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INEQUALITIES FOR DISTRIBUTIONS WITH GIVEN MARGINALS!

By ANDRE H. TCHEN
Carnegie-Mellon University

An ordering on discrete bivariate distributions formalizing the notion of
concordance is defined and shown to be equivalent to stochastic ordering of
distribution functions with identical marginals. Furthermore, for this ordering,
S dH is shown to be H-monotone for all superadditive functions ¢, generaliz-
ing earlier results of Hoeffding, Frechet, Lehmann and others. The usual
correlation coefficient, Kendall’s r and Spearman’s p are shown to be monotone
functions of H. That f¢ dH is H-monotone holds for distributions on R” with
fixed (n — 1)-dimensional marginals for any ¢ with nonnegative finite dif-
ferences of order n. Some related results are obtained. Stochastic ordering is
preserved under certain transformations, e.g., convolutions. A distribution on
R* is constructed, making max(X,, - - -, X,,) stochastically largest for all n
when X; have given one-dimensional distributions, generalizing a result of
Robbins. Finally an ordering for doubly stochastic matrices is proposed.

1. Introduction and summary. For probability measures (p.m.) H on R? with
fixed marginals F and G, a natural notion of stochastic dominance is explored,
formalizing the qualitative notion of concordance (Gini [15]), best summarized as
“large values of X go with large values of Y ” (Kruskal [21]). When F and G
concentrate their mass on finitely many atoms, say that H’ is more concordant than
H iff H' can be obtained from H by a finite number of repairings which add mass e
at (x, y)and (x’, y’) while subtracting mass ¢ at (x’, y) and (x, y’) where x’ > x
and y’ > y, so that large values of X are more often associated with large values of Y
under H' than under H. In Section 2 it is shown that H’ is more concordant than H
iff H' stochastically dominates H, namely if their cdf’s satisfy H'(x, y) > H(x, y)
for all x, y.

From this property it is easy to verify that for any real-valued superadditive
function ¢, i.e., satisfying p(x, y) + ¢(x’, y) > @(x’, y) + ¢(x, y’) for all x" >
x and y’ > y (cf. [12]), fo dH is monotone in H. In Section 3 this is shown directly
in the continuous, n-dimensional case under certain regularity conditions.

This result generalizes various earlier results which we now briefly review.
Lehmann [23] called the distributions satisfying H(x,y) > H(x, «)H(,y) for all
x,y positive quadrant dependent (p.q.d.) and showed that Kendall’s 7, Spearman’s
p and the usual correlation coefficient are greater than O—their value under
H(x, ©)H(,y)—for p.q.d. distributions. Hoeffding and others [19], [13], [2], [8],
[3] (see also [9], [1], [26], [37]) showed that the extreme bounds of E,(XY),
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Ey(X —Y)%, E4y|X —Y|?, p>1 and E,f(|X — Y|) with f” > 0 are attained
at H(x,y) = max{0, F(x) + G(y) — 1} and H(x,y) = min{F(x), G(y)}.
Hoeffding also characterized the class of p.m.’s H with marginals F and G, denoted
T'(F, G), as the class of p.m.’s with cdf’s H(x,y) such that H(x,y) < H(x,y) <
H(x,y). _

That the extreme bounds of E,¢(X, Y) are attained at H and H for superaddi-
tive functions can be derived differently: to maximize E, H()? Y) in the discrete case
one is led to a rearrangement theorem of Hardy, Littlewood and Polya [18], page
261, via Birkhoff’s [5] characterization of permutation matrices as extreme points of
the convex set of doubly stochastic matrices. In view of the representation theorem
of Skorokhod [33], the continuous version of the rearrangement theorem [18], page
278, shows that for general F and G the bounds of E,(XY) for H € I'(F, G) are
attained at H and H. Lorentz [25] extended the theorem of Hardy, et al., to all
bounded superadditive continuous functions and thus Lorentz [25] essentially
contains the results of Hoeffding, et al. Whitt [37] first noted the connection
between Hoeffding’s and Hardy, Littlewood and Polya’s results; Thomas Cover
and the author independently rediscovered this connection and Lorentz’s result.

It should also be noted that in a paper completed after the first version of this
paper and published before this version, Cambanis, et al.,, [7], have derived the
result on the H-monotonicity of f¢p dH under different regularity conditions.

In R” the H-monotonicity of fp dH holds for any real-valued function ¢ with
nonnegative finite differences of order n when H varies in a class of p.m.’s with
identical (n — 1)-dimensional marginals. The applicability of this result is extended
by noting that a stronger form of stochastic ordering is preserved when taking
product probabilities. Some results of Lehmann [23] can thus be generalized and it
is also shown that stochastic ordering is preserved under convolutions: if H and H’
have identical (n — 1)-dimensional marginals, and similarly for K and K’, with
H' > Hand K’ > K, then H' * K’ > H * K, where H * K denotes the cdf of the
convolution of H and K. Section 4 contains these and other extensions and
applications.

