CORRECTION TO "THE EXISTENCE AND UNIQUENESS OF STATIONARY MEASURES FOR MARKOV-RENEWAL PROCESSES"

By Ronald A. Schaufele and Ronald Pyke

York University and University of Washington, Seattle

There is a defect in the proof of the uniqueness of π given in [1]. On page 1452, lines 24 and 25, it is stated that $M_{ij}^*(t) = M_{ij}(t)$ implies $G_{ij}^*(t) = G_{ij}(t)$. The former does imply that each state in the time-reversed process is recurrent but says nothing about the communication of the various states in the time-reversed process. Thus, there is no reason for $G_{ij}^*(t) = 1$ for $i \neq j$ and, in fact, $G_{ij}^*(t)$ has not been defined. We rectify that here.

The proper definition of $G_{\nu}^{*}(t)$ is (see [2])

$$G_{ij}^{*}(t) = c_{i}^{-1}c_{j}H_{i} * \sum_{k \neq j} p_{jk j}M_{ki}(t)$$
 if $i \neq j$
= $G_{ji}(t)$ if $i = j$.

Thus, $G_{ij}^*(+\infty) = c_i^{-1}c_j \sum_{k\neq j} p_{jk \ j} M_{ki}(+\infty) = c_i^{-1}c_{j \ j} M_{ji}(+\infty) > 0$ and all states communicate in the time-reversed process so that it, too, is irreducible.

Without loss of generality, we set $c_0 = 1$. Then, letting j = 0, we have $1 \ge G_{i0}^*(+\infty) = c_i^{-1}$ ${}_0M_{0i}(+\infty) = c_i^{-1}m_i$. Thus, $c_i \ge m_i$ for all $i \in I^+$ and $c_i - m_i$ is a nonnegative solution of

$$x_j = \sum_{i,k} x_i p_{ik} (1 - H_i) * M_{kj}(t)$$

for all t > 0 that vanishes at i = 0. Such a solution must vanish identically and $c_i = m_i$ for $i \in I^+$.

Two more proofs of the uniqueness of π are given in [2]. One involves using the π time-reversed process. The other does not use time-reversals and hence can be adapted to processes that are more general, e.g., those that may not have a last state or even a next state.

REFERENCES

- [1] PYKE, RONALD and SCHAUFELE, RONALD (1966). The existence and uniqueness of stationary measures for Markov renewal processes. *Ann. Math. Statist.* 37 1439-1462.
- [2] SCHAUFELE, RONALD A. (1980). A class of time-reversible semi-Markov processes. Unpublished manuscript.

DEPARTMENT OF MATHEMATICS YORK UNIVERSITY 4700 KEELE ST. DOWNSVIEW, ONTARIO M3J 1P3 CANADA DEPARTMENT OF MATHEMATICS UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON 98195

Received July 22, 1980.