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ON THE LAW OF LARGE NUMBERS

By D. L. HansonN! aND RaLpH P. Russo?®

State University of New York at Binghamton

Suppose X, is an ii.d. sequence of random variables with mean p and
that ¢, is a nondecreasing sequence of positive integers such that ¢, < n. Let
S, =X; + ... + X,. We give conditions under which

Sn - Sn—k

% —p.‘—)O

maxy, <k<n

almost surely and we discuss sharpness.

1. Introduction. The motivation for the work done here was a specific statistical
problem. Suppose X is an independent sequence of random variables whose distributions
approach (in some appropriate sense) a fixed distribution F with mean p. Then under mild
regularity conditions S, /n — u almost surely where S, = X; + - - - + X,,. There will usually
be bias (or nonrandom error) associated with the earlier X,’s. One might hope to reduce
this bias by “throwing away” some of these earlier X,'s, by considering averages
(Sr = Sn—s,)/tx. It is still desirable that (S, —S.—;,)/t. — p almost surely. How many Xy’s
must be kept (how fast must £, grow) in order to get this almost sure convergence?

In this paper we give some answers to this question in the case when X, is an iid.
sequence. Note that if lim sup (n/¢,) < » so that one asymptotically keeps at least some
fixed proportion of the X,’s, then

Sp—Snt, So n . Sn, ( n)
— + .

1——
ln

tn n t. n-—1t

Since n/t, is bounded it easily follows that (S, —S,-,,)/t» — EX, almost surely whether
n — t, — » or not. On the other hand, if ¢, = 1 then (S, —S,—;,)/t. = X, “oscillates” over
the support of the distribution F.

Throughout this paper X; will be an i.i.d. sequence of random variables having finite
mean p and distribution function F. m(6) =FEe’** and S, = X; + --- + X,. C will be used
to denote various positive constants whose exact values are irrelevant.

In Section 2 the X)’s have a finite moment generating function in an open interval about
1. In Section 3 we require E | X:|” < o for some r = 1. We consider random sequences ?,
since one might wish to decide how many X’s to keep (throw out) based on the data. It is
clear that most of the results presented here are true (with appropriate modifications) if
the tail probabilities P{| X, — EX,| = ¢t} have appropriate uniform bounds.

2. Results assuming moment generating functions.
THEOREM 2.1. Suppose

(2.1) m(8) is finite for 8 in some open interval containing p and
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(2.2) {t.} is a sequence of positive integers such that t, < n and t, /(log n) — .

Then
Sn - Sn—k

(2.3) max, <k<n %

—u ‘—» 0 almost surely.

ProoF. Fix € > 0. According to a classical result due to Cramér [2] there is a p such
that 0 < p < 1 and such that for every n and 2

P[Em 8 ]2 e} < 29t o that

S, — Sa- 2
P{maxtnsksn R p“ = e} =7

exp{t.log p}.
k -p

Now
- - tn
Ya-1 exp{t, log p} = Y- eXP{l g (log n)(log p)}~

If n is large enough, say n = no, then ¢,(log p)/(log n) < —2 so that the expression above
is bounded by Y72, exp{¢, log p} + Ynsn, 72 and is finite. Thus

Sn - Sn—k _

7 [

26}<oo

Y=t P{ mMax, <k=n

so by the Borel-Cantelli Lemma
Sn - Sn—lz _

% 1| = e infinitely often} =0.

P {mathsksn
Since € > 0 was arbitrary the theorem is proved.

THEOREM 2.2. Suppose (2.1) holds and that

(2.4) {t.} is a sequence of positive integer valued random variables such
that t, < n and t,/(log n) - « almost surely.

Then (2.3) holds.

Proor. Fix € > 0. For each positive integer m there exists a positive integer n., such
that

Pl o) 21
Assume that {n,} has been chosen to be strictly increasing. Now define
(2.5a) tr=1 for 1=n<n
and for m = 1 define
(2.5b) tr = [m(log n)] for np=n<nms

where [C] is the greatest integer in C. Then {#}} éatisﬁes condition (2.2)—and the
conclusion (2.3)—and if A = {¢, = ¢} for all n}, then P(A) = 1 — €. It follows that

> _ksn_k ¥ ‘ - 0}

= P({maxt:sksn

P { max;, <k<n

—S—"—_kini—-plAO}nA)zl—e.

Since € > 0 was arbitrary, the proof is complete.
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SHARPNESS. The preceding proofs seem to have been fairly “sloppy” and one might
conjecture that the results are not nearly sharp, but that is not the case.

Suppose 0 <p <1, g =1— p, {X,} is an i.i.d. sequence of random variables such that
P{X,=p)} = qand P{X,=—q)} = p, and that £, = max (1, [b(log n)]} where b > 0. Let
m, = [2bn(log n)].

