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JOINT LIMIT LAWS OF SAMPLE
MOMENTS OF A SYMMETRIC
DISTRIBUTION!

By HowARD G. TUCKER
University of California, Irvine

Let {X,} be a sequence of i.i.d. random variables with a common symmet-
ric distribution F. Let £(Z) denote the distribution of a random variable Z, and
let D(a) denote the domain of attraction of a stable law of characteristic
exponent a. It is assumed that £(X¥) € D(a) for some integer k > 2 and
a € (0,2]. Let S, denote the k-dimensional random vector whose jth coordinate
is 37.,X/, and let m = max{j:ka/j > 2}. Then there exist a sequence of
k X k matrices {4,} and a sequence of vectors {b,} in R* such that 4,S,+ b,
converges in law to a random vector S. The first m coordinates of S are jointly
normal and are independent of the remaining kK — m coordinates. No pair of
these remaining k — m coordinates are independent, but their joint distribution
is operator-stable with two orbits.

1. Introduction and summary. The multivariate central limit theorem offers a
number of interesting problems that do not occur in the univariate case. One such
problem is that of independent limit coordinates. The general theorem on asymp-
totic independence does not contain much depth; see Theorem 2 in [8]. Asymptotic
independence becomes more interesting in special examples, some of which are
treated in [2], [5], [8], [9] and [13]. What shall be dealt with here is essentially
another example which in a sense extends Theorem 3 in [8]. Namely, from a
sequence of independent, identically distributed random variables {X,}, the prob-
lems considered here are those of existence of a joint limit law and independence of
subsets of coordinates of this limit law of the sequence of a fixed number of sample
moments.

The notation that is special follows. The symbol 9(a) will denote the domain of
attraction of some stable distribution with characteristic exponent a € (0,2], and
the domain of normal attraction will be denoted by D, (a). If X is a random
variable with distribution function F, the relation X € 9(a) (or GD,,( a)) will mean
F € )(a) (or GD,,( a)). Some distinction should be made between a coordinate of a
random vector Z and a component of the joint distribution function F of Z; namely,
in the latter case, a distribution function G is a component of F if there exists a
distribution function H such that F = G * H. Following M. Sharpe [11] we shall say
that the common distribution function of a sequence of k-dimensional indepen-
dent, identically distributed random vectors {Z,} is in the domain of attraction of
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a distribution function F, called operator-stable, if there exist a sequence of k X k
matrices {B,} (called normalizing matrices) and a sequence of (centering) vectors
{b,} in R* such that the distribution of B,3%_,Z; + b, converges completely to F.

The example investigated here deals with a sequence of independent, identically
distributed random variables {X,} with common symmetric distribution function
F. Letting Z,, denote the k-dimensional random vector whose jth coordinate is X7,
we are concerned about the existence and structure of the operator-stable limit law
of 37_,Z; under suitable norming and centering. Letting m = max{j:ka/j > 2},
it will be shown that the limiting distribution G (the distribution function of, say, a
random vector Z whose ith coordinate is Z;) does exist if X{ € D(a) for some
a € (0,2]. The first m coordinates are jointly normal. The remaining k — m
coordinates have no normal components, there are no independent pairs among
them, and each univariate marginal is stable. The two sets of random variables
{(Z,,---,Z,} and {(Z,,,,---,Z,} are independent of each other. The distribu-
tion of the random variable X" may be either in ,(2) or in D(2)\ D,(2). If
X" € 9,(2), then the three sets of random variables {Z,;, 1 <i < [m/2]}, {Z,;_,,
1<i<[(m+1)/2)}and {Z,,,," - ,Z,)} are independent. If X" € D(2) \ 6D,7(2),
then the following four sets of random variables are independent:

{Zy,1<i <[2m - l)/2]}, (Zym1s 1< <[m/2]}, {Z,},

{ m+1>" " Zk}

The general form of the multivariate central limit theorem, due to E. L.
Rvacheva [10], will be used; it is stated here as Lemma 1 as a convenience for the
reader.

and

LemMa 1. Let {{X,;}} be an infinitesimal system of row-wise independent p-
dimensional random vectors, and define the probability measure H, ; over the measura-
ble space (R?,B‘”) by H,(A) = P[X,; € A] for all A € BP), Then there exists a
sequence {¢,} C R? such that the dzstrtbutton of Tkx iz1X,; + ¢, converges completely to
a (necessarily infinitely divisible) distribution function F if and only if there exists a
Lévy spectral measure N over the Borel subsets B?) of R? and a nonnegative definite
quadratic form Q(u) defined over R? which satisfy the following:

