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LAPLACE TRANSFORMS FOR CLASSES OF LIFE
DISTRIBUTIONS!

By HENRY W. BLOCK AND THOMAS H. SAvITS
University of Pittsburgh

Using Laplace transforms, necessary and sufficient conditions are given for
classes of life distributions which are of interest in reliability. Using these
conditions, the problem of class closure under convolution is discussed. Fur-
thermore, converses to results of A-Hameed for gamma wear processes are
given.

1. Introduction. Vinogradov (1973) has used the Laplace transform to give
necessary and sufficient conditions for a distribution to have increasing failure rate.
In this paper, we obtain similar results for other reliability classes.

Let F be a distribution function such that F(0) = 0 and let ¢(s) = [P~ *dF(x),
s > 0. We define

N
a,(s) = (_n}) -‘%—;[ 1 —qu(s) ], n>0,s>0
and set a,, (s) = s"*'a,(s) for n > 0, s > 0 and let ay(s) = 1 for all s > 0.

The reliability classes of distributions which are IFR, IFRA, NBU and NBUE
have been widely discussed in the literature. Definitions can be found in Barlow
and Proschan (1975). The class of DMRL distributions and the class with PF,
densities can be found in Esary, Marshall and Proschan (1973) along with the
discrete analogs of all six of these classes. The terms increasing and decreasing will
mean nondecreasing and nonincreasing respectively. The main theorem can now
be given.

(1.1) THEOREM. For nonnegative distributions F:
(1) Fis IFR if and only if {a,(s), n > 1} is log concave in n for all s > 0;
(2) Fis DMRL if and only if 5. ,04(5)/ a,(s) is decreasinginn = 1,2, - - for
all s > 0;
(3) Fis IFRA if and only if [a,(s)]'/" is decreasing inn = 1,2+ - - for all s > 0;
(4 Fis NBU if and only if a, . ,,(5) < a,(s)a,,(s) for all n, m > 0, all s > 0;
(5) F is NBUE if and only if a,(8)Z%-00:(s) > 2., a:(s) for all n > 0 and all
s> 0.
The proof of this theorem will be given in Section 2. An interpretation of the
conditions of this theorem in terms of a shock model js given in Section 3 along
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with a probabilistic interpretation of the a’s. This leads to the expression

(12) a,(s) = E(F(T,(5))),

where F(x) =1 — F(x) and T,(s) is a random variable which has a gamma
distribution with parameters n and s. Since E(T,(s)) = n/s and Var T,(s) = n/s?
it follows by choosing s = n/x that

(1.3) a,(s) > F(x) as n— oo.

A detailed proof of (1.3) is given in Lemma 2.3. Thus from (1.2) it can be seen that
properties of F can be translated into properties of the a’s and from (1.3) properties
of the a’s are inherited by F. This is the idea of the proof of Theorem 1; the details
are carried out in Section 2. It should be noted that for a specific Laplace
transform it might be very difficult to check the various conditions of Theorem 1.1.
In this sense it would still be very useful to have conditions which can be easily
checked for the various classes of life distributions.

In Section 3, a quantity related to the a, is defined and using it, other classes
from the theory of total positivity are characterized. Convolutions of the distribu-
tions in the various classes are discussed in Section 4 and in Section 5 converses to
results of A-Hameed (1975) for gamma wear processes are given.

2. Proof of theorem. Before proving the theorem some useful versions of a,
and a, ., will be given. These easily verified forms are

2.1) a,(s) = f3°—:—!e"“F_(u) duforn > Oands > 0,
(22) a,,(s) = sfg°(—‘;")—e—s"i(u) duforn > 0ands > 0.

The necessity of the conditions will be established first.

(1) This has been established in Vinogradov (1973), but can also be proven by
an argument similar to the one which follows in (2).

(2) A standard sign change argument can be used to establish the condition. As
on page 93 of Barlow and Porschan (1975) (or see Karlin (1968)), the kernel
exp(—su) - (su)*/n! is PF, in s € (0, ) and n € {0, 1,2, - - }. To show the
condition we use the identity, forn > 0, s > 0, and ¢ > 0,

015 S (2R (y) dy ~ eF(0) dt = 32,1 20(5) = capa (o)

Thus since F is DMRL, [®F(y) dv — cF(t) changes sign at most once and in the
order +, — if a change occurs. The variation diminishing property of the above
kernel yields that ¢, 0,(s)/ a,(s) is decreasing in n = 1,2,- - - for all s > 0.
Finally adding 1 = a,(s)/ a,(s) to the above gives the condition.