Let H(x) = min, F(x,); then for any real-valued function ¢ on R” which is only
superadditive in each pair of arguments, [¢ dH attains the maximum of fpdH over
the class of p.m.’s H with one-dimensional marginals F;, with 1 < i < n; this was
shown for continuous and bounded functions ¢ by Lorentz [25] in the context of
rearrangements of functions, and was recently rediscovered by Schaeffer [31] in the
special case where @(x) = minx; — maxx;. A simpler proof using a martingale
representation and requiring weaker regularity conditions is presented.

The notion of least concordance is used to construct explicitly a p.m. on R®
which makes max(X;, - - -, X,) stochastically largest for all n, where the X;’s
have specified one-dimensional distributions but are otherwise arbitrarily jointly
distributed; this extends the result of Robbins [30], [22], obtained for the identically
distributed case.
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Finally an ordering for doubly stochastic matrices is proposed (cf. Sherman [32]),
and a counterexample to a conjecture of Gray, Neuhoff and Shields [16] concern-
ing distances for stationary processes is constructed.

Throughout the rest of this paper, H(x) denotes the right-continuous cdf of the
p-m. H, H™ (x) its left-continuous version, and H{ A4} the probability of 4 under
H; for ease of notations H{{(x,, - - -, x,)}} is abbreviated as H{x, -+ +, x,}.

2. Stochastic ordering as greater concordance. Consider the class of p.m.’s in
I'(F, G), where F and G concentrate their mass at the points x; < + -+ < x;, y;
< - -+ <y, respectively. Suppose that H and H’ are in I'(F, G) and that there
exists a sequence H, = H, H,,- - -, H, = H' of p.m.’s in I'(F, G) such that for
i=1,2--+,n—1, H,, is obtained from H, by adding mass ¢, > 0 at some
points (x,, y,) and (x,,, y,) while subtracting mass ¢; at the points (x,, y,/) and
(x,s y,), where p < p" and ¢ < q’. Then H' is said to be more concordant than H,
and we write H' >, H.

THEOREM 1. Let F and G be two discrete p.m.’s on R with finitely many atoms.
Then for H, H € I'(F, G), H >:H if and only if H'(x, y) > H(x, y) for all
X, y.

We first introduce two lemmas and some notation. For convenience, replace
Xy, ,x;andy,, -+, y,byl,---, Tand 1,- - -, J respectively. Define the
usual lexicographic ordering on {1,- - -, I} X {1,-- -, J} by (k, I) < (m, n) if
I<n, orif /=n and k < m. For fixed i, j, H € I'(F, G) and for any K €
T'(F, G) satisfying condition

K{i, j} < H'{i, j} and K(x, y) = H'(x, y) for all
(A) R
(x, y) preceding (i, j),
define the sequence S(K, H') = (x;, ¥;);=y,..., « BY
n=>J
x, = min{r|r>i+1, K{r, j} >0}
Y, = min{s|s >j + 1, K{r, s} > 0forsomerwithi <r <x,_,}
x, = min{r|i < r, K{r, y,} >0},
These relations define a nonempty finite sequence with x, =i < x,_;* -+ < x;,»,
=j <y - <y and y, = min{s|K{i,s} > 0,s > j}. Define the partial order >
on the sequences (xXpYi)i=r,...p With x, < x, ;- <x, and y; <y, - <y, by
XpYimryep D> (UpOy)yoy,.q Il x, =u, =iy, =v,=j and UhZ i, x;) X
[/oyi41)) D U i uy) X [J,v,44)). Also say that XpYimt,op @ (U0 pmy, g
strictly if the corresponding set inclusion is strict.

LeEMMA 1.1. Let K € T'(F, G) satisfy condition (A); then there exists K' € T'(F, G)

such that K' > :K,K'(x,y) < H'(x,y) for all x, y, and K'{i,j} = K{i,j} + A, where

A = min{H'{i,j} — K{i,j}, ming 5, K{x;,5}}.
Further S(K',H') > S(K, H) strictly if A < H'{i,j} — K{i,j}.
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ProOF. Let S(K,H’) = (x;,y);=1....; as above, and define K = K, K for
I =2,3,- - k as the measure obtained from K¢~ where the mass A is subtracted
from (x,_,,/) and (x,,,) and added to (x,_,,»;) and (x,,/), and let K’ = K®,

