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ON THE ACCOMPANYING LAWS THEOREM IN BANACH SPACES!
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IMPA, Brazil, Louisiana State University and Michigan State University

In this paper we show that a necessary and sufficient condition on a
Banach space B for the validity of the accompanying laws theorem is that ¢,
is not finitely representable in B or, equivalently, that B is of cotype g for
some q > 0. The proof is based on a result of Maurey and Pisier on the
geometry of these spaces and on a theorem about approximation in L, of
Banach valued triangular arrays by finite dimensional ones.

Introduction. The classical way to prove the general central limit theorem in the
line uses the method of accompanying laws which consists essentially in reducing the
problem of weak convergence of sums to that of weak convergence of some associated
infinitely divisible p.m.’s, the accompanying laws. In fact, if {{,;:j=1,...,k,nE N}is
an infinitesimal system (i.e., the variables are row-wise independent and max; P{| &, | >
€} > Ofor all e > 0) and S, = Y, £,,, then the method is based on the observation that
L(Sy) = e(Y; #(&,)) in distribution as n — «. Here e(p) = e™® Yv_, u*/n!and p* =
purp* . .. *u is the nth convolution power of p, i.e., e(y) is the compound Poisson p.m. with
Lévy measure p. As usual, Z(S,) denotes the law of the random variable S,. In this article
we study the relation between tightness and convergence of row sums and accompanying
laws of triangular arrays of B-valued random variables (rv’s), B a separable Banach space.
Before describing our results we recall the main facts on accompanying laws in Euclidean
spaces: ’

1.1. THEOREM. Let {{y} be a triangular array of row-wise independent random
variables with values in R*. Then:

(a) If {e(}; L&)} is relatively shift compact, then for every T > O the set { (S, —
Y Eénjlg, <-)} is relatively compact (with respect to the topology of weak convergence
of finite Borel measures).

(b) If {£(S,)} is relatively compact and the &,; symmetric, then {e(},; L(£,)))} is
relatively compact.

(c) If moreover {&,} is infinitesimal and either one of the two sequences { £(S, — Y;
Eéjlyg, =0} and {e(Y, L& — Eéy I, 1<n))} is relatively compact, so is the other and
both have the same limits and are along the same subsequences.

Part (c) was proved by Varadhan (1962) in the case of separable Hilbert space. The
main contribution to this subject in Banach spaces is due to LeCam (1970) who proved (a)
of Theorem 1.1 for any separable Banach space (we will refer to this as LeCam’s theorem).
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He remarked that (b) is true in R* and fails in the Banach space c, of real sequences
converging to zero. De Acosta, et al, (1978, Section 3) proved a desymmetrized version of
LeCam’s theorem and showed that (b) is true in some special Banach spaces.

It may be convenient to observe also that Theorem 1.1 is not needed in its full strength
for proving the general central limit theorem, neither in the line nor in Banach spaces (see,
e.g., Araujo and Giné (1980, Sections 2.2-4 and 3,5) and de Acosta, et al, (1978, Section 2)).
However, the question of determining how much of Theorem 1.1 is true in what Banach
spaces is, in our opinion, interesting in its own right.

Now we describe the contents of this article. Our main result states that the converse
to LeCam’s theorem (namely that tightness of row sums implies tightness of accompanying
laws) holds in B for symmetric infinitesimal triangular arrays if and only if ¢, is not finitely
representable in B (definitions follow below). The noninfinitesimal, nonsymmetric cases
are also considered. These results are proved in Section 4. Section 3 contains a theorem on
L, approximation of convergent row sums of infinitesimal B-valued arrays by tight row
sums of finite dimensional ones, related to those of Pisier (1975, Théoréme 3.1) and
Mandrekar and Zinn (1977, proof of Theorem 2.10). This result, which is of independent
interest, is used to prove the accompanying laws theorem and also an improvement of a
central limit theorem in cotype p spaces due to de Acosta, et al, (1978, Theorem 6.6). The
accompanying laws theorem relies also on a geometrical characterization of those spaces
where some moments of the norm for the law e(}; #(X;)) are dominated by those of ¥ ; X,
(Section 2). This, in turn, depends heavily on a deep theorem of Maurey and Pisier (1975,
Corollary 1.3 and remarks thereafter) which characterizes probabilistically those Banach
spaces in which ¢, is not finitely representable.