(i) for Borel sets of the form S = {x € R?:|x| > R, w, € A}, where A is a Borel

subset of the surface of the unit sphere, w, denotes the point of intersection of the
vector X with the surface of the unit sphere, and such that N(bdry S) =

Sk H,(S) > N(S) as n— o, and

(i) hmewl__—n_mo /—1{f||x||<e(“ x)’H, (dx) (f||x|L< u'x H, (dx))z} = Q(u),
where w'x = ZF_,u;x;. The characterzstic function F(u) of F(x) is given by

F(u) = exp{i'y’u - Q(w/2 + f"x">o(e"""‘— 1-— %ﬂ’;uz)N(dx)},

where ¥ € R? is constant.
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2. Multivariate normal limit. Two special cases of the result announced in
Section 1 will be given in this and the next section, and the general theorem will be
assembled in Section 4.

THEOREM 1. Let {X,} be a sequence of independent, identically distributed random
variables whose common distribution F is symmetric, let k > 2, and let Z, be a
k-dimensional random vector whose jth coordinate is X;. If Xf € D(2), then there
exist a sequence of k X k matrices { B,} and a sequence of vectors {b,} in R* such that
the distribution of B,2"_\Z;+ b, converges to that of a multivariate normal random
vector W = (W, - - - W), and (Wy,;, 1 < i < k/2} is independent of (W,;_;, 1 < i <
(k + 1)/2}. Moreover, if X{ € D(2) \ D,(2), then {W,;, 1 < i < (k — 1)/2}, {Wy,_y,
1 < i< (k/2)} and {W,} are independent.

PROOF. Since X* € 9(2), then by Theorem 3 in Section 35 of [4], E(| X,|%) < o0
for all 8 €[0,2). Hence, for 1 <j <k —1, E(XY) < oo, which implies that
X{ 1 € 9,(2), and thus {nz} serve as normalizing coefficients for {X Jon>1} If
Xfe GD ,(2), then these same normalizing coefficients serve (Xk, n > 1}. If X¥
D)\ 6D () then by Lemma 5 in [12], normalizing coeff1c1ents for {X XY must be
of the form {(n)? L(n)} where L(x) is a nondecreasing slowly varying function
satisfying L(x)Too as x — oo. Let us denote

L(n) =1 if XfeDQ)
= L(n) if Xfe D2)\DQ),
and
dlag(l/n% <o+, 1/niL(n)).

Clearly, the system {{B,Z,,- --,B,Z,}} is an infinitesimal system. By the uni-
variate central limit theorem,

nP[|X{| > n%e] -0 as n—> o

for 1 <j < k — 1, and nP[|X¥| > niL,(n)e] - 0 as n — co. Thus (i) of Lemma 1
is satisfied with N(-) = 0. We now show that (ii) of Lemma 1 is satisfied. Let us
denote L,(n) = 1if i < k and = L,(n)if i = k, and, for 1 < r < s < k, define

. _ X[ X , 1
frsime)=n & niL(n) n:L(n) Tyxqi<nie menixii<niL,me]

n%L,(n) [1X{|<n?L,(n)e] n%Ls(n) [1X{]<n3L,(n)e]

We consider four cases:

Case (i). r + s is odd. In this case, the symmetry of F implies I(r, s; n, &) = 0
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CAsE (ii). r + s is even and Xf € ), (2), or r + 5 is even, s < k and Xf €
D)\ D, (2).

In this case it is easy to verify that
lim, o lim _ I(r,s;n,e) = E(X[™") — E(X{)E(X]).

CASE (iii). »=s =k and X} € D(2)\ GD,,(Z). In this case, the univariate central
limit theorem implies that lim, lOEn—m I(k,k; n,¢) exists and is positive. Defer-
ring case (iv) momentarily, we see that in cases (i), (i) and (iii) a multivariate
normal limit distribution of B,37_,Z; + (some) b, exists according to Lemma 1,
and the first independence conclusion of the theorem is obtained.

CasE (iv). r + siseven, r < s = k and X{ € D(2) \ 9,(2). Since E| X{**| < o0
and L(n)foo, it follows that lim, I(r,s;n,e) = 0. This case establishes the
moreover part of the theorem. []

3. Multivariate stable limits. In his development of the theory of operator-
stable distributions, M. Sharpe [11] defines an index of such a probability measure
or distribution p over R¥ as an automorphism B on R* satisfying u*’ = #5u + 8(b(2))
for all £ > 0, where u*’ is defined by its characteristic function ji‘ (which in turn is
well defined because of the infinite divisibility of p), where #Zu is defined by
t3u(A) = u(¢%)~'(4)) for Borel sets 4 C R*, and where §(b(¢)) is the unit point
mass at some b(¢) € R*. (Note: in case k = 1, Sharpe’s index is unique but is the
reciprocal of what is usually referred to as the index or characteristic exponent of a
stable distribution.) He shows that the support of the Lévy spectral measure M
associated with u is the union of its orbits, i.e., of sets of the form {t”x:t > 0} for
x € R*.