By definition of A, each KV is a positive measure; further, K'{i,j} = K*Xi,;}
= K{i,j} + A. To show that K¥(x,y) < H'(x,y) for all (x,y) for each L,k < I <
1, assume by recurrence that KU~D < H’. If (x,y) is not in (x,_;,x;) X
Uy, KO(x,y) = KY"D(x,y); otherwise define 4 = [i,x] % [0,j— 1], B =[0,i
Z1I'% [0,y] and C = [i, x] X [j,y]. By hypothesis KP{4} = KU~V(4} = H'(4),
and by construction and recurrence assumption K ’{B} = K/~)(B} < H'{B}. By
construction K‘’{C} = K{i,j} + A < H'{4} + H'{i,j}. Thus K(x,y) = KV{4
UBU C} < H'{A}+H'(B}+H'(C} <H'(x,). Finally if A < H'{i,j}~K{i.j},
A = K{(x,,y,} for some p, 1 < p < k; then S(K’, H') contains all the points of S(K,
H) except (x,,¥,) so that S(K’, H') > S(K, H) strictly.

LemMA 1.2. Let H, € T'(F, G) be such that H, >.H, H,(x, y) < H'(x, y) for
all (x, y) and H(x, y) = H'(x, y) for all (x, y) strictly preceding (i, j). Then
there exists H, | >cH, such that H,, |, < H'(x, y) for all (x, y), Hi,(x, y) =
H'(x, y) for all (x, y) strictly preceding (i, j), and H, (i, j) = H'(i, j).

Proor. Apply Lemma 1.1 repeatedly starting with K = H; the sequence K,
obtained must eventually satisfy K, {i, j} = H'{i, j} since S(K,,, H’) is a strictly
increasing sequence with respect to >> on a finite range, of size less than 2.

PrOOF OF THEOREM 1. It is easy to show that if H' > .H, then H'(x, y) >
H(x, y) for all (x, y). For the converse, an explicit algorithm is provided by
repeatedly applying Lemma 1.2: first with Hy = H and (i, j) = (1, 1) to obtain
H,; then with H, and (i, j) = (2, 1) to obtain H,, etc.

CoroLLARY. (Hoeffding). T'(F, G) admits a maximum H and a minimum H
relatively to >., corresponding to H(x, y) = min{F(x), G(y)} and H(x, y) =
max{0, F(x) + G(y) — 1}.

Proor. For any H € I'(F, G), max{0, F(x) + G(y) — 1} < H(x, y) <
min{ F(x), G(y)} for all (x, y). The corollary then follows from Theorem 1 since
these two bounds are actually cdf’s namely the cdf’s of (F~'(U), G™'(1 — U)) and
(F~Y(U), G"\(U)) respectively, where U is uniformly distributed in [0, 1] and
F~! G7! are the inverses of F and G.

3. Isotonicity properties. Call a function ¢ : R” — R n-positive if it has non-

negative finite differences of order n, namely if A%, - - - Alx;x.'P > 0 for all
x> x;, i=1,---, n, where A}, is the finite difference operator
AP x(p = q)(xl’ Ct Xp—1o x;)’ Xp+1s" " " ‘xn)
- q)(xl’ T Xp—1s Xps Xpy1n T xn)’

A 1-positive function is a nondecreasing function; a 2-positive function is also
called superadditive. Some examples of n-positive functions are: (1) x —
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—max(x,, -+ Xx,); (2) x— K(x) where K is a cdf; (3) x ->¢@(x) where ¢ has
nonnegative nth order partial derivative g, ..., ; (4) (x}, X3) = X" X535 (5) (%1, X;) =
—|x; = x,|? for p > 1; (6) (x;,x,) —> h(x, — x,) where h is a concave function;
() (x1,x,) > Y[ A(x,), B(x,)] where  is superadditive and 4, B are monotone in
the same direction.

Note that for n = 2, a consequence of Theorem 1, in the discrete, finite case, is
that ¢ dH is monotone with respect to H € I'( H(x, o), H(o0,y)) if and only if ¢ is
superadditive.

An n-positive function ¢ defines a positive, additive measure K on the semialge-
bra of rectangles in R" by K{II[(x,x;]} = 4%, --- A, ¢; taking ¢ right-
continuous ensures that K be s-additive on B(R"), cf. Neveu [28], page 29.

THEOREM 2. Let @ be a bounded right-continuous n-positive function, H, and H,
two p.m.’s on R" having identical (n — 1)-dimensional marginals. Then [(pdH, —
fedH, = (= 1)"( [H; (x) — H; (x)]dK where K is the positive measure associated
with ¢.

PrROOF. Assume first that ¢ is k-positive in each subset of k variables so that it

can be regarded as a cdf. Using Skorokhod’s construction [33] let (X,;,- - - , X;,) be
distributed as H,, for i = 1,2 respectively, and (F,,- - - , F,) be distributed as ¢ and
independent of (X;;,- -, X;,), for i = 1,2. From the inclusion-exclusion formula,

fedH, = P{n}(F < X,;)}

1+ (=1)"P{n7%(X,; < F)}

+(- ! Z-IP{ nj#ak(Xij < F})} +oe

1+ (=1)"fH (x)dK + (= 1)""'[ EH (0, F,,...F,)
+ EH (F\,00,F, - F) + -
+ EH (Fy, - F,_,0)] +--- fori = 1,2.

