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THE GEOMETRIC PROGRAMMING DUAL TO THE EXTINCTION
PROBABILITY PROBLEM IN SIMPLE BRANCHING PROCESSES

By PaAuL D. FEIGIN AND URY Passy

Technion-Israel Institute of Technology

It is shown that the well-known problem of determining the probability
of extinction in a simple branching process has a duality relation to the
problem of determining that offspring distribution which is in a sense closest
to the original one and for which the new process is subcritical (or critical).
The latter problem is also considered with respect to various measures of
distance.

1. Introduction. Our framework is the class of simple (Bienaymé-Galton-Watson)
branching processes with single ancestor. Suppose, for a given offspring distribution ¢ =
{go, q1, - - -}, that the probability 2} of ultimate extinction is less than 1—the supercritical
case—and consider the following problem: find an offspring distribution p * which is closest
to ¢ and under which ultimate extinction is certain. In the sequel we interpret “close” in
an appropriate sense and in fact show that the offspring distribution conditioned on
ultimate extinction solves the above problem for a class of entropy-type measures of
distance (closeness).

When the measure of distance is Kullback’s [4] directed divergence we show that the
problem described in the previous paragraph is equivalent to the geometric dual of the
familiar problem of determining z} given g. The solution p* can thus be obtained either
from the duality relationship or by directly solving the dual problem in a suitable form.

We initially discuss the definition of a branching measure on a suitable space. This
aspect of the paper may be of independent interest.

2. Branching measures. Our processes live on the space € of infinite nonnegative
integer sequences
w = {w1, w2, }

Define 4., for each n = 1, as the o-field generated by the cylinder sets {w: w; =m;; 1 <1i
< n} and let & = o(U, £). A branching process may be defined on £ by defining the
successive generation sizes Z, and total numbers of particles Y, as follows (see also Keiding
and Lauritzen [3]):

Zo(w) =1, Yo(w) =1
Zi(w) = w

Zo(w) = wa + + o+ + w1 Y]

(1) Zn(w) = @y, 1+ oo t oy,

2 Yo(w) = Yn1(w) + Zn(w)
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IfY,1=Y,.thenin (1) Z, = 0, whereupon 0 = Z,11 = Zpi2 = - - -.

Define Y = lim Y,; since {Y = n] is determined by {wi, - -+, w,} it follows that Y is a
stopping time with respect to {£]. As far as the branching process is concerned only the
history until Y is of interest—that is, we may restrict our attention to %y =
{FE #:Fn (Y =n} € %;n =1} when defining or comparing branching measures.

Call a measure on (R, &) independent and identically distributed (i.i.d.) if the coordinate
variables [7j(w) = w;] are ii.d. with respect to it. Now define a measure @ on (£, &%) as
branching if its restriction @ to #y has an i.i.d. extension @ to (2, #). This extension is
unique since it is determined by the offspring distribution {g; = @ ¥(n: = j)}. Clearly, if @
is ii.d. it is branching; however there exist branching measures which are not i.i.d. A
particular example is the subject of the following theorem which provides an analogue of
the standard result that a supercritical Galton-Watson (G.W.) process conditioned on

extinction is equivalent to a subcritical G.W. process.

THEOREM 1. Let B = {Y < x}. Then if @ is branching so is Qg defined by @s(-) =
Q(-|B).

PrOOF. Since B € %y we note that (@z)* = (@) (in an obvious notation) so that we
may take @ i.i.d. without loss of generality. Then, for F € v,
(B (@)Y(F)=Qs(F)=32-1Qs(FN {Y=n)})=Yr1QFN{Y=n})/QB).

Since G, = F n {Y = n} € &, we may write

(4) G.=0N,G(n,v)
where
Gn,v) ={m=v1, oo, =0}
and the union in (4) is over all v = (»y, - -+, v,) for which G(n, ) C G,. Forsuch v, Y=n
implies

n+ .- +m=n-—1
SO
Q(G(n,v)) =[x ¢, = Q(B) [I- ([QB)] g}
Taking @ as iid. on (2, %) with offspring distribution § = {g; = [Q(B)]’"'¢;} we have
shown that
Q(G(n, »))/Q(B) = Q(G(n, v))
which, via (4) and (3) shows that for all F € %y
@s(F) = Q(F)
so that (@g)¥ = @ and therefore @ is branching. O

REMARK. The fact that § must be a proper distribution if @(B) # 0, means that zJ
= Q(B) solves ’

(5) fo(2) = Lm0 2'q; = 2;

a standard result in G.W. process theory.