THEOREM 2. Let { X, } be a sequence of independent, identically distributed random
variables whose common distribution F is symmetric, let k > 2, and let Z, be a
k-dimensional random vector whose jth coordinate is X!. If X{ € D(a), where
a < 2/k, then there exist a sequence of k X k matrices {B,} and a sequence of vectors
{b,} in R* such that the distribution of B,27_\Z; + b, converges to that of a random
vector L, where Z is operator-stable with stable marginals with characteristic exponents
ka,ka/2,- -+ ,a. No two coordinates of Z are independent, and Z has two orbits.

PrROOF. Since X € D(a), then there exists a slowly varying function Q(x)
such that {n'/*Q(n)} serve as normalizing coefficients for the sequence { X}. The
function Q(x) can be selected to satisfy

P[|XE] > n'/2Q(n)] ~ 1/n.

Also, the hypothesis X* € D(a) implies that there exists a slowly varying function
R(x) such that

P[|X{| > x] = x™*R(x).
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From this it follows that for 1 <j < &k — 1,
P[|X{]| > x] = x7*/8(x),

where S(x) = R(x*/) is also slowly varying. All the above implies that X{ €
D(ka/j) for 1 <j < k — 1, and {n'/**/DQJ/¥(n)} serves as a sequence of nor-
malizing coefficients for {X7}, 1 </ < k. Denote

B, = diag(n—l/kaQ—l/k(n)’. -,n~2Q(n)).
We now prove that there is a sequence {b,} in R* and a distribution of some
k-dimensional random vector Z such that

BnE;,g]Zj + bn _)BZ‘
Let I'(r,n) = n'/**/DQ"/¥(n), and denote
) Xy Xi
f(rsine) = n E T(r,n) ‘—“r(s,n)Inxn<r(r,n>e1nxu<r(s,n>e1

X7 X;
—E I‘(r,n)I”X"kr("")‘] E I'(s,n) Lyxii<res,me | |-

Since X{ € D(ka/j) and since ka/j < 2, we obtain from the univariate central
limit theorem that

limelo_l_i_ﬂn_,wf(j’j;n,e) =0 for 1 <j < k.

By Schwarz’s inequality, for 1 < r < s < k, f*(r,s;n,e) < f(r,r; n,e)f(s, s; n,€),
and thus (i) of Lemma 1 is satisfied with Q(u) = 0. We now verify (i) in Lemma 1.
Consider x € R¥, all of whose coordinates x,,- - -, x, are positive. Then

nP 0 [ X{ > x,T(j,n)] = nP nk,[ XE > xFin'/2Q(n) ]
= nP[ X > max{x}/:1 < i< k}n'/*Q(n)].
Now X§ € D(a) means there exists a constant ¢; > 0 such that
nP[ Xf/n'/°Q(n) > t] > ¢,/t* as n—>
for all # > 0. Thus we have
lim nP ﬂf_l[X{ > le"(j,n)]
= ¢,/ (max{x¥/:1 <j < k})*

Consider the following curve in the orthant where all coordinates are positive: for
allt> 0,

x, = tV/k

D oxy = 1%k
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If, after fixing the value of x, = ¢, we were to decrease the value of x ; from 7k,
then there would be no change in the above limit relation. This shows that the
support of the Lévy spectral measure N in this orthant is the curve x; = ¢"/%,
1 < i <k, for all t > 0. Note that the Lévy spectral measure is

N{(eV*, 12k, - t) it > 5} = ¢, /5%

The only other orthant in which N has nonzero mass is that in which the
odd-coordinates are negative and the even ones are positive. Then, by symmetry
and the above argument, we have: (—1Yx; > 0, 1 < j <k, and

lim, ,,nP ([ X{ > (= D)/, T(,n)]

=c,/ (max{(—l)jxj’.‘/jzl <j< k})a.

By the same reasoning as above, it is easy to see that in this orthant the Lévy
spectral measure N has as its support the curve

x; = (= 1)k, 1 <i<k,

for all £ > 0. By Theorem 2 of [8], it follows that no pair of coordinates of Z are
independent. []

ReMARK. Theorem 2 will be applied in the proof of Theorem 3 in slightly
altered form; the proof of this altered form of Theorem 2 remains the same.
Instead of the hypothesis a < 2/k, one has only 0 < a < 2. The definition of Z , is
altered. Letting m = max{j:ka/j > 2}, Z, will be assumed to be a (k — m)-
dimensional random vector whose ith coordinate is X,”*’. The same conclusion
holds except that the characteristic exponents of the univariate stable marginals are
now ka/(k—m+ 1) ka/(k —m+2), - ,a.