For large enough n we have m,.1 — m, = [2b(log n)] > tn, so that the “blocks” of
random variables {Xm,—¢, , Xm,—t, +1, ***» Xm,} are disjoint and hence independent. We
will argue that there is an € > 0 such that

Sm’l - Sm’l_tm
s pf S

n

Smn - Sm‘n_tm

>e}=oo so that P{ 7 “>ei.o.}=1

and hence (S, — Sn,)/t» does not converge to 0 almost surely (i.e., (2.3) does not hold).
Let p. = ming=o(e~*’m(8)). This minimum certainly exists (at least for e small enough)
and it is easy to see that limj p. = 1.
According to Theorem 1 of Bahadur and Rao [1] the series
Sm’l - Sm’n_tm

n

>e} and Y21 (p)™/(tm,)"?

both converge or both diverge. However
Y21 (p) ™/ (tn,) 2 = C + Tie1 (pc)**'"/(2b log n)2 = C + Yo, n?*0e)/(2p log n)'/~.

This last series diverges if € is close enough to zero that 25(log pe) > —%.

THEOREM 2.3 Suppose m(8) = « for all § > p or all 6 < . Then there exists a
nondecreasing sequence {t,} satisfying (2.2) such that

Sn = Sn —-)O}=0

— ®
Proor. For notational convenience we assume p = 0. If § > 0 then Y7 P{8]| Y| =
log n} < o if and only if Ee?'¥! < oo. It follows thatY;-i P{|X.|=m log n} = o for every
~ positive integer m. Choose n, recursively so that nn./(log nn) = m + 1 and so that
Som, +1 P{| Xs| = mlogn} = 1. Then if £, = max{1, [m (log n)]} for nm-1 < n < n, (with
no = 0), it follows that ¢, is a nondecreasing sequence satisfying (2.2) and that P { | Xn| = ta
infinitely often} = 1. Let k, = max{t, t—1 + 1}. Then if | X, | = ¢, and n is large enough

(2.6) P{maxt,,sksn

|S"_1 - S"_kn _ S — S"’_kn - & _ ilsn—l - Sn—k,, - f _ |Sn—1 - Sn—kn
| k-1 ko | |ka| Ba| k=1 |75 | ka—1
so that either
Sn—l - Sn—k" 1 Sn - Sn_k" 1
—I-e-n_—l— > 5 or else o > -5
It follows that
S, — S.- 1.
P{maxt,,sksn ——k_k > -5 1.0.} =1

3. Results assuming E | X;|" is finite. We first need two lemmas.
LEmMMA A. Suppose t > 1. Then E | X, |* < © and EX, = 0 if and only if
3.1) S n?P{maxi=k=n|Sk| = ne} <o  for every €>0.

Proor. This is just a mild strengthening—when ¢ > 1—of Theorem 1 of Katz [31.
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Katz’ Theorem 1 is mainly a corollary to his Theorem 2 when ¢ > 1. (Note that » > 1 in
Theorem 2 so the case ¢ = r = 1 is not covered.) Katz’ proof of his Theorem 2 is modified
by setting A, = {maxi<<»|Sz| >n"*} and AP = (max,<p=n|Yi-t Xa| > 2?7} and by
using corollary 3.3.2 on page 144 of [5] to help in bounding the moment E[maxi<z<n
| S.-%X, |]*™ obtained when Markov’s inequality is applied to bound P(A ).

Katz’ Theorem 1 for ¢ = 1 comes from Spitzer’s Theorem 4.1 in [4]. It is not clear to the
authors whether Lemma A is true for ¢ = 1, but the modification indicated here will not

work in that case.

LeEmMMA B. Supposer>1,E|X,|"<®, EX;,=0,b6>0,e>0,and a = (r —1)"". Then
3.2) =1 P{maxi=r=pna | S| = n%} < .
ProOF. Suppose r = 2 so that a < 1. Let p(a, b) = P{maxi<¢=qs|Sk| = b}. Then
Y =1 p(bn®, n%) = Y r1 ¥ (n|m-1<bne=mP (bR, n%€)
(3.3) = Ym-1 X (nim-1<bnesm P (m, Cme)

=Yn-1#{n|m— 1< bn* =< m}p(m, Cme)

1
= Y=, Cma " 'p(m, Cme).

Now (1/a) — 1 =r — 2 so (3.3) is finite by Lemma A.
Now suppose 1 < r < 2 so that a > 1. Then

E:=1 p(bn“’ nae) = 2:;1 [b(n + l)n —bn* — ]-]—l 2(m|bn"_<.m<b(n+l)a} p(m, Cme)
= C Yo n7 Y i brazm<binrryy P(m, Cme)
= C T m“Vp(m, Cme).

Which, again, is finite from Lemma A.

THEOREM 3.1. Supposer =1, EX;, = pu and

(3.4) {t.} is a sequence of integers such that 1 < t, = n and such that for
" n=no we have t, = [6n'"] where 0 < b (if r=1then 0 < b= 1).

Then (2.3) holds if and only if E| X, |" < co.

Proor. For notational convenience we assume that g = 0 throughout this proof. We
first prove that (2.3) holds if E | X, |” < . The case r = 1 is a special (and easy) case. We
consider it first.

