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LAPLACE’S METHOD REVISITED: WEAK CONVERGENCE OF
PROBABILITY MEASURES'

By CHn-Ruey HwaANG

Brown University®

Let Q be a fixed probability on the Borel o-field in R” and H be an energy
function continuous in R*. A set N is related to H by N = {x|inf,H(y) =
H(x)}. Laplace’s method, which is interpreted as weak convergence of probabil-
ities, is used to introduce a probability P on N. The general properties of P are
studied. When N is a union of smooth compact manifolds and H satisfies some
smooth conditions, P can be written in terms of the intrinsic measures on the
highest dimensional mainfolds in N.

1. Introduction. Let Q be a fixed probability measure on (R", #), where % is the Borel
o-algebra, and H be a continuous function in R" with the following assumption

(Al) Q{H(x) < a} > 0if a > inf.H(x).

A set N is related to H by N = {x| H(x) = inf,H( y)}. To introduce a probability P on N, we
appeal to Laplace’s method which can be interpreted as weak convergence of probability
measures. So in this article we shall study the limiting properties of {Py| 8> 0} as 8 | 0, where
Py is defined similarly to Laplace’s method by

dP, -
(1.1) FQH (x) = exp<— @)U exp(-— gg_)) dQ(x)] )

Usually H is called the energy function and § the temperature parameter. If Py — P weakly,
then P should be the one we want.

x = (x1, - -+, X,) may be regarded as the state of some system and Q is a given probability
associated with the system. Owing to some regularity constraint, x is confined to a subset N.
For example, in statistical mechanics the constraint may be “conservation of energy”, or, in
pattern theory (Grenander [3], page 63) the constraint may be “equality of bond values”. Of
course, there are different ways to introduce a probability on N. In statistical mechanics, there
is a natural way to do so on the constant energy surface N by using the gradient of the
Hamiltonian H (Khinchin [5]). But this approach is not suitable here, since the gradient of H
is identically zero on N. The method defined by (1.1) seems reasonable. Clearly P depends on
H. To see what P looks like in a simple case, let us consider the following example: N is the
unit sphere centered at 0 in R" and xi, - - -, x, are i.i.d. A7°(0, 1). The function H(x) is the
square of the distance between x and N. Then all the assumptions in Theorem 3.1 are satisfied.
It is easily seen that P concentrates on N and is the normalized surface area of N.

The necessary condition for {P,;} being tight, i.e., A has a minimum, is provided by
Proposition 2.1. Its corollary says that if there is a limiting probability measure then it
concentrates on the minimal energy states. Propositions 2.2 and 2.3 give sufficient conditions
for the tightness of {Py}. To get the explicit expression for the limiting probability measure P,
we assume H € C° and Q has a continuous density. Theorem 2.1 corresponds to the classical
Laplace’s formula. The main result is Theorem 3.1, where P is written in terms of the intrinsic
measures on the highest dimensional manifolds of the minimal energy states.
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2. General results.
PrOPOSITION 2.1.  If H does not have a minimum then Py is not tight.

Proor. If there exists a sequence P, — P weakly as 6 | 0, then we can choose {a,,} such
that a,, | inf.H(x) and P{H(x) = a»} = 0. Since H is continuous, d{ H(x) = an} C {H(x) =
an}. Then, for each m, P(0{H(x) = a»}) = 0 and Po{ H(x) = an} — P{H(x) = a»}. But

Po{H(X) = am} < [ j exp(—M) dQ]_

.. oo ) ]
H(x)<a,,

—0asf|O0.

Hence, P{H(x) = a»} = 0 V m which implies lim,..P{H(x) = an} = P(R") =0, a
contradiction. O
Because of Proposition 2.1, we assume

(A2) min.H(x) exists and equals 0.

Let N be the set of all minimal energy states, then
COROLLARY 2.1. If Py— P weakly, then P concentrates on N.

PROPOSITION 2.2. If Q(N) = m > O then the limiting probability measure P exists and is
uniformly distributed on N w.r.t. Q.

Proor. The density functions
fix)=> f(x)=0 if x&N

1
— if xE&N.

If we define P by (dP/dQ)(x) = f(x), then P, — P weakly and P distributes uniformly on N.
The interesting case is when

(A3) Q(N)=0.

