give a different proof
of (4.1) by showing that it is an easy consequence of Lemmas 3-2 and 3-3. Indeed,
let §=9, and 5, =6,V -- VS,V B,,, for n > 1 as in the example in
Section 2. Then Lemmas 3-2 and 3-3 imply that

3= n~ (X, — E(X,|9,) converges a.s.

which by the strong law of large numbers and Kronecker’s lemma in turn implies
4.1).
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