The usual definition of a branching measure refers only to the history concerning
successive generation sizes. In our definition it is not only the process of generation sizes
that must display the “branching property” but also the offspring production of individuals
in each generation must display the property. To formalize the usual definition in our
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framework consider the o-fields 4, = o(Z;, -+, Z,),n=1and ¢ = o(_U,. %,). Call @,
defined on (2, %), a 9-branching measure if it has an i.i.d. extension @ to (R, #). Also,
call @ on (R, #) %-branching if its restriction @ ¥ is %-branching. Since ¥ C Fy, an Fy-
branching measure is a %-branching measure. Athreya and Ney [1, page 52] show that @z
is 9-branching; Theorem 1 shows that it is also %y-branching.
3. The duality. If we consider the (primal) problem
& : min z
subject to z = f,(2)

where f, is defined in (5) we may express its geometric dual (see the Appendix) as:

(6) #: min{Y 2o pjlog(p;/g,)}/ (1 — 1)
- subject to Y ip;=1 |
pp=Xipi<1

The problem % suggests the following interpretation: find an offspring distribution p*
which minimizes an entropy-like distance from g and which corresponds to a branching
process with certain ultimate extinction. Moreover, by duality, p* is determined by

(8) pj* = (z:)j_lqj; J = 0) 1’ M

which corresponds to the offspring distribution of the branching measure @(- | B). Via the
following theorem we are able to justify this interpretation of # by showing that it
corresponds to the constrained minimization of the more familiar Kullback directed
distance between P¥ and Q.

THEOREM 2. The problem % is equivalent to the problem
Y
B’ {Epylog (ZZ ) }
subject to PY(B) = 1, and P branching.
ProoF. Since P and @ are branching and %’ only refers to their restrictions to #y, we

may take P and @ ii.d. on (2, #). If P¥(B) = 1 it is not hard to show that the Radon-
Nikodym derivative satisfies

dPY
Q7" =Yr15-% dQ" I(Y n)
where P", Q" are restrictions to %, and, due to the i.i.d. property,
dpP"
dQn (w) = H;l-l [pn,(w)/qn,(w)]'
Therefore,
d Y .
) log( dQ ) =¥ X110g[py/q, JI(Y < )
-and since

Y dPY
Eleog(dQ ) = EplOg<W)

we may apply Wald’s equation to (9) and conclude
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dP”
Eprlog W = Ep(Y)Eplog(pn,/q,)

1
- (1——ﬁ) Y 70 plog(p;/q;)

where p denotes the offspring distribution corresponding to P. Thus the objective functions
in # and #’ are the same for P branching, and the constraints are also since it is well
known that P¥(B) = 1 if and only if g, < 1. O

Now consider a-entropies or measures of distance between P and @ defined by

D.(P, Q) = Ep[ﬁx(%g)]

where f,(x) = log x, « = 0, and f,(x) = x% 0 < a < 1. We show in the following theorem
how to solve a class of problems %,, and so indicate how %’ may be solved directly. Define,
for a given probability measure @ on an arbitrary (2’, #’) and for fixed A € &’

%,: min D, (P, @)
subject to P(A) =1,

THEOREM 3. For all0 < a < 1, the solution to ¥, is given by P(-) = Q(- | A), provided
Q(A) > 0.

ProOOF. For 0 < a <1 and X a nonnegative integrable random variable it follows by an
application of Jensen’s inequality that
Ef.(X) = (Ef(X™)}
whereas
Efy(X) = —Efo(X7").

Since f,(x) is concave for 0 < a < 1 we apply Jensen’s inequality, while keeping in mind
that P(A) = 1, to obtain

dP

Dy(P, Q) = —fo(Q(A)).
The minima are attained for P(-) = @(-|A), unless @(A) =0. O

D.(P, Q)>{A(Ep[-d—QIA])} = £(Q(A))7, O<as<l

COROLLARY. The solution to #’ is P* = Qg and that of # is given by p* in (8).