(3) and (4). Fix s > 0. Then

a,(s) = 1§42 G (u) du
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where G(u) = e **F(u). Clearly G(u) is IFRA or NBU if and only if F(u) has the
corresponding property. Also

— wu” ~ — pn+l —
a,(s) = [g ﬁG(u) du = CED RS

where p, is the rth moment of G. By Corollary 6.5, page 112, of Barlow and
Proschan (1975), if G is IFRA, then (y,)!/” is decreasing in r and so a)/"(s) is
decreasing in n > 0. Similarly if G is NBU, by problem 3, page 187, of Barlow and
Proschan (1975), the necessity of the condition in (4) follows.

(5) Since F is NBUE we have

F(u) > %],?F_(v) dv  foreach u >0,
where u is the mean of F. Now, for n > 0, s > 0,

a,(s) = f?%e"“i(u) du > %f?—':;!-e""ffF—(v) dv du

| u” .
= F/?F(v)fgﬁe du dv
1 o= 1 . sk _
=;foF(D)s"—+l-{l— k_oWe w} dv
1 1 = e | SfOF
= CF(0)ZEo 1= " do
1 1
= Rmns 15 0(5)
Thus
pss™*la (s) > 22,185 g (s) forn > 0ands > 0
or

a1 ()21 (5) > 2P, 120(5)
since ps = SL_,0,(s). Adding a,_ ,(s) to both sides of the inequality gives that
o, ()22 0o (s) > Zf-,(s) for n> 1
Sufficiency of the conditions. We repeatedly use the following lemma.
(2.3) LemMA. Let x > 0 be a continuity point of the df F. Let s = s(n, x) and
lim, .. n/s = x. Then lim,_,  a, . ,(s) = F(x).

ProoOF. We have
&, 41(8) = [FF (u) dG,(u)

where dG,(u) = (s"*'/n!)u"exp(— su) du. Since lim,_, n/s = x it follows that G,
converges weakly to G, where G is the one point distribution concelitrated at x. By
Theorem 5.2 of Billingsley (1968) it follows that lim,,_,  a, ,(s) = F(x).
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Sufficiency of condition in (1). This was proven by Vinogradov (1973).
Sufficiency of condition in (2). The condition can be written for all s > 0 as
0k +1(8) 252, 4194(5) 3 @, ()27 4k 419(s) forallk, n > 0.
It is easily checked that
2:?o--n+lai(s) = f3°SP{ Yn < u}i(u) du

where Y, has the df G, given in the proof of the lemma. As in the lemma if
lim,_ n/s = x > 0, G, converges weakly to the one point distribution at x and

lim,_, &P {Y, < u}F(u) du = [2F (u) du.
Let x and x + y be continuity points of F with x,y > 0. Letn=1,2,- -+ and

define s = n/x and k = [ny/x]. It follows that x = n/s and lim,_,  (n + k)/s =
x + y. The inequality above can be written as
an+k+l(s)f8°P{Yn < u}F(u) du < an+l(s)f3°P{ Yn+k < u}i(u) du
and letting n — oo gives
F(x + y)[®F(u) du < F(x)f;°+yf(u) du.

Since the continuity points of F are dense the inequality holds for all x,y > 0
which gives that F is DMRL.

Sufficiency of condition in (3). Let a = p/q where 0 <p < g are integers and
let x > 0 and ax be continuity points of F. The condition can be written for all
s>0as

@i 1(8) P [Gyinar()]T/CHED forallm, k > 0.
For integers m = 1,2,- - - set n = mp and k = m(q — p) and let s = n/(ax).
Then as m — oo (or equivalently as n — co and k — o0) we have that n/s — ax,
(n+ k)/s— x and (n + 1)/(n + k + 1) > a. Thus by Lemma 2.3
F(ax) > F*(x).

Since the set of points x of the type considered above are dense, the inequality
holds for all x > 0,0 < a < 1 so that Fis IFRA.
Sufficiency of condition in (4). The condition can be written for all s > 0 as

an+l(s)am+l(s) > an+m+2(s) for all n,m3z 0.