This case then follows by taking differences.

If @(x) is n-positive only, let A(B, n) be the finite difference operator A(B, n)p =
A, - &, gp. Since K{II}(BAx, BVx;]} = |A(B,m)g(x;,- - x,)| < 2"sup|gl,
where aAb = min(a,b) and avb = max(a,b), K is a bounded measure. Let
Y(x) = K{II{(— o0, x,]} = limz_,_, A(B, n)p(x). From the first part of the proof,

[YdH, — [ydH, = (=1)"([ H; (x) — H{ (x)]dK.

Theorem 2 follows by dominated convergence, noting that ¢ and y have identical
finite differences of order n.

The next corollaries give some regularity conditions to relax the boundedness
condition, cf. also [7] for n = 2.
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COROLLARY 2.1. Let H, and H, have identical (n — 1)-dimensional marginals and
@ be a right-continuous n-positive function with associated measure K. Then

fodH, — fpdH, = (—1)"([ H; (x) — H{ (x)]dK

if Hy (x) — Hy{ (x) is nonnegative or K-integrable and either
(a) there exists an H, and H,-integrable function g bounded on compact sets, such
that |@(x®)| < g(x) for all B, where x® = (xP,- -, x7}) and x} = x; if
|x;| < B and x} = B sgn(x;) otherwise, or
(b) ¢ is H, and Hy-integrable and such that sup,,s|@|- F;{(—B, B)} >0 as
B> for j=1,---, n, where 0QB is the boundary of the cube QB =
II7(— B, B] and F; are the one-dimensional marginals of H,.

ProoF. If (a) holds, note that ¢gz(x) = @(x?) is a bounded right-continuous
n-positive function whose associated measure is the restriction to II7[— B, B] of the
measure K associated with ¢; the conclusion follows by dominated convergence.
For (b), let II(j, B) be the operator on measures on R” which projects the mass of
the points x with x; > B onto the hyperplane x; = B and that of x with x; < —B
onto the hyperplane x; = —B. Then H;p; = II(1, B) - - - Il(n, B)H,, i = 1, 2, will
have the same (n — 1)-dimensional marginals and will coincide with H, in QB.
More precisely

Jo dH; = [p dH;p — [30p9 dH;p + [ppeep dH;  for i =1,2.
The conclusion follows by noting that
IfaQB<P dH ;| < suPaQBI‘PIHi{QBC} < ”SuPaQBI‘Plstu F}{(‘B’ B)C}~

Concerning the extrema attained at Hoeffding’s H and H in the case n = 2 we
have

COROLLARY 2.2. Let @(x) be a continuous superadditive function; then for H €
I(Fy, Fy) _
(a) sup fpdH = [pdH if there exists a continuous function h with h(x) > ¢(x) for
all x with {hdH finite and constant for all H € T'(F,, F,). A similar result holds
Jor the inf.
(b) fedH< [pdH < [¢ dH if o(X) are uniformly integrable for all X with
distribution in I'(Fy, F,).

ProOF. We proceed by rearranging any H locally to approximate H inside
I(F,,F,). Let QB = (— B, B)? and let H, be the measure which is H outside QB
and H reordered inside QB: Hy{A} = H{A N QBC} + Hy{A N QB) for all 4 C
R?, where H, 5 is the maximal subprobability sub-cdf

H_B(x) = min{H{(—B’ xl] X (—B’ B]}’ H{(—B, B] X (—B’ xz]}}

for x in QB. Clearly Hy € I'(F,, F,) and Hy converges weakly to H as B— .
Note that (pdHy, > [pdH for all B so that (b) holds. To prove (a), assume [@dH
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finite or else the theorem is trivial. Since 2 — ¢ > 0,0 < f(h — ¢)dH < lim f(h —
@) dHy; it is then easy to see that f[pdH < limsup [pdHy < [pdH.

COROLLARY_2.3. For any convex nonnegative function  defined on R,
J¥(xy — x)dH < [y(x, — x,)dH < [Y(x, — x,)dH for all H € T(F,, F,).