Proor. From Theorem 3, @p will be a solution of £’ if it is branching, but this follows
from Theorem 1. The second half of the assertion follows immediately from the relationship
between # and 4’ established in Theorem 2. 0

We remark that if @ "(B) = 0 (i.e., go = 0) any PY satisfying P¥(B) = 1 is orthogonal to
QY and so D,(P?, Q%) = «. Thus, we see the futility in trying to convert a supercritical
branching process with certain explosion into a “related” subcritical one.

Acknowledgement. The authors are grateful to the referee and associate editor for
pointing out an error in the original version.
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APPENDIX

Geometric programming deals with a pair of programs.
(a) The primal program:

P inf go(t)
subject togr(t) s L, k=1,..-,p
t1>0, 0, t,>0

where gi(t) = Yiesry & [[ 2188 k=0, 1, - -+, p, and there exists £ > 0 such that gx(f) <
1,k=0,1, -.., p. The integer sets J[k] are defined by

J[k]={mk9mk+1"":nk}; k=0’1:”"p
with
mo=1, m=n+1,-..-, mp=n,-1+1 n, =n.

The exponents a;; are arbitrary constants, the coefficients c; are positive and {n, < n; <
-++ < ng,} is a set of integers.
(b) The dual program:

8
2: sup [[£=o [Ticsre (%)
subject to 8; =0, --.,8, =0
Yiear 8i=1
Y a6 = 0; Jj=1.--,m
where
Yr = Yiedir) 0 k=0,1,.--,p.

Assume there exists § > 0 which satisfies the constraints.

Duffin, Peterson and Zener [2] give the following results for these programs.

Given the problems 2 and 2:
(i) 2 attains its constrained minimum value at a point ¢* which satisfies the primal

constraints;
(ii) the corresponding dual program 2 attains its maximum value at a point §* which

satisfies the dual constraints and

ci [[7=1 (87)*/8o(t*) i € J[0]

(A1) 8r = )
Yl’:ci H;n=1 (tj*)ml lEJ[k];k= 1: (REEY 4

(iii) the constrained maximum of 2 is equal to the constrained minimum of 2.
Consider now the following program (see (4)) for the supercritical case, fg(1—) > 1:

&(N):min{z|f,(z, N)z7' <1, 2> 0}

‘where
fao(z, N) = T qj2” < fo(2, N + ) < fo(2).

The supercriticality condition ensures the existence of zo < 1 with f3(20) < 2.
The corresponding dual program 2(N) is given by

[
9(N) :max{v(8, N) =T% (gé_y) NoG-1&+1= 0}

i
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where
Y= Z{io 8!',
and we may choose § as follows:
< 1 - -
80:2_N’ =1 &={NG-1)}7} i=2 ..., N

Thus, for all N = 1 the above results apply. Transforming to the variables
pi=8/v, =3 ipi
the dual becomes
2(N) :max,,<y {V(p, N) = [T (q:/ps)"]"/* )
subject to Yo pi = 1, wp = 3, ip:.

Let z*(N + j) and p*(N) be the solutions of .« (N + j) and 2(N) respectively. Then
2*(N + j) satisfies the constraints of <7 (N) and p*(N) satisfies those of 2(N + J) and
therefore

min & (N) < min &/(N + j)
max 9(N + j) = max 2(N).
Moreover, for any N, min &/ (N) < 1 so that we have )
1= min (N + j) = max 2(N + j) = max 2(N) = min «/(N); N>0,7>0

and so by monotonicity
z* =limy z*(N) = limy V(p*(N), N).
Following (A1), we define for each N > 0, the sequence (pF*(N)) by

pI*(N) = {g;{Z*(N)}"“; i=0,..

Clearly,
pi* =limy p}*(N) = g:{z*}*"
exists for each i and so we may define the pair of infinite geometric programs:
& =of (o) :min{z|f,(2) 27 < 1}

2 = 9() :max{V(p) = [[[%0 (g:/p:)*1V* ™| pi=1, pp < 1, p; = 0}
with
z* =min & = max 9 = V(p**).

Finally, minimizing {—logV(p)} in 2 yields the form % of the dual program (see (6)
and (7)), and we see from the forms </ and 2 that the duality relation also holds when
fa(1=) <1 whereupon z* = 1 and p** = q. Note that for the case f;(1 —) =1 (i.e., y, = 1)
continuity considerations also yield this latter solution for 2.
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