PROPOSITION 2.3.  {Py} is tight, if

(A4) there exists € > 0 such that { H(x) < €} is compact.
Proor.
-1
Pi{H(x) > ¢} < ( J' exp(—%) dQ)
H(x)>e
—0asd| 0.

So for any 8 > 0 there exists §p > 0 such that Po{H(x) <€} =1 — 4 for § < 6,.

Note that the compactness of N alone is not sufficient for the tightness of {Py}. A
counterexample can be found in (Hwang [4]).

Under assumptions (A1) to (A4) we shall study how P distributes on the minimal energy
states N. Since Q(N) = 0, it seems that we cannot get enough information from Q unless Q is
well connected to the analytic structure of R". Hence we make the following assumption
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(AS) H(x) € C*R"), (dQ/du)(x) = f(x), where u is the

Lebesgue measure on (R", #) and fis chosen to be continuous.

THEOREM 2.1. If N = {x1, -+, xn}, det H " (x:) # 0 for any i and there exists k such that
f(xz) > 0, then
SfCei)(det H"(x:)"?

Po) = S e@st B G) ™

Proor.  Choose a closed neighborhood 4; of x; such that x; & 4, if | # i; then, by Laplace’s
formula

Po(4:) =

o= 22) 1 ax
.

SGxi)(det H (x;))™
Yo fCer)(det H” (xp)) 7% ‘ o

3. N as the union of smooth manifolds. In addition to the previous assumptions, we also
assume that each component of N is a smooth manifold (or C®-manifold). These manifolds
may be of different dimensions. We also assume that N has finitely many components. Will
the limiting probability measure P concentrate on the highest dimensional manifolds? How do
we write P in terms of a known measure in the manifolds? When 4 is small enough, the major
contribution is in a small neighborhood of N. Since the gradient of H at each point of N is 0,
the implicit function theorem is not applicable here. In a small neighborhood of N we change
the coordinate system to a polar coordinate system along N, then P can be written in terms of
some intrinsic measures on the manifolds.

Let M be a k-dimensional compact smooth manifold in R”. Then, by the tubular neighbor-
hood theorem (Milnor [6], page 115), there exists a tubular neighborhood T'(e) of M such that
for any z in T(e), z can be written as m + v, where m is a point on M and v_L M at m with |v]
< e. The map z— (m, v) is a diffeomorphism.

In order to relate dx = dx; --- dx, to a natural intrinsic measure on M in a tubular
neighborhood T'(€), we need some facts from differential geometry. Let m = m(u', - .., u*) be
local coordinates and A{(1), - -+ A{(n — k) be normalized smooth normal vectors of M. For
any z € T(e)

z=m@, )+ N () + e+ by N (0 — k),
where |(t1, - -+, t»-z) | < €. Then,
dxy « -+« dxn = |88 + Yut:.GEGi) |dty - dtwrd M,

with the following notations:

8% : Kronecker’s notation,
AN (i) om  _
B (i —_— B —
G4 (i) YeGE () — + A,

where 4" is a linear combination of A" @iys Weyl [7]),
A anatural intrinsic measure on M (Boothby [2] Chapter 6),
|86 + Xit:GEG)| - the abbreviation of | det[8 + $t:GE(i)]us |-
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THEOREM 3.1. Assume that N has finitely many components and each component is a
compact smooth manifold. The energy function H and probability Q satisfy (Al) to (AS). If the
density f in (AS) is not identically zero on the highest dimensional manifolds and det &H /at*(u)
# 0 for u € N, then the limiting probability measure concentrates on the highest dimensional
manifolds and can be written as:

-1/2
fofsa )

~1/2
f f(u)(det 82—121 (u)) dn
N ot

where M is the sum of intrinsic measures on the highest dimensional manifolds.

dP
aa™=

Proor. Let {M;}{ be the components of N and g be a bounded continuous function from
R to R. Consider

—-H
3.0 j exp< o(z)
Rn
The difference between
—-H(z
7 exp<
= L,(e) 4

and (3.1) is exponentially small, where T(e) is an e-tabular neighborhood of M;, Ti(e) N Tu(e)
= ¢ if I # d, and T(e) is chosen closed.
Fix /, and consider

—H(@)
exp(
J;‘,(e) 4

= f f exp(#) S, wg@t, u) |88 + Yit:GE() | dn - - - dta_r,d
M, |t =e

)f (2)8(2) dz.