Proor. The inf case follows from Corollary 2.2. For any Z(u) defined on [0, 1]
with Lebesgue measure, let Z(x) = K~ '(u) and Z(u) = K~ (1 — u), where K is the
cdf of Z and K™!(¢) is the left-continuous inverse of K. Given H € I'(F,i=1,2)
let (X, Y) be distributed as H, cf. [33]. Then (X,Y)and ()?, Y) are distributed as H
and H respectively. Let C = sup{s|F(s) < 1 — Fy(s)}. For B > |C| let Xy(u) =
X(u) if | X| < B and X4z(u) = C otherwise. The cdf F,, of X is parallel to that of
X in (— B, B) and similarly for Y} so that by the convexity of ¥, |¢(X, — Y| <
[$(O)] + [W(X —Y)| for all B. Note that (Xp — Y,) converges almost surely to
(X —Y) since for nondecreasing functions, convergence at all points of continuity
is equi_valent to convergence in the Lévy metric. By Fatou’s lemma and Theorem 2
applied to T(Fip, Fp), EY(X — Y) < liminf EY(Xp — Yp) < lim'inf Ey(X,
- ¥;) = EWX ~ Y).

In the following examples, H, H, and H, are in I'( F,, F,) with H,(x,y) < Hy(x,y)
for all x,y.

ExampLE 1. For any nondecreasing right-continuous F,-integrable function
S ()’

JTSEL [ AY)|X = x]dF\(x) > [“OEy [ f(Y)|X = x]dF(x) forall ¢.
This is obtained for @(x,y) = I_, ,(x) f(y) in Corollary 2.1. In particular if

F, = F, is the uniform distribution on [0, 1] the regression function m(x) =
E4[Y|X = x] must satisfy [@m(x)dx > u?/2 for all u (cf. Vitale and Pipkin [36]).

ExaMmpLE 2. (cf. Bass [2], Dall’Aglio [8], Vallender [35]).
Eg|lX — Y|? < Eg|X - Y|P < Eg|X - Y|? < Eg|lX - Y|”
for p > 1. -
Since fg(x,y) = |x® — yB|? increases to |x — y|? as Bfco, this follows from
Theorem 2 and the monotone convergence theorem. For instance, if X and Y have

symmetric distributions of the same location-scale family, with means and vari-
ances m,,02,i = 1,2,

(my —my)* + (6 = 0,)* < Ey(X — Y)? < (my — m,)* + (0, + 0,)".

ExampLE 3. (cf. Hardy, Littlewood and Polya [18], page 278). If [xyd H and
[xy dH exist finitely, then [xyd H< [xydH, < [xydH, < [xydH. By Corollary
2.3, writing |xy| = exp[log|x| — log|1/y|], all fxydH are finite. Let fy(x,y) =
xB.yB; f, is superadditive and bounded, so the result follows from Theorem 2 and
the dominated convergence theorem.
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ExampLE 4. (cf. Day [10], page 941). If ¢ is superadditive, continuous and such
that |@(x, ¥)| < k(1 + | x| + | y|)?, then

- < fpdH < fpdH, < fpdH, < fp dH < .
This follows from Corollary 2.1 since (1 + |x| + |y[)? < 37711 + |x|? + |y|?).

ExampLE 5. (cf. Rinott [29]). Let ¢(x, y) = log P,(x, y) where P, (x, y) =
log(x™y™ + a;x™ 'y™ '+ ... +q,),witha, > 0.If X > 0, Y > Oand if log X
and log Y are integrable, then

— 0 < Eyqo(X,Y) < Eyu(X,Y) < EH,p(X,Y) < Egop(X,Y) < co.

Since P,, is TP,, (cf. [20], page 101), ¢ is superadditive; further, since c log(xy) <
log P,(x, y) < c¢’log(x™y™) for some constants ¢ and c¢’, it follows that
[log P,(xB, y2)| < m(lc| + |c¢’|)(|log x|+ [log y|) so that Corollary 2.1 applies.

ExaMPLE 6. (cf. Robbins [30], [22]). Ez[max(X, Y)]” < Ey [max(X, Y)]” <
Ey [max(X, Y)]? < Egmax(X, Y)]?, whenp > 1is odd and X, Y € L” or when
p > 2is even and X, Y are nonnegative. Under these conditions —[max(x, y)]” is
superadditive; for an n-dimensional extension concerning the extreme bounds, see
Section 4.3.

4. Some extensions and applications.

4.1. Invariance of stochastic ordering under transformations. Note that the condi-
tion fp dH’ > fo dH for all continuous bounded k-positive functions ¢ : R* —» R
is equivalent to the condition that H and H’ have identical (k — 1)-dimensional
marginals with H'(x) > H(x) for all x € R when k is even and H'(x) < H(x) for
all x € R* when k is odd. The direct part is verified using a continuous approxima-
tion to H{‘I(_w, a,) and the converse part follows from Theorem 2.

THEOREM 3. Let H,,, H,, be pm.’s on R* for i=1,- - -, n and let H; denote
the product measure H,; X - - - XH,, for j = 1, 2. Suppose [¢, dH;, < [p; dH,, for
each i=1,- - -, n, for all continuous bounded kgpositive functions ¢, : R* - R;

then (o dH, < [ dH, for all continuous bounded functions ¢ : R¥1* " +kn 5 R
which are kpositive in each block of k; coordinates separately.