We start by introducing some standard notation used in the study of triangular arrays.
By a symmetric infinitesimal array {X,,;} we mean a family of B-valued random variables
(v’s) {X,:j =1, ..., ko, n € N} which are symmetric, row-wise independent (i.e.,
{X,,} &, is an independent set of rv’s for each n) and satisfy the infinitesimality condition

lim, . max; P{|| X, || >€} =0
for every € > 0. We associate with each triangular array the truncations
Xojs = Xy Lyxyi<ry Ko = Xoj = Xujs,
the row sums
Su=Y Xy,  Sno =301 Xus,  Sns =251 Xujs,
the row sums of the laws

Bn = 2?’41 LX), P = 2;21 g(XnJB)

and the accompanying Poisson laws

(1-1) e(IJvn) = 3(27;1 ZLZJO ani)
where £(X,,;) = L(X,,)) for i = 1, X,,jo = 0, L(N;) = e(81) (=Poisson with parameter 1) and
{Xnji, Nj:j =1, ... kn, i = 0} are independent for each n. As mentioned before, e(p) =

e™B Y= u"/n!, u" =p* ... *u, and it is obvious that e(u.) is the law of the rv at the right-
hand side of (1.2). If » is a o-finite Borel measure on B, and A € %, then v |4 will denote its
restriction to A. Weak convergence of probability measures will be denoted by —., or w-
lim. Finally, we will say that a set of finite measures on B is relatively compact (or
uniformly bounded and tight) if it is relatively compact in the topology of weak conver-
gence.

We conclude the section by giving some concepts from the geometry of Banach space.
We also summarize some results due to Maurey and Pisier (1976, Theorem 1.2, Corollary
1.3 and Remarks following it) for easy reference and refer the reader to their work for the
proofs.
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A Banach space B contains /;; uniformly or, what is the same, ¢, is finitely representable
in B if there exists 1 = 1 such that for each n € N, there are n vectors y.i, ..., Yu. in B
satisfying
max,<n ItiI/T = " 2,";1 tiyi" = TmMaX;<, It,'l.

A Banach space B is of cotype p (Rademacher) if there exists ¢ > 0 such that for {x;} %,
€B,nEN,

E|| Y xie]|” = ¢ X [ a:]|”

where {€;} is a Rademacher sequence: the €; are i.i.d. and P{e; = 1} = P{e; = —1} = %. We
denote by {£,} the independent symmetrizations of {£,}, the independent Poisson random
variables with parameter %.

Throughout the paper B will denote a real separable Banach space with topological
dual B’, duality ( , ) and Borel sets 4.

1.2. THEOREM. (a) The following are equivalent for ¢ = 2, and a sequence {£}2:1 of
independent identically distributed mean zero random variables -3- P(| & | > ¢t) > 0 for
alltand E|¢|P <o for allp(1 = p < )

(i) co is not finitely representable in B;

(ii) There exists a constant C = C(B, q, {£¢;}) <  such that for all sequences of points
{xa} C B

(1.2) E| Yt x:&|7 =< CE| X1 xie |7

(b) ¢y is not finitely representable in B iff it is of cotype q for some q > 0.

REMARK. The part (a) is crucial for our work. The part (b) is interesting as a source
of examples. It is easy to show that the %, spaces (1 < p < x) are of cotype ¢ = min(2, p).

It is also known that these spaces admit Schauder bases (Johnson, Rosenthal and Zippin
(1971))

2. Integrability of accompanying Poisson laws. In this section we prove the
following:

2.1 THEOREM. The following are equivalent for any q = 2:

(i) co is not finitely representable in B.