4. The general case. In this case the joint asymptotic distribution of the first £
sample moments of {X,,} is investigated when X{ € D(a), 0 < a < 2. In this case
some powers X{ are in %D(2) and others are in () for 0 < B8 < 2. The following
lemma is given in special cases in [5] and [11] with two different proofs. Yet
another proof of it is sketched here.

Lemma 2. If (Uy,---,U,Vy,- -+, V,} are r + s random variables with a joint
infinitely divisible distribution, if each U, is normally distributed, and if each V, has no
Gaussian component, then the two sets of random variables {U,,---,U.} and
{V1,* -+, V,} are independent.

PrOOF. Let X be the (r + s)-dimensional random vector whose ith coordinate
is U;, 1 < i < r, and whose (r + j)th coordinate is V;, 1 <j < s. Since each V, has
no Gaussian component, it follows that the last s rows (columns) of the covariance
matrix of the Gaussian component of X consist entirely of zeros. Since each U is
Gaussian, it follows that the support of the Lévy spectral measure for X is a subset
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of the subspace u; = 0,- - - ,u, = 0. One then obtains the marginal joint character-
istic functions for {U,,- - -, U,} and for {V,- - -, ¥,} and then notes that their joint
characteristic function factors into the product of these two marginals. []

The principal theorem covering all cases follows.

THEOREM 3. Let {X,} be a sequence of independent, identically distributed random
variables whose common distribution F is symmetric, let 'k > 2, and let Z, be a
k-dimensional random vector whose jth coordinate is XJ. Assume that m =
max{j:ka/j > 2} > 1. If X} € D(a) for some a € (0,2), then there exist a se-
quence of k X k matrices {A,} and a sequence {b,} in R* such that the joint limit
distribution of A,%5_\Z,+ b, exists and is that of U,V, where U and V are
independent m- and (k — m)-dimensional random vectors respectively, U having a
Joint normal distribution, and V being operator-stable with a Lévy spectral measure
determined by two orbits.

Proor. The hypothesis implies that there exists a slowly varying function T(x)
such that P[|X{| > x] = x *T(x). If ka/j > 2, one easily verifies that E(| X{|?)
< 0, ie, X{ €D, (2). If ka/m=2, it follows that P[|X["| > x] = x"2Q(x),
where Q(x) is a slowly varying function. By Theorem 4 in [11], X}* € D(2). In this
case, if X" € D(2)\ D,(2), there exists a slowly varying function L(x) such that
L(x) is nondecreasing, L(x) — oo as x — co and such that the sequence {n %L(n)}
are normalizing coefficients for {X,", n=1,2,---}. We denote L, (n) =1 if

D,(2) and = L(n) if X" € D(2)\ D,(2). Also by hypothesis there exists a
slowly varying function S(x) such that {n'/%S(n)} serve as normalizing coefficients
for X and such that P[| X,|* > n'/%S(n)] ~ 1/n. Form < j < k, X{ € D(ka/j)
with corresponding normalizing coefficients {n//**S//*(n)}. Let 4, = (a{) be a
k X k diagonal matrix where

a® =1/nr if 1<i<m-1
= 1/niL(n) if i=m
= n~/keg=i/k(n)  if m+1<i<k.

We now prove that every subsequence of S = 4,3"_,Z ; + (some) d,, converges
in law to ( Y). Let U, denote the first m coordinates of S,, and let V, denote the
last k£ — m coordinates of S,. By Theorem 1, U, converges in law to U, and, by
Theorem 2, V, converges in law to V. This implies that the sequence of distribu-
tions {F,} of {S,} is tight, and hence every convergent in the wide sense subse-
quence {F, } of {F,} converges completely to a distx;ibution function. Take an
arbitrary convergent subsequence F, — F. Since {{4,Z,,- -+, 4, Z, }} is an in-
finitesimal system, it follows that F is infinitely divisible (see, e.g., [ 10]) Since U,
converges in law to U and V,_ converges in law to V, it follows by Lemma 2 that F
is the joint distribution of 1ndependent random vectors U, V where U and V are as

is claimed in the statement of Theorem 3. Since F does not depend on the
particular subsequence, it follows by Theorem 2.3 of Billingsley [1] that F, —_F. []
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