Proor. Since k;-positivity in block i is preserved when integrating ¢ with
respect to other coordinates, it suffices to note that the integrals of ¢ with respect
to the sequence of measures (H,, H), X Hy - - - XH, | X H,,, H; X
Hy « o« XH, 5 X H, ;X Hy, -, Hy=Hj, X Hy- -+ XH,) form an
increasing sequence.

A class of blockwise k-positive functions is as follows: let ry,- - - 3Ty with
g < min, k,;, be functions mapping R¥1*¥2""*¥» into R such that for each j =
1,2,---,q,r; is a function of at most one variable from each block only. If each r,
is nondecreasing in each coordinate, then for any p-positive i : R? - R with p < g,
Y(ry,- - - ,1,) is separately blockwise k-positive.
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Lehmann [23] called a probability distribution H on R? positive quadrant
dependent (p.q.d) if H(x,y) > H(x, 0)-H(oo-y) for all x,y, and showed that if
r;,r,: R — R are monotone in the same direction separately in their kth coordi-
nates for each k= 1,---,n, then (r(X,,---,X,),rn(Y},---,Y,)) has a p.qd.
distribution when (X, Y;), for i = 1,- - -, n, are independent with p.q.d. distribu-
tions. An easily verified generalization is given in

CoRrOLLARY 3.1. Suppose H,,H,,i=1,---,n are pm’s on R? satisfying
fedH; < [@dH,, for all bounded continuous g-positive functions @; for j = 1,---,q
let r;: R" — R be monotone in each coordinate with the number of r;’s decreasing in
their pth coordinate an even number, for each p. Then [o(r)dH, < [o(r)dH, for all
bounded continuous gq-positive functions @, where H; is the product measure H,;
X+ XH,, forj=1,2.

ExampLE 1. Stochastic ordering is preserved under convolutions. Let the p.m.’s
H;, and H; on RY have identical (g — 1)-dimensional marginals, for each i =
I,- - n, with H;(x) < H,(x) for all x€ R? and i=1,---, n. Then
H\*H, - -+ *H,(x) < H,*Hy, - - - *H,,(x) for all x € RY, where * denotes
the convolution operation.

Suppose Z, Z,, Z, have the same distribution and are independent of (U, V).
For any a > 0, b'> 0 (resp. b < 0), the distribution of (aZ, bZ) is maximal so that
the cdf of (U + aZ, V + bZ) dominates that of (U + aZ,, V + bZ,). Choosing
(Z,, Z,) bivariate normal, U normal and ¥V = 0 yields the following special case of
a result of Slepian [34], cf. [17], page 805.

ExaMPLE 2. (Slepian). Let H,, for j = 1,2 be standardized bivariate normal
distributions with p, < p,; then H,(x, y) < H,(x, y) for all x, y.

The following is obtained using a continuous approximation to r(u, v) =
ry(u, v) = sgn(v — u) and generalizes Corollary 1 of Lehmann [23].

COROLLARY 3.2. Kendall’s v, Spearman’s p and the quadrant measure q of
Blomquist are monotone functions of H: if H, and H, have the same marginals and
H\(x, y) < Hy(x, y) for all x, y, then 1y < Ty, py < py, and g < qp .

4.2 The maximal distribution of max(X,, - - -, X,). This section extends to the
nonidentically distributed case a result of Robbins [30], cf. also Lai and Robbins
[22]. Let F;, i € N be a sequence of p.m.’s on R; then for any sequence of random
variables X;, i € N such that X; is distributed as F; for each i € N, the following
algebraic inequality holds:

max{0, 1 — Z{[1 — F(x,)]} < P[X;<x;,i=1,---,n] < min,_,_,F(x,)
for all x; € R and all n.
The upper bound is attained at X, = F'(U), i € N, where U is uniformly

distributed on [0, 1]. The lower bound is not in general a cdf for n > 3, as shown
by the following counter-example: if F,(x) = xIjq 1;(x) + Ij; (%) fori =1,2,3,
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then
A} s8] sA) smax{0,1 —33[1 - F(x,)]} = -5 <0.

Theorem 4 states that there exists a fixed distribution on R* achieving the lower
bound when all x,’s are equal; it makes max,_,, X; stochastically largest,
uniformly for all n.

THEOREM 4. Given a sequence F,,i € N of distributions on R there exists a
sequence of random wvariables X, i € N achieving P[max,_, ,X; < x] =

max{0,1 — Z7[1 — F(x)]} for all x € R and all n € N.