(ii) There exists L = L(B, q) < ® such that for every finite sequence {X;}}-1 of
symmetric, independent B-valued rv's with E|| X;|?< o, j=1,...,n,

2.1) E| £ B X5ill* = LE || 3= X5 1%

with the notation as in (1.1).
We need a very simple lemma:

2.2. LEMMA. If {X;}}-1 are identica?ly distributed B-valued rv’s and X, is independent
of {X,}, then for any q = 1,

E| X X7 = E[| Xo + nXy ||“.
Proor. By Minkowski’s inequality,
X
ElXo + 55 %19 = (E] T (70 + Xf) 9

X 1/q
= "(Eu Lt u") = (B[ Xo + nX; [
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as {Xo/n + X,} -, are identically distributed. 0O

Proor oF THEOREM 2.1. (ii) = (i). Let {x;}}~1 C B, n € N. Note that if {¢;} 2, is a
Rademacher sequence, & = 0, N a Poisson rv with parameter 1 independent of {e;},

{§,} }=1 independent Poisson rv’s with parameter % and {£,} independent symmetrizations
of {§£,}, then

e(f(xe)) = L(x Yo ),  L(Toe) = e(h 81 + % 81) = e(ve 8_1)xe( &) = L(£)),

where 8; and §_; denote respectively the unit masses at 1 and —1.
Inequality (2.1) then gives

E|Z%&°= LE| T 5 |7

and (i) follows from Theorem 1.2 (a) because E | £ |” <  for every p > 0 and P{|& | >t}
> 0 for all £ (i) = (ii). Since & = N; is as in Theorem 1.2 (a), if {X;} =, are independent,
symmetric B-valued rv’s, independent of the {N;}, and if ¢, is not finitely representable in
B, then by Theorem 1.2 (a) and Fubini’s theorem we have:

22) E| X, X(N; =1, |"= CE| E, Xje | = CE[ Z, X, |I°

where {¢ }, as usual, is a Rademacher sequence independent of {X,}. Let now {X;;} be an
independent set of B-valued rv’s such that X, = 0 and #(X;;) = £(X;) for every i =1 and
J=1,...,n Let {N;} be independent e(8) real random variables independent of {X;;}; in
fact assume the Xj; defined on (2, #, P1) and the N; on (Q2, %, P;) and let E, E,, E,
denote integration with respect to P, X P,, P; and P, respectlvely By Lemma 2.2 and
inequality (2.2) we then have:

E|| 55 2% Xill” = B:Eal| 3, Zio Xull? < EoBs| 35 NXll?
=2BE| T, (- DX+ 2 BE ] 5 X

=27UC+ DE| L, X7

which proves (2.1). (Note that in the first inequality Lemma 2.2 is applied recursively
taking first Xo = 72 Y% Xji, then Xo = N1 Xy + Y3 Y% Xji, and so on). O

3. A decomposition theorem for bounded convergent triangular arrays. Let
{X,} be a symmetric infinitesimal array of B-valued random variables. Then, if #(S,) —
wA, it is known that A is infinitely divisible and in fact A = p+»r where p is symmetric
Gaussian, » = w — lim, e(uB$,) ([9]) with 8, | 0 and p a symmetric o-finite Borel measure
on B finite outside every neighborhood of zero; u is the Lévy measure associated to », and
by abuse of notation we will write » = e(u). e(r) has no Gaussian factor (aside from &). It
is also known that if C(u) = {8:u{]| x|| 8} = 0}, then

3.1) pal Bs— wp| B§

for every 6 € C(p), where p, = Y ; #(X,;) as defined above. Proofs of this fact can be found
in de Acosta et al, (1978), Section 2 (Theorem 2.10) and in Mandrekar and Zinn (1977),
Section 3 (Theorem 3.10)).

3.1 THEOREM. Let {X,;} be a symmetric infinitesimal array of B-valued rv’s such
that £(S;) = A\. Then there exists 8, | 0 such that Z(Sns,) —=w p, the Gaussian factor of
A and L(S,s ) —w v, the non-Gaussian factor of \.

PROOF. As noted above fin,s —>w pt|Bg and therefore e(fins) —w e(p|pg). (It is well
known that for finite measures », —,, v finite implies e(v,) —. e(v); the tightness of e(»,)
follows by decomposing e(v,) = e "® Y7 vk /k! + e™® Y% _,.1 vE/k! and observing that
the first term is tight for fixed r and the second can be made as small in total variation as
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one wishes just taking r large enough. Then the convergence follows using characteristic
functions). Let Y; be a random variable such that £(Y;) = e(u|B$§). Then #(Sns) —w
#(Ys) by using linear functionals. Clearly Y, is non-Gaussian and for each § € C(u),
d(L(8.5), £(Ys)) = 0 where d is Lévy-Prohorov metric on the probability measures on
B. Hence there exist 8, — 0 such that d (Z(Sn,s,_), A st)) — 0. Since p| g5, increases to g,
we have £(Y;) —w e(p). Also {Sns, = S, — Sy} is relatively compact. Now for f € B’
Wlth X;., = Anjs, and X;:] = X~"f'5n we get

ShE(f, Xre + X)) V(| (f, X0y + X)) | < 8)
=25 E(f, X)) 1 (| (f, X0) + (f, X7) | < 8)
+ Yk E(f X021 (| (f, Xni) + (f, X0) | < 8) = R.(8) (say).