For continuity points x,y >0 of Fand n = 1,2, - - define m = [ny/x]] and
take s = n/x. Then lim, ,,m/s = y and lim, ,(n + m + 1)/s = x + y and so
by the lemma

F(x)F(y) > F(x + ).
As in the previous proofs it follows that F is NBU.
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Sufficiency of condition in (5). The condition can be written for all s > 0 as
Xy 1(8)[SF (u) du > S, 1504(5)

or as
O 1(S)ESF (u) du > [FSP{Y, . <u}F(u)du

using the notation in the proof of sufficiency of the condition in (2). For a
continuity point x > 0 of F, define s = n/x. Then lim, , n/s = lim,_, (n + 1)/s
= x and so

F(X)u > [OF (u) du
where u is the mean of F. As in the previous proofs it follows that F is NBUE.

(2.4) REMARK. A similar theorem holds for DFR, IMRL, DFRA, NWU and
NWUE where the necessary and sufficient conditions are obtained by making the
obvious modifications on the conditions in Theorem 1.1.

(2.5) REMARK. Itis clear that the theorem is still true if the phrase “all s > 0 is
replaced by the phrase “all s sufficiently large”.

3. Total positivity and its role. In the previous section necessary and sufficient
conditions were obtained in terms of the Laplace transform for characterizing the
various classes of life distributions in reliability. These were obtained in the spirit
of Vinogradov (1973). In this section we show how the tools of total positivity can
be applied to obtain results similar to those of Theorem 1.1, but for other classes of
life distributions. Also it is shown that Theorem 1.1 is actually a statement about a
type of shock model. The implications of this observation will also be discussed.

In Theorem 1.1 it should be noticed that the conditions on the {a,(s)} are the
exact analogs of the life properties for discrete distributions and that Theorem 1.1
in fact closely resembles Theorem 3.1 of Esary, Marshall, and Proschan (1973). An
important difference is that the conditions in this latter theorem are not necessary
and sufficient. However, the {a,(s)} can be viewed as probabilities for a certain
type of shock process. This will now be described.

Let {N,(#), t > 0} be a Poisson process with rate s > 0. Then, if X is a rv with
survival function F(u),

e (su)" =
() = 315 Fu) au
(3.1) = s/QP{N,(u) = n}F(u) du
= [QP{N,(u) >n} dF(u) = P{N/(X) > n}.
Furthermore if Y;, Y,, - - - are the (exponential) arrival times for the process, then
(32) o r(s) = P{SI21Y, < X} = [£G™*D(u) dF(u)

where G(u) = exp(— su), u > 0. Thus (3.2) shows that the {a,(s), n > 1} are the
discrete survival probabilities for a special case of the random threshold cumulative
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damage model of EMP (1973). This observation leads to a slightly strengthened

version of Theorem 5.2(b) of these authors’ paper. That is, (3) of Theorem 1.1 and

the previous interpretation give that for Fk = o (s), Fk‘/ k decreases in k =

1,2, - - whenever F is IFRA. Furthermore, using the above interpretation,

Theorem 5.3 of EMP (1973) provides an alternate proof of the necessity of (4).
Using (3.1) define

(3.3) ‘ B,(s) = P{N(X)=n} forn>0, 5s>0.
Also let B,(0) = O for n > 0 and By(0) = 1. It is clear that forn > 0,5 > 0
e "(su)"
(34) Bu() = 00(s) = aya(s) = 12 S )
and also if ¢ is the Laplace transform of F
_(=9)" a"
3.5) B,(s) = %o ¢(s) forn>0,s5>0.

Using the total positivity of the kernel in (3.4) we now establish criteria for the
density f to have certain properties in terms of properties of the B8,(s). For the
definition of SC,, and PF, in the following see Karlin (1968).

(3.6) THEOREM. Let f be a continuous density on [0, o). Then f(x + y) is SC, for
x,y > 0 if and only if for all s > 0, B, ,.(s) is SC, for n, m > 0.

PrOOF. Let B,(s) = sB,(s) = (1/nY)[v" *f(v/s) dv. Then B, (s) is SC, if
and only if B, ,,(s) is SC,. The necessity of the condition follows from Theorem
5.4, Chapter 3 of Karlin (1968) since the function g(x + y) = e~ **f((x + »)/s)
is also SC, for each s > 0 if f(x + y) is SC,. For the sufficiency let 0 < u;, v; for
i,j=1,-+-,r and set x, = 2} _ %, y; = Z4_ 0. Then for any nonnegative in-
tegersp,i=1,---,r,q,j=1,---,r, we have that for each s > 0

&, det( B, 1 (5)) > 0
where ¢, is the signature of B’ and m, = 3% _,p;, m; = 34 ,q,. Choosing s =

[n/x1, p; = [nw;/x,]l, ¢ = [nv;/x,]] and appropriately modifying Lemma 2.3 we
obtain that fori,j=1,---,r

,3,;.,.,,5(5‘) - flx; + y,) asn— oo

since (n, + m;)/s — x; + y; and we are done.
Using Theorem 1.1 b of Chapter 3 of Karlin (1968), the proof of the following
corollary is immediate.