PROOF. Assume first that all F;, i € N are atomless. Let X; = F~'(U) and set
M, = X,, K, = F,. Define recursively

Xn = F;l_l[l - Kn—l(Mn—l)]’ Mn = max1<i<n Xi = max(Xn’ Mn—l)’

where K, is the distribution of M,. Since the cdf of (X, M,_,) is minimal in its
Hoeffding class, assuming by induction that M,_, achieves the lower bound,
P[max, _;_, X; < x] = max{0, K,_,(x) + F(x) — 1} = max{0, Z{[1 — F(x)]}.
In the general case, for each i, kK € N, let F,." be the convolution of F, with a
normal distribution with mean 0 and variance k™.

Construct X/, i € N as above and let P, denote its distribution on R*®. By a
simple extension to the countably infinite case of Billingsley [4], page 41, Example
6, P,, k € N is a tight family so that there exists a subsequence &’ and a measure
P_ such that P,. converges weakly to P_. Let Y,*’, i € N and Y, i € N be the
processes defined on [0, 1], with distributions P,. and P, obtained from Skorok-
hod’s construction [33] so that Y* — Y*® as. for each i € N. Thus

I

max{Y}, - - - Y*} converges to max{Y, - - - Y°} as., and its cdf converges for
all x in D,, the set of points of continuity of the cdf of the limit:
P[max, ., ¥* < x] = lim,, P[max,_ ., ¥*" <x] forall x € D,.

On the other hand, for all x € N{C;, where C, is the set of points of continuity of
F,

lim,, P[max,., ¥* < x] = lim,, max{0, 1 — {[1 - F¥(x)]}

= max{0, 1 — 2[1 - F(x)]}.
The following corollary results from the identity
EM? = [R[P(M > 1) + (-1)’P(M < —1)]| pt?~" dt.

COROLLARY 4.1. Let X; have distribution F; for each i, i € N, and let M, =
max,_;., X;; m, = min,_,_, X;, a, = inf(¢|Z{[1 — F(1)] < 1} and b, =
inf{¢|Z{F,(t) > 1}. Then, for all odd integers p, or all integers p if all X, are
nonnegative, for all n € N and all x € R

(@ 1 —min, _;_, F(x) < P[M,> X] < min{l, Z7[1 — F(x)]}
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(®) max, ., F(x) < P[m, < x] < min(1, S{F(x)}
(©) sup EM? = af + [2 pt?~'[n — Z{F(1)] dt
inf Em? = [PptP~'[1 — min; F,(¢)] dt — [Ppt? ' min, F(—1t) dt
(d) sup Em? = [PptP~'[1 — max; F(¢)] dt — [¥pt?~! max, F(¢t) dt
inf Em? = bf — o=  pt?"'SF(¢) dt
where the bounds are attained at two distributions on R*.

4.3. Superadditive functions in R". Call a function ¢ : E C R” — R superaddi-
tive if it is a superadditive function of any two coordinates considered separately.
For instance, a convex function is superadditive but not necessarily n-positive for
n > 3; an example is ¢ = (xyz)~! on R*3. Theorem 5 was proven for bounded
continuous functions in the context of rearrangements of functions by Lorentz [25].
We present a simpler proof using a martingale representation and requiring weaker
regularity conditions. See also Schaefer [31] for a special case.

TueoreM 5. (Lorentz). Let Fy, - - -, F, be n probability measures on R and let
H (x) = min; F,(x). Then for any -continuous superadditive function ¢ : R" —
R, fp dH = SUPyer(r,---, F,)J¢ dH if one of the following conditions holds:

(a) @ < h for some continuous function h such that (h dH is finite and constant for

all HET(F,,- -, F).
®) {9(X), X distributed as H € I'(F\, - - - , F,} is uniformly integrable.

PROOF. Suppose the F;’s have compact support. For a p-tuple (x,, - - -, x,) let
(%1, -+, X,) denote its rearrangement in increasing order; recall (Lorentz [25])
that given n p-tuples (xj,- - -, x,',),- “, (x{,+ -+, xp,), for any superadditive
function ¢, the maximum of 37_,¢(x}, x?, - - -, x7) over all the rearrangements
of the p-tuples is attained at (X}, -, X,), -, (X, - -, %7). Let
X, X5, -+, X, be jointly distributed as H and defined on [0, 1] with Lebesgue
measure, according to Skorokhod’s construction [33]. Thus, if the distribution of
(X;,++, X,) is concentrated on p atoms (x/,- - -, X{)i=1,...,p Of mass
1/p, Ep(X,,- -+, X,) > Ep(X,, - - -, X,), where X,(w) = F” () for each i, i
=1,- -, n.In the general case, let x[", = 2" E{X;I{;3-m (x412-=)} and

X™Mw) = SR Iga-m, (k—rp-m(@),  forall i=1,---,n.