By multiplying each integrand with each of 1(|| X;|| < 8,) and 1 (|| X,;|| > 8,) we see that
lim;,0 lim sup, Rn(8) = lims_.o lim sup, 7 E(/, X0 L((f, X)) |< 8) + Xt E(f, X7))?
1(] (f, X7)| =°6). But (f, Sns,) converges to non-Gaussian limit, hence the limit of the
second term in the right-hand side of the above expression is zero, giving,

lims .0 lim sup, R (8) = lims .o lim sup, 3 E(f, Xi)? 1 (| (£, X4y) | < 8).
Similar arguments give
lims_.o lim inf,, R,.(8) = lims_.o lim inf, Y5 E(f, X4))? 1 (|(f, XW) | < 6).

Hence we get the Gaussian component of the limit law of {S,} is the limit law of {S,,s }.
But {S.s,}, being relatively compact we get £(S,5,) = wp. O

The following result is contained in the proof of Theorem 2.10 of Mandrekar and Zinn
(1977); thus we state it with no proof.

3.2. LEMMA. Let {X,;} be a symmetric infinitesimal array of uniformly bounded B-
valued rv’s such that E(Sn) — ., v = e(A). Then for every e > 0 and q > 0 there exists a
symmetric simple function t: B— B such that { (Y, t(X,,))} is tight and sup, E || Y} ; X,;
-y, X)) <e

In the Gaussian convergence case we have:

3.3. LEMMA. Let {X,;} be a symmetric infinitesimal array of uniformly bounded B-
valued rv’s such that ¥(S,) —. p Gaussian. Then for every € > 0 and q > 0 there exists
a linear operator my with finite-dimensional range such that

lim, E" Zj X,,j - Z! TN (an) "q <e€

Proor. Let Z be a B-valued rv with #(Z) = p. Then it is well known that Z =
¥%-1 fi(Z)x; a.s. for suitable f, € B’ and x; € B (see, e.g., Jain (1977), Theorem 6 and
Remark (3) thereafter). Let #n(-) = Y™L: fi(+) x;. Then since £(S,) = L(Z), we get that
F(Sn — v (Sn)) = w LZ — 7iv (Z)). Also, {|| S. — 7 (S,) ||?} is uniformly integrable for
every q¢ > 0 by Theorem 2.1 in Mandrekar and Zinn (1977) or Theorem 2.3 in de Acosta,
et al.,, (1978), and therefore E||S, — 7n (S,)||? = E||Z — 7~ (Z)||?. Now the proof is
completed by choosing 7y so that E|Z — oy (Z) | <e. O

The previous propositions yield the following theorem, which is the main result in this
section.

3.4. THEOREM. Let {X,;} be a symmetric infinitesimal array of uniformly bounded
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B-valued rv’s such that { £(S,)} converges weakly. For any q > 0 and € > 0 there exists
a symmetric infinitesimal array { W,;} such that:

(i) W, is a measurable function of X,; only for every n and j;

(ii) there exists a finite dimensional subspace F C B such that P{W,; € F} =1,

(iii) {L(Y; Wa))} is relatively compact; and

(v) supn E || ¥ Xnj — 2 Wos||? < e

Proor. Choose 8, as in Theorem 3.1 and let S, = S,5, S = S.s. Then
ZL(S}) > w p Gaussian, #(S;) =, v = e(u) and £(S,) =, A = p*», as in Theorem 3.1. By
Lemmas 3.2 and 3.3 for every € > 0, ¢ > 0 there exist ¢: B— B simple symmetric, 7 linear
with finite dimensional range and ny € N such that E || S — ¥, t(X,,) |? < €/4 and for n
> no, also E|| S}, — 7 (X,,) |7 < €/4. Then, f6r n > no, W,; = t(X,;) + 7 (X,,;) satisfies the
stated requirements; but for n < no, W,, can be obviously obtained by simple function
approximation. 0O

If F is finite-dimensional subspace of B, then let gr(x) = inf{||x — y|; y € F}.