(3.7) COROLLARY. Let f be a continuous density on [0, o). Then f(x) is PF, in
x > 0 if and only if B,(s) is PF, in n > 0 for any s > 0.

(3.8) ReMARrk. Karlin, Proschan and Barlow (1961), obtain the result that if f is
a probability density on [0, o), then f is PF if and only if the normalized
moments v, = (1/n!)[Fx"f(x) dx, n > 0, form a (one-sided) PF  sequence. Note
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that y, = lim,_,4(8,(s)/s™). Consequently Corollary 3.7 is a partial answer to their
unresolved question in that paper.

4. Convolutions. In Vinogradov (1975), it is shown that (1) of Theorem 1.1 can
be used to prove that convolutions of IFR distributions are IFR. In this section we
show how this idea can be extended to other life classes. We first establish a
convolution formula for the a,, ,(s). Let

af¥i(s) = s/@—— (su) e “P{X >u}du fors>0,n>0,

alPi(s) = 5[ (s ) e ™P{Y >u}du fors >0,n>0,

and af(s) = a§"(s) = 1 where X and Y are 1ndependent nonnegative random
variables. Also let

BY(s) = afF(s) — alh(s), BIV(s) = of? — af(s).
Using properties of the Poisson process, it is clear from (3.1) and (3.3) that

(4.1) BE+I(s) = Zh Lo BE(s)Bh(s) forn >0,5>0
and
(4.2) alXy Y)(S) = af.l-?l(s) + 2% o H(s)(a(y)k(s) - a(y)k_,_,(s))

This gives that convolution of the continuous random variables X and Y gives rise
to convolution (of independent versions) of the discrete random variables N,(X)
and N,(Y). Thus Vinogradov’s proof essentially shows that if X and Y are IFR
then a**Y)(s) is discrete IFR and so X + Y is IFR. Similar results can be
demonstrated for any of the classes considered in Theorem 1.1. For example,
assume X and Y are NBU. Then by Theorem 1.1 a{*)(s) and af? satisfy condition
(4) of Theorem 1.1. As mentioned in Section 3, this is the discrete NBU condition.
Since convolutions of discrete NBU distributions are discrete NBU, it follows that
a** V) satisfies the condition in (4) of Theorem 1.1. Thus X + Y is NBU by
Theorem 1.1. Unfortunately the proof of the discrete convolutions is usually no
easier than the proof of the continuous analog, so that in most cases not much is
gained by this technique.

5. Necessary and sufficient conditions for a gamma wear process. A-Hameed
(1975) has discussed preservation of certain life classes under a gamma wear
process. In this section we give converses to these results. We first recall that the
survival function for a gamma wear process is given by a,(0) =0 and

(5.1 a,(1) = & ———(su)* e “F(u du fort>0
where s > 0, F is a survival functlon and A(?) is a hazard function, i.e., A(¢) is

increasing and right continuous on [0, ), A(0) = 0 and lim, , A(#) = oo. It is not
hard to check that if A(?) satisfies these conditions, then a,(¢) is a survival function.
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Notice that (5.1) reduces to (2. 1) if A(¢) = ¢ for nonnegative integers ¢. Notice also
that &, and F play the roles of F and G in A-Hameed’s paper. The converse result
can now be stated. A function A(¢) is antistarshaped if A(¢)/t is decreasing in
t>0.

(5.2) THEOREM. Let &(?) be given by (5.1). The following hold:
(@) If a,(?) is IFR for each s > 0 and A(t) is concave, then F(f) is IFR.
(b) If a(?) is IFRA for each s > 0 and A(?) is antistarshaped, then F(¢) is IFRA.
(©) If a () is NBU for each s > 0 and A(?) is subadditive, then F(¢) is NBU.

PROOF. (a) Assume A(¥) is concave and a,(?) is IFR. Since A is increasing it
follows that A~ ! is defined and is convex. Now let G,(0) = 1 and

(5.3) Go) = 15 (10) (su)°~'e=F(u) du forov > 0.