)) f(@)g(z) dz

)f(Z)g(Z) dz

where ., is the intrinsic measure on M, and k; is the dimension of M;. For each fixed u, by
Laplace formula

j ex P<L>f(’ u)g(t, u) |8 + YitiGE(D) | dty - -+ dtns,
|t =<e

(2,”0)('1—1@1#/22

-1/2
(3.2 — f(0, u)g(0, u )(det 62—13 O, u)) ,

H(, ;l)-1<"’2 (0, ), t>+1 = (7, u)(t)

where 7 € segment (0, ¢) and

63
2 @ w0 = ST

T (%, wyttt..
Let A(x) be the minimal eigenvalues of (6°H/at%)(0, u). Because (8°H/at*)(0, u) is positive
definite and M, is compact, minuem, A(u) = A > 0. Choose 0 < 28; < A, then H(t, u) = 8| ¢| 2
+ Y% (8®H/at*)(F, u)(2).
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Let

*H

B = max;;max, ;| <c.uem | ——
i ¢ =cue 0t;0t;0ty,

],

then B < 0. We can choose ¢€; small enough such that
Y 3z|t|2 — % Yur B|titjte| =0 for any |t] = e

Then for any |¢| < €; we have H(t, u) = % 8| | So we can replace € by ¢; and still have the
same result in (3.2).
Let

A@G, = J J' exp(—:}-l—g’—u)) [, wg(t, ) |88 + X GG |dn - -+ dbpr, d M,
ueM,; J|t| =¢

_ -H
A(e, l) = f J exp(———g’—u)> f(l, u)lﬁfj + Z,‘t,‘Gg(i) I dt - dtn—lz, d M.
ueM,; J| t| =¢

Because 0 < exp(—H(t, u)/0) < exp(— &|t|*/20), M(M)) < o, by (3.2) and the dominated
convergence theorem, we have

A@O,1 &H e
(3.3) ?277—0()7#—) - £(0, w)g O, u)(det 250, u)) .,
_ 5 —-1/2
(3.4) _.i(%_lk)_v_) S, u)(det 4 Ij ©, u)) d M.
(2770) ’ ueM;

Let maxi<<cki = m

f exp(_H (z)>f(z)g(z) dz
N

f exp(#) f(2) dz
Rn

D AG, 1) _ Y A, D2 "
T AG D) Y A0, HRnf)

_ Zl A (0, l)(2770)—(n—kl)/2(2,”0)(m—k,;/2
Zl A_(0, l))(27;-0)—(n—k;)/2(2,n_0)(m—k, Y72

9 —1/2
Shuem | S0, 000, 1) (det 2o u)) d.ty
3.5) - l

’

Yiem | fO, ) <det i:g ©, u))_ d i,

M,

by using (3.3), (3.4) and 7)™ — 0 if k; % m. Let M =Yp,mm M), i.€., M(S) =Fh-m Mi(S
N M,) where S is a Borel set in N then (3.5) becomes

-1/2
f S0, w)g(0, u) (det 6‘:7121 (O, u)) dn
(3.6) il

=172
f £, u) (det 6;_:‘21 (O, u)) dua
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We can regard .# as a measure on (R", #) by considering .#(B) = .4 (B N N). If we define
&FH e
k(z) = (det 3 O, u)) if z=u€EN,

= 0 otherwise,

then (3.6) becomes

j o) | =LK | 4,
B Jf(z)k(z)d/l
Rn
If P is defined by
a = k()
P A
f f@k(z)d A
n

then Py — P weakly. Clearly P concentrates on N. And there is no ambiguity in writing

-1/2
w0 (4 5 @)

*H, \ "
Lf(u) <det ra (u)) /4

The assertion is therefore proved. 0

for u € N.

dpP
FA

REMARKS.

1. Propositions 2.1 to 2.3 are true for arbitrary complete separable metric space.

2. There are some interesting results when Q is Gaussian in some Hilbert space and H is
a quadratic form which usually violates the assumption A4 (Hwang [4]).
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