REMARKS. (a) The above result should be compared with Theorem 2.3 of de Acosta,
et al, (1978); this last theorem implies the existence of { W,;} satisfying the properties in
Theorem 3.4 even in the centered nonsymmetric, noninfinitesimal case provided that B
has a Schauder basis. [Let {f;} C B be the coordinate functionals, B, = Ker(fi, fz, « + + fz)]
if {en} -1 is a Schauder basis, F the linear span of {ei, ..., ex}, T (Z5=1 Anen) = Y21
Anern) and T: By — B/F is defined as T (x) = x + Fy, then (sup:| T%'||) < o and x — m
x| = gr(x) <|x—m (x)].

(b) The above theorem is not a generalization of Pisier (1975, Theorem 3.1) because the
approximating row sums are not related to each other in any specific way as in the i.i.d.
(fr); ) case. It is not clear how to obtain a general construction of finite dimensional ‘natural’
triangular arrays so as to deduce the i.i.d. case.

4. Consequences of the foregoing. In the first, main part of this section we present
results on accompanying laws and in the second we give necessary conditions for the CLT
in cotype p spaces.

4.1. THEOREM. The following are equivalent for any separable Banach space B:

(i) co is not finitely representable in B;

(ii) for any symmetric, infinitesimal array {X,;}, convergence of {£(S.)} implies
convergence of {e(u.)}.
In which case, w — lim,e(p,) = w — lim, #(S,).

Proor. (i) = (ii). If § € C(p) thenpy,|p; —w u|B; and therefore e(p.|p;) —u e(n|5;s).
Since for every Lévy measure », e(v) = e(v|p;) * e(v|s,), and since for § € C(p),
convergence of {#(S,)} implies convergence of {#(S.s)} and {£(S,;)} as observed
before, it follows that we need only to consider uniformly bounded triangular arrays. So,
we assume {X,;} uniformly bounded. Let {X,;,, Ny;n,i EN,j=1,...,k,} be asin (1.1)
and recall that e(u,) = L(3 ;Yo X,;:). Given € > 0, for every i = 1 associate W,j; to X,;:
as in Theorem 3.4, and let W,jo = 0. Then, Theorem 2.1 applied to X; = X,; — W, gives by
Theorem 3.4 that

(4.1) Sllan " 2};1 25\20 (ani - ani) "q =< Le.

Since { £(¥ 521 W,,)} is relatively compact and this is a finite dimensional array, Theorem
1.1 implies that {£(}; ¥ W,;:)} is also relatively compact, in particular, it is flatly
concentrated, i.e., given § > 0 there exists a finite dimensional subspace F C B such that
P{qr(¥; T Wa.u) > 8} < 6. Hence (4.1) gives the flat concentration of (LT, T
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X.ji)} by Chebyshev’s inequality. On the other hand, also by theorem 1.1, if f € B’ and
L(S,) —u\, then e(u,)of ' — ,Aof "' Therefore, by Theorem 2.4 in de Acosta (1970),
e (I‘n) —uw A

(ii) = (i). Assume ¢y is finitely representable in B. Then, by Theorem 1.2 there exists a
sequence {x,} C B such that Y je;x; converges a.s. but there exist {&,), {.} integers such
that k., I, —> ® and Y %23 £x; 4 0 in probability (hence in law), with {£;} as in the proof
of Theorem 2.1. Since /, — « and }, ; €;x; converges, we get x;,; — 0 as n — c. Then { X,
= €+1,%j+1,, 1 =j =< kn, n € N} is a symmetric infinitesimal array such that #(S,) — ...
However, { L (355 Ex;) = e(Y; L(X,;))} does not converge (in fact it is not even tight:
otherwise Theorem 1.1 (c) gives a contradiction). O

REMARK. The example in Le Cam (1970) showing that in ¢o, {£(S.)} may be tight
without {e(u.)} being tight can also be easily adapted to provide a proof of (ii) = (i) in the
previous theorem. However the present example, given Theorem 1.2, is much simpler.