Since a,(¢) =_(i(A(t)) is assumed to be IFR for each s > 0, for t = A~!(v) it
follows that G,(v) is IFR for each s > 0. For 0 < u; <u, and 0 <v
G, (1) G(u; + v) > G,(u, + ) Gy(w).

Now let x,, X,, x, + y, x, + y be continuity points of F with x; < x,. Fix 4, > 0
and let s = u,;/x,, u, = sx, and v = sy. By a modification of Lemma 2.3, as

U, —> 0
lim s—»ooG (ul) = F(xl) h s—»ooG(ul + U) = F(xl +y)

and
lim G(u2+v)=F_(x2+y)

§—>00

so that
F(x)F(x, +y) > F(x, + Y)F(xy).

Thus F is IFR as in previous proofs of this type.
(b) The condition that &, is IFRA gives that

a(a't) >a¥(#) for0<a’' <1,0<1
Using (5.3), this can be written as
G (A(a'D)) > G (A(1))-
Since A(?) is antistarshaped we can write
G,(a’A(2)) > G¥(A(2)).

Let x and a’x be continuity pomts of F and set s = A(¢)/x. As in Lemma 2.3,
letting ¢ — oo gives

F(a'x) > F¥(x).
Thus F is IFRA.



TRANSFORMS OF LIFE DISTRIBUTIONS 473

(o) If &, is NBU, then
a(u)a,(v) > a(u+ v) foru, v >0

and using (5.3) this can be written as

G,(A(4))G,(A(v)) > G,(A(u + 0)).
Using the subadditivity of A gives

G,(A)G,(A(v) > G,(A(w) + A(v)).

Now let x and y be continuity points of F. Let s = A(¥)/x and v = inf {¢ : A(¢) >
sy}. Then lim,_,  A(v)/s = y, so that as in Lemma 2.3 as u — oo (i.e., s — )

f(x)F-(y) > F(x +y).
Thus F is NBU.

(5.4) COROLLARY. Let a,t) be given by (5.1) with A(f) = t. Then the following
hold:

(a) a,(¢) is IFR for each s > O if and only if F-(t_) is IFR.

(b) a,(?) is IFRA for each s > 0 if and only if F(¢) is IFRA.

(c) a,(?) is NBU for each s > 0 if and only if F(t) is NBU.

ProOF. Apply the previous theorem and Theorem 1 of A-Hameed (1975).

(5.5) ReMARk. Corollary 5.4 can also be obtained by modifying the proofs of
(1), (3) and (4) of Theorem 1.1.

(5.6) REMARK. Obvious modifications of the theorem and corollary exist for
DFR, DFRA and NWU.

NoOTE. As this paper was being written the paper by Vinogradov (1976) came to
our attention. It turns out that there is a little overlap with the present paper.
Vinogradov’s paper contains four theorems. Theorem 1 is a restatement of a result
of Karlin, Proschan and Barlow. Theorem 2 and 3 are properly contained in our
Theorem 3.6 and our Corollary 3.7 and Theorem 4 is contained in (4) of our
Theorem 1.1.

REFERENCES

A-HAMEED, M. (1975). A gamma wear process. IEEE Transactions on Reliability R-24 152-153.

BarLow, R. E. and ProscHAN, F. (1975). Statistical Theory of Reliability and Life Testing: Probability
Models. Holt, Rinehart and Winston, New York.

BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley & Sons, New York.

EsArY, J. D., MARSHALL, A. W. and PRroscHAN, F. (1973). Shock models and wear processes. Ann

’ Probability 1 627-649.

KARLIN, S. (1968). Total Positivity, Vol. 1. Stanford Univ. Press.

KARLIN, S., ProscHAN, F. and BarLow, R. E. (1961).- Moment inequalities of Polya frequency
functions. Pacific J. Math. 11 1023-1033.



474 HENRY W. BLOCK AND THOMAS A. SAVITS

VINOGRADOV, O. P. (1973). The definition of distribution functions with increasing hazard rate in terms
of the Laplace transform. Theor. Probability Appl. 18 811-814.

VINOGRADOV, O. P. (1975). A property of logarithmically concave sequences. Math. Notes 18 865-868.

VmNoGraDOV, O. P. (1976). On applications of an inversion formula for the Laplace transform
(Russian). Teor. Veroyatnost. i Primenen. 21 857-860.

DEPARTMENT OF MATHEMATICS AND STATISTICS
FACULTY OF ARTS AND SCIENCES

UNIVERSITY OF PITTSBURGH

PITTSBURGH, PENNSYLVANIA 15260