X", XJh, - - -, X, are step functions and bounded martingales converging a.s. to
X+, X, respectively, cf. [6], page 94. Call —X?, i=1,---, n the reorderings
of X" : X"= Y—"—‘, con[k27" (k+ 1)2""]i=1,- -+, n. X" and X" have the
same distribution and X_,.'"(w) is the inverse of the cdf of X;”, hence X_,."‘(w) -
F7'(w) as., so that in the bounded case the theorem follows by bounded con-
vergence. The weaker regularity conditions (a) and (b) are obtained as in Corollary

2.2.

4.4. Majorizations and doubly stochastic matrices. Recall a result of Hardy,
Littlewood and Polya [18], page 45: say that x € R” majorizes y € R" iff E{‘x(,.) >
Efy(,.) for each k, k =1,- - -, n and 27x;, = 27y, where x;) and y;, are the
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coordinates of x and y rearranged in decreasing order. Then x majorizes y if
y = xP for some doubly stochastic matrix P. An ordering for doubly stochastic
matrices is proposed in the next theorem (cf. Sherman [32]).

THEOREM 6. Let P and Q be two n X n doubly stochastic matrices such that
(a) Zf‘_lp,.j and Efalq,.j are decreasing inj fork =1,2,- - -, n—1;
M) 2,0, 2,csPi; S 2y, 2y forallr, s=1,2,- - -, n— 1.

Then for all x € R” with x; > x,, + + > x,,, xQ majorizes xP.

Proor. Condition (a) is a necessary and sufficient condition to ensure that P
and Q are order-preserving, cf. [27], page 24. The theorem is then obtained from
Theorem 2 with @(i, j) = x;I; ... 1y(j) or from Theorem 1, verifying that xQ
will majorize xP when g;; = p;; for all i, j, except that for ¥’ > u and v’ > v, g,
T Puvo = Quo " Pup = € > 0 and Qyo’ = Puv' = Quo ™ Py = —E-

4.5. p distance between stationary processes. Gray, Neuhoff and Shields [16]
have investigated a generalization of Ornstein’s d distance, called the p distance,
with applications to communication theory; we indicate here new lower bounds for
the p distance and construct a counterexample to a conjecture of Gray, et al.

For X = (X,)>,, and Y = (¥,)5., two stationary processes on R with a metric
p, let uy and p, be their distributions on B(R*). Let x" = (x,,- + -, x,) and
define the metric p, on R" by p,(x", y") = (1/n)Sf0(x;, ¥,). Let p,(py, py) =
sup, p,(X", Y"), where p, = infp cr(y n, unyEp, Pa(X", Y"). According to [16] an
exact lower bound for p is

P = ianlEI‘(p,xl,uyl)EPlp(Xl’Yl)'

The measure p; is called the Lévy-Wasserstein (cf. [24), [14], [11], page 469)
distance between the fixed one-dimensional marginal distributions of (X)X, and
(Y,)- . This lower bound is attained when (X,)>2., and (¥,)2%, are both i.i.d.
processes. For p(x,y) = |x — y| and p* = (x — y)?, Gray, et al. obtained the lower
bounds

(1 p(X,Y) > [G|F (1) — E'(e)lat

@ BH(X,Y) > 51 T, FA(N) = FL(V)[24A

where F(F,) is the cdf of X (Y1), and f,(A) and f,()) are the spectral densities
of X and Y. (That p* and p* are not metrics does not invalidate any of the previous
results.) The lower bound in (2) is attained for Gaussian processes, and Gray, et al.,
conjecture that it is attained only for Gaussian processes.

Corollary 2.2 shows that whenever —p(x, y) is a superadditive function, a sharp
lower bound for p is

(3) B = Jop[ F7'(0), E7'(1)] ar.
Thus a different lower bound for p* is
4 p(X,Y) > [L|F (1) — E'(@)|? ar.
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Comparing (2) and (4), observe that

SIS = Q012 X > re(0) + ry(0) — 2re(0) ry(O)}

> (ox — UY)2

where ry is the covariance function of X, o7 is the variance of F and similarly for
ry(t) and o. Equality holds if and only if f, is proportional to f,. Note also that
JolF7(t) = E7 ()| dt > (0 — 0y)* with equality iff F,! is proportional to
F;,“, ie, if F, and F, differ by a scale factor only. These remarks lead to the
following counterexample to the conjecture of [16]: let U, be i.i.d. random variables
uniformly distributed on [0, 1], let F be any cdf, 4, = F~'(U,), B, = 2F~'(U,).
Then p*(A4, B) =p} = [(L[F~'(¢) — 2F (T))? dt = 6}. Verify also that since
fx(\) = o2,

1 : )
-2—7; 7’—‘n’|f§r(k) —f§,(?\)|2d}\ = (OX_ 20){)2 = 0;.
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