In view of Le Cam’s theorem (Le Cam (1970)) and Theorem 4.1, we get:

4.2. COROLLARY. The following are equivalent for a Banach space B:

(i) co is not finitely representable in B;

(ii) for every B-valued symmetric infinitesimal array {X,;}, {£(S.)} is relatively
compact if and only if {e(u,)} is relatively compact.

From the previous corollary and Theorem 2.5 in de Acosta, et al, (1978), we obtain the
following:

4.3. THEOREM. The following are equivalent:

(i) co is not finitely representable in B;

(ii) for any not necessarily symmetric though infinitesimal array {X,;}, {£(S.)} is
relatively shift compact if and only if {e(Y; L(X.; — EX,js)} is relatively compact for
every (some) 8§ > 0.

In the noninfinitesimal case, the following partial result can be obtained:

4.4. THEOREM. Let B be a separable Banach space with a Schauder basis. Then the
following are equivalent:

(i) co is not finitely representable in B;

(ii) for any symmetric triangular array, {X,;}, {£(S.)} is relatively compact if and
only if {e(Y; L(X.j))} is relatively compact.

Proor. (ii) = (i) is contained in the proof of Theorem 4.1. To prove (i) = (ii) proceed
as in 4.1 but using Remark (a) after Theorem 3.4 instead of Theorem 3.4. O

For examples of spaces where condition (ii) in any of the previous theorems holds, see
Remark after Theorem 1.2.

REMARKS. (a) Unlike the iid. (V) case the fact that the law of S, converges need
not imply that any of the X,,; is pre-Gaussian even in the case of bounded random variables
(a B-valued rv X is pre-Gaussian if there exists a Gaussian p.m. with covariance of X). To
see this last remark consider B = ¢, €;; independent Rademacher, and

X =n""? 357" €e:/(2 log i log log i)/2 + Y i=n, €ie:/(2 log i)'/?]
where N, is chosen such that

P{Xj-1||n7" Bien, €jei/ (210g i)/* ||, > 8} = P{¥}-: (2n log Na) /2 > 8} — 0
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for any & > 0 (for example, N, = e™). (Here {e;)} is the canonical basis of ¢). But X, is not
pre-Gaussian for any fixed n, j since

Y=, vie:/2log D)2 & co

where {y;} are i.i.d. N(0, 1) (lim sup;| y:| /(2 log §)** = 1).

(b) It is known that if {X,;} is ii.d. for each n, then {#(S,)} is tight if and only if
{e(pn)} is tight. (de Acosta and Samur, 1977, Theorem 2.2). Hence, there exist in spaces
in which ¢, is finitely representable examples of triangular arrays {X,;}, {Y.;}, such that
{L(Xk X,)} converges {£(T%: Y,;)} does not converge, but the u,’s are the same.
Hence in such spaces one cannot obtain conditions on p. alone to ensure convergence of
the triangular array.

We now use the approximation theorem to improve parts of Theorem 6.6 in de Acosta,
et al, (1978).

4.5. THEOREM. Let B be of cotype p and let {X,;} be a symmetric infinitesimal
triangular array of uniformly bounded B-valued rv’s such that {£(S,)} is relatively
compact. Then there exists an increasing sequence {F.} of finite dimensional subspaces
with UxFy = B such that lim, sup, Y, /21 Eq%,(X,;) = 0.

Proor. From Theorem 3.4 for each € > 0 there exists a finite dimensional triangular
array {W,,} approximating {X,,}. Let F. denote the range of { W,;}. Then since || X,; —
Wil = gre(X,;) and B is of cotype p we have

€>E|Sy — Y WylP = ¢ Y5 E|| Xy — WP = ¢ By Eq% (X.)). ]

REMARKS. In Theorem 6.6 of de Acosta, et al, (1978), infinitesimality is not assumed
and {F.} can be any increasing sequence of finite dimensional subspaces withu,F, = B.
However, an additional assumption such as B being the dual of a type 2 space or B having
a Schauder basis must be assumed (see the remark following Theorem 6.6 there).

(b) In view of Theorem 1.2 (b) it follows that if ¢, is not finitely representable in B, then
there exists r > 2 such that whenever X,; is as in Theorem 4.5, then the conclusion of
Theorem 4.5 holds for that r.
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