Suppose € > 0. Fix w such that n7’S,(w) — 0 and then choose n’ so that | n™'S,(w)| <
beif n=n'. We get

Sn - Sn—k S" n S"_k n_k
B M T
Sn-r n—k
n_; . T I(n—kzn’)(k),
Sn - Sn—k S" n S] n —n
nl<k<n |————————— —_ e —=+ sj<n || 5=+ ° ’
MAX ) = = | o] max<; J l (o] (be) [on]

and
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lim sup maxgsn)<k=<n w =0-. <%) + maXi<j<n’ %l c0+e==e
Since n71S,(w) — 0 almost surely it follows that
P{lim SUp MaXpbnl<k<n S—"# = e} =1
for every € > 0 so that (2.3) holds.
Now suppose r > 1. It suffices to prove that
(3.5) P{max,nsks,. S";ksn_—k =€ i.o.} =0

for every € > 0.
Fix € > 0. Define 8 = r/(r — 1) and n; = [ak?] with £ > 0. By the Mean Value Theorem

there exists x; € (¢ — 1, k) so that 2 — (2 — 1)# = 8(x;)#™". Note that

=iy akf— (k= 1) [(aVBB\ [\ _
.6 ~ = ~k 1/8 1
36) ne ba " RP T 5 \&) —ek
and that
by 1ot
(3-7) bal/rk/!—l =1= t"/.—l .

Let a be such that a/8b~! = %. Fix b’ and b” so that b’ > ba'” > b” > 0. Then from
Lemma B, Y5 P{maxi<j<y« | Sj| = b"k%/7} < » where a =1/(r — 1) = 8 — 1 so that

Z;;s.,] P{maxlsjstnk |Sj| = t"h€/7} < 00,

Let

T = maXixjst, | Sn, = Sny—|

and A, = {T% = t,,€/7}. Then Y- P(A;) < ® and P{w|w € Axi.0} = 0. Fix w so that w
€ A, only finitely often and choose k&, so that for all 2 = &,
(1) w & A
(2) Y% tnh <n,—np1<% t"h’
and
3) t,, <4 tn, /3.
Now choose n > ng,+1 and » so that ¢, < v < n. There exist 2’ and £” so that ny <n = ng-+1

and either
1) ko< k" and Npro1 <N — V= Rp»
or
(2) ko = k” and l=n—-v=<=np.
Note that t./(ne+1 — ne) = (8, /tn,..,) (bny.,, / (Mer+1 — may)) > 1 and that £” < &’. Then if

D = maxisjzn, | Sn, (©) — Sn, —j(w)],

for our fixed w we have .
|Sn - Sn—vl = ISn,,,_,,l - Snl + |S"k'+l - Sn,,»l + ZI?=I¢"+1 Ith - Sn,,_ll + ISn,,n - Sn—vl
=< 2Ths1 + Ykrrs1 T + (Tx or D)

=< 2tn,., €/7 + Skirrs1 tu€/T + (tn,.€/7 + D)
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m

8 .
=5 [§ bn + Yhokr+1 o, + t,,] +D

= ; [80/3 + Yhihre 20k — nu—t) + »] + D

s%[§+2+1]+D<6eu/7+D.

Thus

Sn - Sn—v
14

max; <,<n < 6¢/7+ D/t,

which is less than € if n is large enough. Thus if w € A, only finitely often then
Sn - Sn—k
k

only finitely often so (3.5) holds and the proof that (2.3) holds if E | X |” < « is complete.
Ifr=1and E|X,|" = o then p = +x (or else is undefined) so (2.3) can’t possibly hold.
The following holds if u = 0 for > 1 and if p is replaced by 0 in (2.3) when r = 1.
It is well known that E|Y|" < w if and only if Ys: P{|Y| = n'"} < . Assume
E|X,|" = . Then Yy P{|X,| = n'"} = © so P{|X,| = n'/" i.0} = 1. Now use the
argument of Theorem 2.3.

=€

maxy, <k=n

THEOREM 3.2. Supposer =1, E|X,|" < o, EX,, = p, and

{t.} is a sequence of positive integer valued random variables such that
t. < n and lim inf ¢,/n"" > 0 almost surely.

Then (2.3) holds.

(3.8)

Proor. This is essentially an “immediate” corollary to Theorem 3.1.

ADDITIONAL REMARK ON SHARPNESS. If E|X;|" < oo but E|X:|” = o forall 7' > r,
then (2.3) does not hold if ¢, = [bn'/""]. We will, however, construct a sequence ¢, = o(n"")
for which (2.3) holds. For each positive integer m choose a positive integer n, so that
Rm > N1, so that [(m — 1) 7 (n,)""] > [(m — 2) " (m-1)""] for m = 3, and so that

Sn - Sn—k
k

Define ¢, = [n'"] for 1 < n < n, and for m = 2 and n,, < n < Ny define £, = max{[m™'.

n'], [(r2)7], 27 (a) 7], « -, [(m — 1) (n) "]} = max{[m™'n""], [(m — 1) (na)""]).

Note that {t.} is a nondecreasing sequence of positive integers such that

t, < [(m — 1)"'n'"] < n so that ¢,/n"/" — 0. Now for each positive integer m, we get

Sn - Sn—k
k

and (2.3) follows from this.

=2™ for n= nm} =1-2™"

P{max[m“n‘/”]sksn

P{max; <=n <2 foralln,<n<nm and m=me} =1— 27"
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